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Abstract
The Bayesian classification rule used for the classification of the

observations of the (second-order) stationary Gaussian random fields with
different means and common factorised covariance matrices is investigated.
The influence of the observed data augmentation to the Bayesian risk is
examined for three different nonlinear widely applicable spatial correlation
models. The explicit expression of the Bayesian risk for the classification of
augmented data is derived. Numerical comparison of these models by the
variability of Bayesian risk in case of the first-order neighbourhood scheme is
performed.
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1  Introduction

In remote sensing and image analysis discriminant analysis (DA) of
spatially correlated Gaussian data are of great importance. When classes
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are completely specified, an optimal classification rule in sense of
minimum classification risk is the Bayesian classification rule (BCR).
Evidently the risk of BCR, i.e. Bayesian risk (BR), is decreasing when
number of observations to be classified is increasing.

In this paper we examined numerically the BR reduction when the
observation to be classified is augmented by observations at the four
first-order neighbours on the 2-dimensional lattice. Three different spatial
correlation models are compared in terms of values of BR. These models
are spherical, exponential and Ornstein-Uhlenbeck correlation functions.
The linear spatial correlation was ignored because it cannot correspond to
the second-order stationary process (Christensen, 1991, ch.6.).

2  The Problem and Model

We consider the situation when the object with observed feature
( )rZ , distributed in some spatial domain 2ℜ⊂D , may belong to one of

two classes 1Ω  or 2Ω  with known prior probabilities ( )r1π , ( )r2π ,

respectively, ( ) 1
2

1
=∑

=l
l rπ . The mathematical model of the feature ( )rZ  is

a p-variate random field ( ){ }2: ℜ⊂∈ DrrZ , having different means and

factorised covariance matrices in classes 1Ω  and 2Ω . This model in lΩ

is of the form

( ) ( ) ( )rεrμrZ ll += ,

where ( ) p
l R∈rμ  is a mean function and ( ){ }Dl ∈rrε :  is a p-variate

zero-mean second-order stationary spatially correlated random error
field, l=1,2.
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Assume that considered field is Gaussian with spatially factorised
covariance function. Hence, the class-conditional covariance between
any two observations ( )sZ  and ( )tZ  from class lΩ  is

( ) ( ){ } ( ) ( ){ } ( )ΣhtεsεtZsZ lll c== ,cov,cov ,

where ( )hlc  is a spatial correlation function, tsh −= , ( ) 1=0lc  and

( ) ( ){ }sZsZΣ ,cov=  is a covariance matrix for the feature vector
components, l=1,2. Also let

( ) ( ){ } 0tεsε =21 ,cov ,

for any D∈ts, , where 0  is a p×p matrix of zeroes.

If ( )( )rzlp  denotes the p.d.f. of ( ) ( )rzrZ = , then

( )( ) ( ) ( )( ) ( ) ( )( )




 −−−= −−−

rμrzΣrμrzΣrz l
T

l

p

lp 12
1

2

2
1exp)2( π .

We denote by ( )( )rzd  a classification rule, where ( )( ) ld =rz  implies

that the object with observation ( ) ( )rzrZ =  is to be assigned to the class

lΩ , l=1,2. The losses of classification when an object from class l is

allocated to class k, is denoted by ( )klL , . Then the risk of classification

based on rule ( )⋅d  can be expressed as

( )( ) ( ) ( )( )( ) ( )( ) ( )∑ ∫
=

=⋅=
2

1

,
l

ll dpdlLdRR
Z

rzrzrzrπ .

The BCR ( )⋅Bd  minimising R  is defined as

( )
{ }

( ) ( )( )rzr lllB pgd
2,1

maxarg
=

=⋅

where, for l=1,2,

( ) ( ) ( ) ( )( )llLllLg ll ,3, −−= rr π .
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The risk for the BCR in considered case is

( ) ( ) ( ) ( ) ( ) ( )
( )∑

=












∆

−+∆−Φ+=
2

1
1

2
,

l

l
llB

ggllLR
r
rrrrπ , (1)

here ( )r∆  is the Mahalanobis distance

( ) ( ) ( )( ) ( ) ( )( )( )2
1

21
1

21 rμrμΣrμrμr −−=∆ −T ,

( )⋅Φ  is the standard normal distribution function and ( ) ( )
( )





=

r
rr

2

1ln
g
gg .

In this paper it will be shown how the Bayesian risk (1) changes when
the point is classified on the basis of augmented observation vector.

3  Bayesian Risk for augmented Data

The usual multivariate DA is used to classify an object at location r
on the basis of the feature vector for that object. However, using more
observations through the neighbours in the classification procedure, it is
expected that the risk of classification will be reduced.

Suppose there are m neighbours in the vicinity of r. Define the
neighbourhood of point r as { }mrrNr ,...,1≡ . We assume that the points

in rN  and classifying point r belong to the same class. Let 
rNZ  contains

the observations on objects at locations in rN , i.e.

( ) ( )( )TmrZrZZ
rN ,...,1= . Then the mean vector for augmented

observations ( ) ( )( )TTT
rNZrZrZ ,=+  is

( ) ( )rμ1rμ lml ⊗= +
+

1 , (2)
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where 1+m1  is (m+1)×1 vector of ones, and ⊗  is Kronecker’s product

(see e.g. Mardia, 1984). The covariance matrix of ( )rZ+ , given that r

belongs to lΩ , is

ΣPΣ ⊗=+
ll , (3)

where lP  is the spatial correlation matrix of order (m+1)×(m+1), whose

αβ ’th element is ( )11; −− −= βααβ rrll cc , m,...,1, =βα , and r0=r.

The classification is accomplished by implementing the assignment of
point r on the basis of value ( )rz +  of augmented data vector ( )rZ+ .
Under the assumptions above the l’th class conditional distribution of

( )rZ+  is (m+1)×p-variate normal with mean (2) and covariance matrix

(3). Let ( )( )rz ++
lp  denotes the p.d.f. of ( )rz +  in the l’th class.

Denote by ( )( )rz ++d  a classification rule based on augmented

observation ( ) ( )rzrZ ++ = . Then the risk of classification based on rule

( )⋅+d  is

( )( ) ( ) ( )( )( ) ( )( ) ( )∑ ∫
=

+++++++++ =⋅=
2

1

,
l

ll dpdlLdRR
Z

rzrzrzrπ ,

where ( )r+
lπ  is a prior probability that observations at locations mrr ,...,0

belong to the l’th class, l=1,2. The Bayesian classification rule ( )⋅+
Bd

minimising +R  is defined as

( )
{ }

( ) ( )( )rzr +++

=

+ =⋅ lllB pgd
2,1

maxarg ,

where, for l=1,2,

( ) ( ) ( ) ( )( )llLllLg ll ,3, −−= ++ rr π . (4)
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Since the goal is the evaluation of the performance of the linear DA, it
is necessary assume, that ( ) ( ) ( )⋅=⋅=⋅ ccc 21 . Put 1

1
1 +

−
+

•• = m
T
m 1P1ρ , where

1+m1  is (m+1)-dimensional vector of ones and P  is the spatial correlation

matrix defined above. Denote ( ) ( )
( )r
rr +

+
+ =

2

1ln
g
gg , where ( )r+

lg  is defined

in (4), l=1,2.

LEMMA. Let ( )( )rz ++d  is used for classification of D∈r  on the

basis of augmented vector ( )rZ+ . Then the Bayesian risk of
classification is equal

( ) ( ) ( ) ( ) ( ) ( )
( )∑

=
+

++
+++













∆

−+∆−Φ+=
2

1

1
2

,
l

l
llB

ggllLR
r
rrrrπ , (5)

where

( ) ( )rr ∆=∆ ••+ ρ . (6)

Proof. The square of Mahalanobis distance between classes 1Ω  and

2Ω  based on augmented observation ( )rZ+  is

( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( ).   2111

1
2111

21
1

21
2

rμ1rμ1ΣPrμ1rμ1

rμrμΣrμrμr

⊗−⊗⊗⊗−⊗=

=−−=∆

++
−

++

++−++++

mm
T

mm

T

Using the property ( ) 111 −−− ⊗=⊗ ΣPΣP  and taking an inverse of P

we obtain that ( )( ) ( )rr 22 ∆=∆ ••+ ρ . This completes the proof of the
lemma.

REMARK. In the case of independent observations the value of ••ρ
is equal to m+1, since P  becomes the identity matrix I  in such a case.
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Switzer (1980) proposed another way to augment the p-variate
observation ( )rZ . It is so-called simple augmentation, when data are
augmented with the mean of observations in neighbouring locations. In

such case we have ( ) ( )( )TTT
M M

rN
ZrZrZ ,=+ , where

( )imM rZZ
rN

1= ,

i=1,…,m. Then the DA is performed on the basis of augmented
observation vector ( )rZ+

M . The spatial covariance matrix (3) in such case
is

MM ΣPΣ ⊗=+ ,

where ( ) ( )( )rZrZΣ
rNMM ,cov= .

The results of the lemma stated above can be easily adapted to the
situation just described.

The influence of the data augmentation to the BR is evaluated by the
risk reduction rate defined by

B

B

R
R +

=QR .

4  Example

As an example we consider the integer regular 2-dimensional lattice
and assume that the point r to be classified and its neighbours are inside
the lattice. We deal with the first-order neighbourhood (see, e.g. Besag
(1974)). The considered situation is presented in Figure 1.
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Figure 1. The positions of classifying point and its first-order neighbours
(signed by “••••”) on the lattice

To estimate an influence of data augmentation on the classification
risk, we consider three spatial correlation models.

The isotropic spherical correlation function is given by expression
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for nonnegative 0κ , 1κ , η . The nugget effect is 0κ  and the sill is

10 κκ + . For this model, observations more than η  units apart are

uncorrelated, so the range is η .

The exponential correlation function is
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for nonnegative 0κ , 1κ , η . Here t is the parameter of anisotropy. When

t=1, the exponential correlation function becomes isotropic one;
otherwise it is anisotropic. The nugget effect is 0κ , the sill is 10 κκ + ,

and the range is infinite. While the range is infinite, correlations decrease
very rapidly as h increases. Of course, this phenomenon depends on the
value of η .

The Ornstein – Uhlenbeck correlation function is defined as follows

( )
( )( )









=

>+−
+=

,0                           ,1                   

,0    ,exp 2
2

2
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10
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h

h
h

hht
cOU

η
κκ

κ

for nonnegative 0κ , 1κ , η . It is anisotropic correlation function, when

t≠1. In the case of t=1 it becomes a well known isotropic correlation
function often called Gaussian correlation function. The behaviour of the
Ornstein – Uhlenbeck model is similar to that of the exponential model.
However, the correlations at distances greater than one approach zero
much more rapidly than in the exponential model. Also, for small

distances, the correlation approaches the value 
10

1

κκ
κ
+

 much more

rapidly then the exponential does.

From the comparison of expressions for BR (1) and (5) it is seen that

they differ only in term ••ρ  in the argument of function ( )⋅Φ .

Therefore we need define the spatial correlation matrices for considered
situation of position of classifying point and its neighbours, compute the
sum of elements of inverses of these matrices, and then find the
analytical expressions for classification risk.
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Denote by +
SBR , , +

EBR ,  and +
OUBR ,  the BR of classification, when

spherical, exponential and Ornstein-Uhlenbeck correlation are used,
respectively; then QRS, QRE and QROU are values of the QR for the same
three models.

To illustrate the influence of data augmentation on the classification
risk a set of numerical calculations in tables below is presented. Consider
for simplicity that ( ) lkklL δ−= 1, , where lkδ  is the Kronecker’s delta,

and 
2
1=lπ , l,k=1,2.

Assume, primarily, that there is no nugget effect, i.e. 00 =κ , thus the

ratio 1
10

1 =
+κκ
κ . From the Figure 1 it is seen, that an appropriate value

for the range for the spherical correlation function is 2.2=η . Assume,
that the parameter of anisotropy in the exponential and Ornstein-
Uhlenbeck correlation functions is t=1.5. Whereas t>1, it is clear that the
behaviour of process described by these functions in the east-west
direction is more intensive than that in the south-north direction. The
quantity η  is the spatial dependence parameter for the exponential and
Ornstein-Uhlenbeck functions. Let 4.0=η  for both models. Values of
the BR and QR for considered set of parameters are presented in Table 1.

For all described cases the values of BR approach zero when distance
( )r∆  increases. Also it is obvious that bigger number of observations

determines smaller risk, which is reasonable thing.

The values of risks are smallest for the spherical correlation function.
However, using the Ornstein-Uhlenbeck correlation functions gives the
risk not much bigger than that obtained with using spherical correlation
function. It can be concluded that assuming that there is no nugget effect
and using parameters defined above the spherical correlation function is
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the best one, whereas the exponential function gives the biggest risk
which approaches zero (when the distance increases) slower then does
the risk obtained by using other two correlation functions. But the
influence of the data augmentation is the strongest one for the
exponential spatial correlation model, since the values of the QR are the
smallest.

Table 1. Values of the BR and QR, when 00 =κ .

( )r∆ BR +
SBR ,

+
EBR ,

+
OUBR , EQR SQR OUQR

0,25 0,390 0,415 0,435 0,418 0,921 0,966 0,929
0,50 0,288 0,333 0,372 0,340 0,830 0,926 0,847
0,75 0,201 0,259 0,312 0,268 0,732 0,881 0,757
1,00 0,132 0,194 0,256 0,204 0,629 0,831 0,663
1,25 0,081 0,140 0,206 0,151 0,528 0,776 0,568
1,50 0,047 0,098 0,163 0,108 0,432 0,719 0,475
1,75 0,025 0,066 0,126 0,074 0,344 0,660 0,389
2,00 0,013 0,042 0,095 0,049 0,266 0,600 0,311
2,25 0,006 0,026 0,070 0,032 0,201 0,540 0,242
2,50 0,003 0,016 0,051 0,019 0,147 0,481 0,184
2,75 0,001 0,009 0,036 0,012 0,105 0,424 0,137
3,00 0,000 0,005 0,025 0,007 0,072 0,370 0,099

Suppose now that we detect a measurement error, i.e. the nugget

effect 
4
3

0 =κ , thus the ratio 
4
1

10

1 =
+κκ
κ . Let the values of other

parameters be the same as it was considered above. The comparison of
the values of BR and QR are presented in Table 2.

Table 2. The values of the BR and QR, when 
4
3

0 =κ .

( )r∆ BR +
SBR ,

+
EBR ,

+
OUBR , EQR SQR OUQR

0,25 0,390 0,400 0,410 0,404 0,888 0,911 0,898
0,50 0,288 0,306 0,325 0,314 0,762 0,809 0,783
0,75 0,201 0,223 0,247 0,234 0,630 0,699 0,661
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1,00 0,132 0,155 0,181 0,167 0,501 0,588 0,540
1,25 0,081 0,102 0,128 0,113 0,383 0,480 0,425
1,50 0,047 0,064 0,086 0,073 0,281 0,380 0,323
1,75 0,025 0,038 0,056 0,045 0,197 0,292 0,237
2,00 0,013 0,021 0,034 0,026 0,132 0,217 0,167
2,25 0,006 0,011 0,020 0,015 0,085 0,156 0,113
2,50 0,003 0,006 0,011 0,008 0,052 0,108 0,073
2,75 0,001 0,003 0,006 0,004 0,031 0,073 0,046
3,00 0,000 0,001 0,003 0,002 0,017 0,047 0,028

From the comparison of Table 1 and Table 2 it is obvious that the
risks of classification are smaller in the case when there is nugget effect

4
3

0 =κ  assumed. They approach zero quicker than in the case of no

nugget effect. Thus, the detecting of nugget effect may be important in
attempting to decrease the values of classification risk. From the Table 2
we can conclude that the influence of data augmentation is also strongest
for the exponential model.
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