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Abstract

The exponential distribution and the Erlang distribution
function are been used in numerous areas of mathematics, and
specifically in the queueing theory. Such and similar appli-
cations emphasize the importance of estimation of error of
approximation by the Erlang distribution function. The article
gives an analysis and technique of error’s estimation of an
accuracy of such approximation, especially in some specific
cases.
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1 Introduction and results

Let ξ1, ξ2, . . . be a sequence of independent and identically distribution
random variables with common distribution function F (x) and charac-
teristic function f(t). Here we consider the accuracy of approximation
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of the distribution function

Fn(x) = P
(

n
∑

j=1

ξj < x
)

to the Erlang distribution function.
Let η1, η2 . . . be a sequence of independent and identically dis-

tributed random variables with transferred exponential distribution

G(x) =
{

1− e−λ(x−m), when x > m,
0, when x ≤ m

(1)

with the parameters λ > 0 and m ∈ <1.

The distribution of the sum Zn =
n
∑

j=1
ηj is the shifted Erlang

distribution

Gn(x) =







1− e−λ(x−m)
n−1
∑

k=0

(λ(x−nm))k

k! , when x > nm,

0, when x ≤ nm
(2)

We estimate the accuracy of approximation the distribution function
Fn(x) to the Erland distribution function Gn(x)

∆n = sup
x
|Fn(x)−Gn(x)|.

The exponential distribution depend only on one parameter λ. Seeking
to identify the second moments Eξ2

1 = Eη2
1, we have to impose the

condition Eξ2
j = 2λ−2. This is a strong restriction for a distribution,

and in general case this condition would not be satisfied.
The transferred exponential distribution depend on two parame-

ters. We choose the values of parameters m and λ in such a way,
that two moments of random variables ξ1 and η1 would be equal
Eξs

1 = Eηs
1, s = 1; 2.

The moments of the transferred exponential distribution (1) are

αν = Eην = ν!
ν

∑

k=0

mk

λν−k .
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Write

kν =

∞
∫

−∞

|x|ν |d(F−G)(x)|, γν =

∞
∫

−∞

d(F−G)(x), ν = 1; 2; . . . .

Theorem 1. If m = Eξ1 −
√

Dξ1, λ = (Dξ1)1/2 and

1) τ min(λ; 0, 159k−1
3 λ−2), then for all n > 1

∆n ≤ 1, 301n(n−1)−
3
2 λ3k3+1, 818(n−1)−

1
2 λτ−1; (3)

2) τ min(0, 5λ; 0, 308λ−2k−1
3 ), then for all n > 1

∆n ≤ 0, 598n(n−1)−
3
2 λ3k3+1, 818(n−1)−

1
2 λτ−1. (4)

From this theorem we have the following estimates of approxima-
tion.

Proposition. If m = Eξ1 −
√

Dξ1, λ = (Dξ1)1/2, n > 1 and

1) k3 ≤ 0, 159λ−3, thus

∆n ≤ 1, 301n(n−1)−
3
2 λ3k3+1, 816(n−1)−

1
2 ; (5)

2) 0, 159λ−3 < k3 ≤ 0, 616λ−3, thus

∆n ≤ 0, 598n(n−1)−
3
2 λ3k3+3, 636(n−1)−

1
2 ; (6)

3) k3 > 0, 616λ−3, thus

∆n ≤ λ3k3(0, 598n(n−1)−
3
2 +5, 903(n−1)−

1
2 . (7)

2 Proof of the Results

To prove theorems formulated, we will show, that the assertion of the-
orem 1 follows from [3, theorem 1]. The simplified form of this theorem
will be given, and in addition same definition will be introduced.

Let X1, X2, . . . be a sequence of independent and identically dis-
tributed random variables with common distribution function Fx(X)
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and characteristic function fx(t), G∗n(x) – the n-th convolution of the
same distribution G(x),

g(t) =
∫

<1

eitxdG(x); γ−p =
dp

dtp
(fx(t)−g(t))

∣

∣

t=0, p = 0; 1; . . .

and kr – quantity with which the inequality
∣

∣fx(t)−g(t)−γ0−· · ·−γs(it)s/s!
∣

∣ ≤ kr|t|r/r!, (8)

is satisfied, when |t| ≤ T0, s = [r] and s = r − 1, if r is integer.
For example this inequality is always true when kr =

∫

<1

|x|r|d(Fx−

G)(x)| < ∞.
Theorem 1 [3] If the following conditions are satisfied:

1. This exist such numbers a > 0 and b > 0, that |g(t)| ≤ e−at2 ,
when |t| < b;

2. γ0 = γ1 = γ2 = 0 and k3 < ∞, then for all n > 1 and for τ
satisfying the system of inequalities

{

τ ≤ min(b; T0),
τeaτ2 ≤ 3a(2k3C(3, 2))−1,

(9)

C(p, 2) = max{2−1p; (2p−1)
p−2
2 Γ(p)

/

Γ(2−1p)},
the estimation is true

sup
x

∣

∣P
(

n
∑

j=1

Xj < x
)

−G∗n(x)
∣

∣ ≤ 1, 73×

{2π−1nΓ
(3
2
)

(

a
(

n− 1
)

)− 3
2
k3

/

3! + π−1R(3, τ) + 0, 81M(τ)}.

Here

R(p, τ) =
{

0, when n ≥ 1 + 2aτ 2/p,
(2kpτ p/p!)(pn−1), when n < 1 + 2aτ 2/p

and

M(τ) = 3, 25τ−1 sup
x

∣

∣

d
dx

G∗n(x)
∣

∣.
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First of all we estimate the characteristic function h(t) = eitmλ(λ−
it)−1 of transferred exponential distribution. The Maclaurin series for
|h(t)| about t = 0 is

|h(t)| = 1− 1!1!t2

2!λ2 +· · ·+(−1)ν (2ν − 1)!!t2ν

(2ν)!λ2ν +· · ·

Therefore, for all |t| ≤ λ

|h(t) ≤ 1−0, 250t2λ−2 ≤ e−0,250t2λ−2
(10)

and at the same time we fix that a = 0, 250λ−2 when b = λ.
Since C(3, 2) = 1, 843, so the system of inequalities (9) take this

form
{

τ ≤ min(λ; T0)
τe0.25λ−2τ2 ≤ 0, 203λ−2k−1

3 .

The set of solutions in this system of inequalities became narrow, if
we put τ = λ in the expression e0,25λ−2τ2 of the second inequality.

We do not pay attention to the quantity T0, because of the inequal-
ity (8) is true for all t, when r = 3 and k3 < ∞.

Therefore the set of solutions

τ ≤ min
{

λ; 0, 159λ−2k−1
3

}

(11)

enter in the set of solutions of the system inequalities (11).
The density of transferred Erlang distribution function

d
dx

Gn(x) =

{

λn(x−mn)m−1

(n−1)!

n−1
e−λ(x−mn), when x > mn,

0 when x ≤ mn

has the maximum at the point x
(

(m + 1)n− 1
)

λ−1

M(τ) ≤ 3, 25τ−1λ(2π(n− 1))−
1
2 . (12)

Using the cited theorem and (10; 13) we have

∆n ≤ 1, 73
{

2π−1nΓ(1, 5)
(

0, 25(n− 1)
)− 3

2
k3λ3/3!

π−1R(3, τ) + 2, 633
(

2π(n− 1)
)− 1

2
τ−1λ

}

,
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as n > 1 and τ is from (12).
Now the first estimate in the theorem 1 follows from simple calcu-

lations.
We get the second estimate when b = 2−1λ. Then |h(t)| ≤ e−0.42λ−2t2

and a = 0, 42λ−2.
Proof of the proposition is very simple.
If k3 ≤ 0, 159λ−3, then τ = λ and from (3) we get (5).
If k3 ≤ 0, 616λ−3, then τ = 0, 5λ and from (4) we get (6).
When k3 > 0, 616λ−3, then τ = 0, 308λ−2k−1

3 and the estimate (7)
we obtain from (4).
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