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Abstract

The goodness-of-fit test for tire wear and failure time data
with multiple failure modes is proposed. Parametric estimators
of traumatic event cumulative intensities and semiparametric
estimates of various reliability characteristics are given and
their large sample properties are investigated. Real tire wear
and failure time data are analyzed.
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1 Introduction

Suppose that a tire fails because of the natural cause (the wear attains
critical level zy) or because of traumatic events of one of s possible
types. Let Z(t) be the wear of tire protector at the "moment” t (i.e. at
the moment when tire ran reaches ¢t thousands of kilometres). Suppose
that the wear process Z(t) is modeled by the linear path model (see

[51)

>0 (1)

|
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where A is a positive random variable with the distribution function

.
Denote by T'® the time of non-traumatic failure and by 7" (k =

L,---,s) the failure time corresponding to the k-th traumatic failure

mode. As in [2], suppose that the random variables T ... 7T()
are conditionally independent (given A = a) and have the intensities
AR (2), k =1,---,s depending only on the wear level. It means that
the conditional survival function of 7% is

SOt a) = P(TH > A =aq) :exp(— /t/\(k)(s/a)ds)

= exp(—aA(k) (t/a)),

where AW (z) = /OZ AB) (y)dy. (2)

are the cumulative intensities. The failure time of a tire is the random
variable

T = min(T@, 70 ... 7)) (3)

S

Set AU(z) =) " AW(z), (4)

. (5)
s, if T=16
The random variable V' is the indicator of the failure type.

2 Reliability Characteristics of Tires

The survival function and the mean of the random variable T" are

S(t)=P(T > t) = /Oo e~ A1) 4 (q), (6)

t/ZO

e =z /0 " adr(a)- /0 h /0 P o—2)a2e N O aAO (2)dn (). (7)
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The probability P%*)(#) of the failure of the kth mode in the interval
[0,¢] and its limit value P*) = P")(c0) are

oo rzoN(t/a) )
PO (1) = / / ae= NGV AR (2)dr(a), (8)

P(k) :/ / 0 ae_a,A(') (z)dA(k)(Z)dﬂ_(a) (9)
0 0

where a Ab = min (a,b). The probability PU") (1) of a traumatic failure
in the interval [0,¢] and its limit value P") = P(")(o0) are

PO =1 /0 " e ah0 ConE/) g (), (10)

Pl = 1—/000 =0 o) g (a). (11)
The probability of the natural failure in the interval [0, ] is

PO (1) = 1=5(1) = P () = /0 7% a0 ) g ) (12)
and

PO = /0 e Go) g (). (13)

Suppose that at the moment ¢ the wear value is measured to be z.
The following (conditional) reliability characteristics are important to
estimate: the probability to fail in the interval (¢, t+A], the probability
of a failure of the kth mode, the probability of a traumatic failure in
the same interval, and the mean residual life of an unit. We denote

them by Q(A;t,z), QW(Ast, ), QUI(Ast, 2), and e(t, )
QWA L, ) =P(T =T® <t4+A | T >t,A=1t/z), (14)
ifk=1,---,s then
t ZO/\Z t;I-A t
QWAL 2) = —/ exp {—— (A(')(y) = A(')(Z)) } dAW(y),
zJ, z
(15)

(At 2) = 1—expd — L [AO (o n ZEFAY _qo L
=l 1o (o9 ]
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©)/ A. _ 0 for A<
@A 2) = { exp {—1 (AU(z) — AD(z))} for A >y
(17)
) 1 —exp{-L (AU +A/)) - AVD(2))} for A <7
@At 2) = { 1 for A > T;
(18)
where 7 = t(z9/z — 1) The conditional mean is
e(t,z) = E{T—t|T>t,A=t/z}= / AQ(dA;t, 2)
0
_ (Y (A0 ()20 () gp ()
= (;) / (y—z)e s dAY (y)
b ol(z)z — e~ s (A0 0)-a0 () (19)

3 Semiparametric Estimators of Relia-
bility Characteristics

Suppose that n tires are on test and the failure moments T;, the
indicators of the failure modes V; and the wear values

Zi=— (20)
at the failure moments 7; are observed. Thus, the data are:
(Ty, Z1, V1), -+ (T, Z0, V).
Set Nék)(z) = znzl{Ziéz,Vizk}v k=1,---,8 0<z< z. (21)
i=1

It is the number of units having a failure of the kth type before the
wear attains the level z.

Set Yn(2) =) Ailizs.y= > A, (22)
=1 Zi>z
MP (z) = N®)(z) - / AB (W)Y, (u)du. (23)
0

Let F. be the o-algebra generated by the random variables A, --- | A,
and ngl)(u), e ,ngs)(u), u<zand FA < oo.
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Then (see [2]) (Mék)(z),() < z < zp) is a martingale with respect
to the filtration (F.,0 < z < z;) and the optimal non-parametric
estimators of the cumulative intensities A*)(2) are of Nelson-Aalen

type:
AW = /0 Ynl(y) I n(lzi) (24)

Zi<zVi=k

and

5 b(z), nooo, b(z)=E (Ae‘AA(Z)). (25)

The non-parametric estimator of the distribution function = is the
empirical distribution function

. IS
7'1'((1) = ; Z 1{Ai§a}' (26)
=1

If the function 7 is continuous then (see [5]) the random function
V/n(m — ) tends in distribution in the Skorokhod space D[0, o] to a
zero mean Gaussian process W) with the covariance function

o%(a,d’) = BE{WO ()W) (")} = w(aAd") =7 (a) 7 (d'). (27)

We are interested in semiparametric and parametric estimates of
reliability characteristics and their large sample properties.
Suppose that the intensities A*)(2) belong to a parametric class

/\(k)(z):A(k)(Zv7k)7 0 <z < 2, kzlv"'vs (28)

where 7, are a possibly multi-dimensional parametres. The purpose
is to estimate parametres vx, & = 1,--- ;s and derive large sample
properties of estimators.

Logarithm of the likelihood function equals

Inf = Z S In (/\(’“)(Zi))—zn: (4 AD(Z:) +1n £(A)) (29)
k=1 Vi=k i=1

where f(u) is the density function of A.
Estimators v, k =1,--- , s verify the equations

dln L(%1) d L ) - d )
etk V1.7 — In (A7, AN = Ai—AB (7, 4) = 0,
I > n (AY(Zi, A%)) E - (Zis Yx)
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Then the parametric estimators of cumulative intensities are
A(k)(z) :A(k)(zvﬁyk)v k:L y 8. (31)

Semiparametric estimators of all reliability characteristics defined by
(6)-(19) are obtained changing A¥)(2), k = 1 .8 by thelr para-
metric estimators defined by (31), AV)(z) by A () (z ) S AB(z) =
S AW (2, %) and 7(a) by its nonparametric estimator #(a) defined
by (26).

4 Large sample Properties of Estimators

4.1 Large sample properties of estimators 9y
By (21), (22) we may (30) rewrite

aln L( 'yk / ) & /ZO Jd )
—ln (u AN () — Y, (u) — A% w, Yi ) du
(O 3N ) = [0 AP )
Thus, estimators v verify the equations
/ —ln u :Vk))dMék)(uvﬁyk) :07 k= 17"' y S (32)
Ok
where  dMP (u, ;) = dNF )( )— Yn(u)/\(k)(u,'yk)du. (33)
Set (z, V%) / —— In(A® (u, )M PF (u,yz), k=1, 5.
Ok
(34)
We derive the large sample properties of estimator ¥ = (41, -+ ,9s)-
Denote by () = <’y£0), e ,7§0)> the true value of the parameter .
Let v = (Ye1, -+ 3 Vhep)s kK =1,-++,s, where g is the dimension of
parameter ;. Then the score statistics are
00 = 0P = / tn A0, 52 AN ()
! 0 OVkj
(k) d =1, -
/ 87k] (u7 7k) u, ’ y S (35)

where A(k)(z77) — A(k)(z77k) - /\(k)(277k17 77qu)7 ]: 17 oy Gk
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Forl,j=1,--- ,qpand k=1,---,5s set

(k) _ gk [ 0* X
Iﬂ (20,7) = Iﬂ (z0,7k) = /0 Yn(u)m,\( )(u77k)du
Z0 82
= | o A () aN P (), 36
/0 V0T (1, ) AN () (36)
I;fm)(2077):07 k7m:17"'787 k?ém (37)

Assumption A.
1) There exists a neighborhood I'® of () such that for all v =
(Y1, ) in I'© and almost all z € [0, 2] the partial derivatives of
AB) (2, 4) and In A®)(z, 4) of first, second and third order with respect
to v exist and are continuous in v for v € I'®). The log-likelihood
function (29) may be differentiated three times with respect to v € I'®)
by interchanging the order of integration and differentiation.

2) Let (25) hold and for all k =1,--- ,sand j,l=1,--- ,q

A0 = [ o A6 A M) < oo
0

(38)
where b(u) is defined by (25) and
k J
oy (021”) = Gt A (). (39)

3) The matrix ¥ = {U;f)(ylgo)), k=1,--,s, 5,0l =1,-- g} with
U;f)(ylgo)) defined by (38) is positive defined.

4) For all k =1,--- ,sand j,[,m = 1,--- , g; there exist functions n
and p such that

03 L
sup | ————AF)(q, < n(w), 0
1k €D(©) | OV OVk1OVkm (7)1 m(w) (40)

93
sup | 7——F———1In AR) U, < p(u), i
v, €T | OV 0V 0VEm (u,yx) |< plu) (41)

where 0 < u < z5 and
/ p(w)b(u) AP (u, 7V du < oo, (42)
0
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Z0 82 2
I PR € (k) (0)
/0 (8%]@%[ In AV (u, 'yk)) b(u) A (u, vy ') du < oo. (43)
Theorem 1. Assume that Condition A holds. Then

1) with a probability tending to one the equation U®)(z, ) = 0

has a solution 4y and A3 R %(Co) asn —oo, k=1,---,s.

2) V(3 — ) B N(0,371) where By = {o'P(y("), .l =

k
L,---,qx} may be estimated consistently by %](k)(z, Ye)y k=1,--- s
defined by (36).
Proof.

By (25) and (38) we have

1 [
- / o1 (w7 f) ()Y (AP (w7 du 5 o) () < oo

where qbg)(u,’y,(go)) defined by (39) and

1 [ 2 1
[ (00a) 1 (1 ol 15 ) o

nJo

* Yn(u)A(k)(u,ylgo))du Lo

asn —oo, k=1,---,s, j,l=1,--- g Condition 4) and (25) give

o VeI B [ (A () < .
nJo 0

L / "B (0,70 Vo () A (0, e B

nJo
20
B[ b A D ) < o,
0
2

where h(u,’}/k) = mlﬂ )\(k)(u,’)/k) and

%/OZO plu)l (%Vp(u) > e) Y, (u)A®) (u, vy du Lo

asn — oo, k=1,---,s, 75,0 =1, ,q. Then by ([1]), T.VL.I.1.
and T.VI.1.2. Theorem 1 holds.
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4.2 Large Sample Properties of the Reliability
Characteristics Estimators

Assume that Condition A holds. Then by Theorem 1 we have
\/ﬁ(’yk—'y,(go))i)(k n—oo, k=1,---,s (44)

where X, is normally distributed with zero mean and the covariance
matrix 3! defined in Theorem 1. By (31), (44) and the delta method
we get

ViAW) =AB ) SWE () asn o0, k=1,---,s (45)

aAlF) (ZW;(CO)

T
where W) (z) = B )> X} is normally distributed with zero

mean and the variance

T
IAR) 277(0) o oA® 277(0)
Var(W® (2)) = (# n! # (46)

where k= 1,--- ,s. By (4) we get

S S

AO(z) = STAWE) = 3T AWz, 4). (47)
k=1

k=1

Then

VA =AD ) S WE () =WO(2) as n—ooo  (48)
k=

—_

where W) (z) is normally distributed with zero mean and the variance

s O\ T (0)
Var(W(~)(z)) — Z (8A(k)(277k )) E,;l (8A(k)(277k )) . (49)

= Ok Ok

The first equation in (49) is get by using fact that W (2), k =

1,---,s are independent. Furthermore

V(AW AW AE A Gy L ) (50)
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where W®*) are independent normally distributed with zero mean and
the covariance

of(z ) = BV I W ()} = (M) 51 (AD()) - (51)
I (2,4

where AW (z) = A(k)(%%(go)) = 3
Tk

(52)
Set o%(z,2)) =Y iz, 7). (53)

For notational simplicity denote A®)(2) = A (2, 7]5;0)) and AV(z) =
AO(z,4)

Lemma 1. Suppose that u is a finite measure on [0, z] and B =
s WO(2)du(z) where W0)(2) is defined by (48). Then E(B) = 0 and
E(B*)=L=5%,_, (L(k()%T S where N1 is defined in Theorem

20 ANk Z, 0
land L) = [ %du(z).

Proof. E(B) = fOZO E(WO(2))du(z) = 0. By (51), (53) we get

B = [ dnte) [ et
s 0 gAR) (5 T 20 gAR) (o
- Z(O oA ()du(Z)) 2,;1(0 Mdu(Z’))-

= Ok Ok

Theorem 2. Let g be any of reliability characteristics defined
by (6)-(13). Suppose that Assumption A holds, E(A?) < oo and
the distribution function 7 is continuous then the distribution of the
random variable \/n(§ — g) tends to the normal law with zero-mean
and the variance V(§), where

v =3 (190) s+ //OO e PN dr (a) =52 (1)

k=1
(54)
where Z,:l is defined in Theorem 1 and

00 (k) (0)
W) = / G INWa3,7) aant) 4/ g (a),
t/ZO 87k
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where
(k) 0 QAW (2, 4) (o< ()
L; :—/ Lk (/ a?eh ()dﬂ'(a)) dz,
0 vk 0
vieRm) = 3o (28m) 5L
=1
5 2
= (L) = - (POw)
I=1,1#£k

o 21 2
+ a? ( / emaAl (Z)dA(k)(z)) dr(a)

where z; = zg A (t/a),
(0)

o0 (k)
Lgk)(t) = /0 ae— Y (=1) 8A7gilk’7k )dﬂ'(a)

0 2z (k) (0)
0 0 OV
where AR (z) = E#k A(z2),

o) 21 (0 (0)
Ly (1) = / / IS i i/ e WX AT
0 0
Py = v (p*)

o
V(P (02)),

Ve @) = Y (190) 5P - (Po)’

k=1

L /Oo (1 _pmarl) (ZO/\(t/a)))zdﬂ_(a)
0

- k (0)
LP @) = / ae~ AV Gonte/a OAD (0 A (1), )dﬂ(a%
0 87k
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V(P = V(P (00)), (59)

V(P(O)(t)) _ 02(20720) (/Ot/zo ae_aA(.)(zo)dﬂ-(a))

4 <t/zO7 t/z0) e 0 ()

t/ZO t/ZO
+ )(20) / / - ZO)O‘%((Z, a'Ydada'

t/ZO
+ A H) [T o0 ahda o0
0
where %(z, z) is defined by (53) and o2(a,a’) is defined by (27).

V(p(o)) _ V(P(O)(OO)) — V(p(tr)) :/ e—2aA(~)(ZO)dﬂ-(a)
0
2

— (PO)? 4 g2 (2, 2) (/Oooae—a“')@o)dﬂ(a)) . (61)

Approximate (1 — «)-confidence interval for g has the form

gt z1_a/2 V(g)/n (62)

where V(Q) is obtained replacing the unknown quantities 7(a), A%®)(2),
AO(2) by #(a), A(k)(z) = AW (2, 42), A(')(Z) = AU)(z, 4) respectively.
Proof.
1. FEstimator g(t) Set @(A,a) = e‘“A(')(t/“)l(t/zmoo)(a). Then by
(48) and delta method we get
Vilp(A a)=p(A,a)) 5 —aem M U1 @ WO (t/a).

The inequality | €7 — e™™ |<| ug — ug |, ug,uz > 0 implies /n |
oA, ) — p(A,a) < asupog.cy | WO(2) | Then (sce [2])

Vr{S(t) — S(1)} 4 €& + &, where

51:—// ae= A WO (¢ /a)dr (a / e
1 20
du(z) = ge—ﬁA(')(Z)d(l —a(t/2), WO(z) = Y20, WH(2) and & is

independent of W) normally distributed random variable with zero-
mean and the variance

Var(&y) = /t/oo e~ 2 (W) g (0) — S2(1). (63)
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By Lemma 1 we get Var(&) =>,_, (L(k)(t)>T SR (1) where

%) k (0
L<k>(t):/ NI O JRNETR D (a).
t/ZO 87k

2. Estimator ¢. Set p(A,a) = azy — a? fo zo — z)e” ROPING )( )
f(z) = —a*(z0 = 2)e= ), h(z) = AO(2). Then f(f(z) — f(2))
a®(zg — Z)@‘“A(') OWO(2), n(h(z) — h(2)) 4 WO(z). Using these
facts and delta method we get
Vile(A a) — p(A, a)) K—" Je e‘“A(')(Z)W(')(Z)dZ. Then (see [2])

0
Vn(é—e) 4 &1 + & where

— [ [T e OO dana)

and & is independent of W) normally distributed random variable
with zero-mean and the variance

o 20 2
Var(&;) = / (azo - az/ (z0 — Z)e_aA(') (Z)dA(')(z)) dr(a)—e?
0 0
(64)
£1) + Var(&). It remains to find the variance of
& = (z)dz where f(z) = — J3" a%e ~1AY%@) dr(a). Then
et

using Lemma

andV() Var E
g)f

g
Var(¢,) = ( ) (65)
(0)
where L*¥) = — J5° % <f0 a2e=aAt ()dw( )> dz. Then (64),
(65) give (55).
3.Estimator PP (1), k =1,--- ,s. Set z; = zoA(t/a) and (A, a) =
af)e —aA0 () g (k )(2). By delta method \/n <ae‘“A()( 9 — ae‘“A()(2)> 4

—q2e—aAV (Z)W(')(Z). Then



Similarly as above we get \/ﬁ(ls(k)(t) — PB)(1)) N &1 + & where
& = / (_QQ/ 1 e~ M EWO (dA® (2) + ae= A W) )+
0 0

-I-/ aze_“A(')(Z)W(k)(z)dA(')(z)) dr(a)
0

and & is independent of W), W®) normally distributed random
variable with zero-mean and the variance

Var(&) = /OOO (A, a)dr(a) — (/OOO so(Aﬂ)dﬂ(a))?

- /OOO (a/o A (5 ))zdﬂ(a) — (PB(1))2,

The random variable ¢ may be written in the form

& = /Oo e~ A E W (1) dr (a)
a2e= AV O R () dAR) (2)dr (a
[ ()4 (2)dr(a)
— / / a2e=*A" Wk (2)dA®) (2)dr (a) (67)
where W ( ) = El;&k ( ) A(_k)(z) = El;ék A(l)(z)-

Denote by ¢ the sum of the first two terms and by &/ - the third
term. Since W% and W) are independent we have Var({;) =
Var(fl) + Var(¢]). Changing integration order erte £ in the form
& = [2 W (2)dp(z) with du(z) = f“z 2e=A0 G e (a)dA P (2) +

756_£A @d(1 — w(t/2)) ft/zo —aA0(z0 Vdr(a)ds., (), where §., de-
notes the probability measure concentrated at the point zg. Then
Lemma 1 implies

S

T
var(¢) =3 (190 511G ) (68)
k=1
20 (k) (0)
where L(k)(t):/ Mdu(z) (69)
0 Ok
° T
Analogously Var(¢]) = Z (L(l)(t)) EI_IL(I)(t) (70)
I=1,1%k
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where

oo rzoA(t/a) ) A0 (0)
:/ / a2€—a/\()(Z)wd/x(k)(z)dﬂ(a)‘
o Jo

o
(71)
Then (67), (68), (70) give (56).

4. Estimator P*), k —1,---,s. Using the fact that P() = ]5(’“)(00)
we get V(PH) = V(P (o ))

5. Estimators P(“’)(t), P(O)(t), . Asymptotic normality of these
estimators is proved analogously.

Theorem 3. If ¢ denotes Q = Q(A;t,2), QW = QW(A;t, 2),
QU = QWI(Ast,2) or e(t,2) then the distribution of the random
variable \/n(§ — g) tends to the normal law with zero-mean and the
variance V(g). The asymptotic variances are:

VW) = (3)4/21 /Z1 (1) p(v)52 (u, v, 2)dAP (w)dAW (v)

(0)(0)5 5y (1, v, 2)dA T () dA TR (v)

e
+ (é) e(21)07 (21, 2
¥ (3)/ () p(21) 32 (u, 21, 2)dA ) (a) (72)
V@) = (1) ) (73)
(2) " (W) ()52 (u, v, =) dudv, (74)
V(O©) = V(O™ for A>t(zo/z 1), (75)
VQ) =V QW) for A< t(z/z—1) (76)

where z; = 29 A G : A) and

o(u) = @lu,t,2) = e~ A0V (=206 (77)
u U Z ng u U Z
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= (Uz(uvU)__Uz(uvZ)__Uz(zvv)+_gz(zvZ))v (78)

(:72(21, z) = 5,3(21, z) = 02(21, 21)—202(21, Z)—I—O‘Z(Z, z), (79)

&(Q—k)(uvvvz) = Z (sz(uvU)_U]Z(uvz)_o-]z(zvU)+U]2(sz)) (80)
J=15#k
and 0?%(z,2'), 07(z,2') are defined by (51),(53).
Approximate (1 — «)-confidence interval for g has the form

g+ Zl_a/m/V(g)/n where V(Q) is obtained replacing the unknown
quantities AW (2), AU(2) by A(k)(z) = AW (2, 42), A(')(Z) = AV(z, %)

respectively.

Proof.
From (49)-(51) it follows

S

52 (u,v,2) = 53 (u,v,2) = cov(WO (u) = WO (2), WO (v)
k=1
- WOE) =D (0w v) = of(u,2) = o (z,0) + 072, 2),
k=1
5z,2) = Gh(z1,2) = _cov(WW (z) = WH (z), WH ()

Il
)
=0
=
=

|

Q
SN
=
2

|

Q
L)
™
=

+

Q
L)
™
2

Set 21 = 2z A M.
1. Estimator Q(k)

k=1, .
Then i(f(y) — f(y)) & — (£)* e 2 A=A (W0 (y) — WO(2)).
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Using this fact and (45) we get \/E(Q(k) — Q™) 4 =86 +&6+ 6

where

t

G=- (_> /Z1 ey t, 2) (WER (i) — WP (2))dA® (y)

y4

&= o1, 1,2) W) (o) - (2))

3= (E> /:l ey t, 2)(WWH () =W B (2))dAH) (y)

y4

where AU (y) = 370 4 AV(y) and WER(y) = 350, 1 W(y).
Since W and W® are independent we get V(Q(k)) = Var(&) +
Var(&) + Var(&s) + cov(éa, &3) where

Var(¢) =

() [ et gt 72w s an ),
Var(&;) =

_ (2)4/ / o(u,t, 2) (0,1, 2)52(u, v, 2) AT (W) dAH) (0),

Var(&) = (2) o(z1, 1, 2)52 (21, 2), (81)

3 21
covia &) = (2) [ eluti ettt 1A ),

Asymptotic normality of other estimators is proved analogously.

5 Goodness-of-Fit Test

The purpose is to derive a goodness-of-fit test for the hypothesis

HO : A(k)(Z) = A(k)(2’77k)7 Yk = (7k17 e 77qu)7 k= 17 T, S, (82)
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The construction of the goodness-of-fit test is based on comparison of
non-parametric and parametric estimators of traumatic event intensi-
ties. For Kk =1,--- , s set

B® () = AW(z) - A B(z) = / Z%]ﬁ?(“)— / ’ A (u, 4 du

_ / ) (AN () = Y, (A (1, 30 (83)

where Y, (u) is defined by (25) and J(u) = [ (Y,(u) > 0). Suppose
that Assumption A and (25) hold. Then from (83) by a Taylor series

expansion around ’y,g ), k=1,---,s we get

B9 = [ Yn<(u>) a1 o) + 0, (2
i ((’m‘ - ’V;(f;)) /OZ 8jij(k)(u,7,go))du) (84)

where £ = 1,--- ,s and ngk)(u,ylgo)) is defined by (33). By Theorem
lfork=1,---,s we get

1 %0
ﬁm—mi“)):z?ﬁ/o X, 7 AM P (7)o, (1) (85)

where ¥ is defined in condition 2) of Theorem 1, 0,(1) L0 as

n — oo and

Xp(u) = Xp(u, 1Y) =

= ( 0 In A (4 7(0)) L0 In A®) (4 7(0)))T. (86)
8’)/k1 s Ik 9 78’)/qu s Ik
z T
Set W) = [ (Xuwrl™) A oo (57)
0
Then (84) for k= 1,--- ,s may be rewritten as

VaB®(z) = ﬁ/z e (o) -

1
- (19l / X, 1)U (1,7 ) 0, (1).
(38)
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Then for k=1,--- s

B = < aBW(z), VaBM () >:n/ o

2 (qﬂ’f)(z))T s tw ) (1)
b (09 S S O @) + 0,(1). (59)

n

where §(Zo,’y,(§0)) = /3" Xi(u) (Xk(u))T Yn(u)A(k)(u,ylgo))du. By Re-
bolledo’s limit theorem (see [1]) it follows that /nB®¥) (z), 0 < 2 < 2,

k=1,--- s converges weakly to the process
- AW () v i
(k) () — e\ (k) -1 (k)
W) = [ (w9) st [T O

) ) (90)
where W)k =1,... s are Gaussian martingales with W#(0) = 0

and cov(W® (2), W) (1)) = fOZM A(k)(u,ylgo))b(u)du with b(u) defined
by (25). By (86) and (38) it follows

20 T
%) = / X, 97 (Xu( ™)) (@)X (1, (") (91)
Then for k=1,--- s

zht JA(K) (u7 7]&0))
b(u)

T
= (W) SO 92)

<W® ), W)y > = /

By (89) and (92) asn — oo, k=1,---,s we get
B = <VaB® (o), VaB® (1) >5 W (2, 0) =< W (2), WP (1)) >

7N dA(k) u77(0) T
= /0 % _ (\I;(k) (t77](€0))) Equ;(k) (277](;))) (93)

We shall approximate B%*)(z) by a process B(k)(z) which distribution
can be easily generated through simulation:

GPAN® (u)—

VB () = vy / Z j;f;;))
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1
—%( 2 9k)) IZ/ X, 3 G AN (w) (94)
where ¥, = 1[( )(2,41) with 1)(z, 4;) defined by (36),
N(k)(z) = 1{Z,‘SZ,‘/,‘:]€}7 k= Iyeeeys, 0< 2 < 2, (95)

and {ng), i=1,---,n, k=1--- s} are independent standard nor-
mal variables which are independent of Ni(k)(.). When approximating
the distribution of /nB®(.) we regard {ng), i =1,---,n, k =
1---,s} as random and Ni(k)(.) as fixed in (94). It will be shown later
that /nB®(.) and /nB®(.) have the same limiting distribution.

The supremum test statistic is

QW = sup |VaBW(2)|, k=1,---,s. (96)
2€[0,20]
Let
OF = sup | VaBP ()], k=1,---,s. (97)
2€[0,20]

Suppose ¢'*) is the observed value of Q¥). Then the P-value, P{Q®
()1 can be approximated by P{Q(k) > ¢} through simulation.
Theorem 4. Let Assumption A and (25) hold. Then conditional
distribution of the process E(k)(-) defined by (94) given Ni(k)(-), k=

1,---,s8, 2 =1,--- ,n is the same in the limit as the unconditional
distribution of B®)(-) defined by (88).
Proof.

Conditional on Ni(k)(z), B(k)(z) is a sum of n independent zero-
mean random variables for every z. Then the finite-dimensional distri-
bution of B®(.) is asymptotically zero-mean normal under Assump-
tion A.

Define fz(k), k=1,---,s be the o-algebra generated by the ran-
dom variables N(k (u), 1=1,---,n, u <z Let us write

VB = B§’“><z>—B§“<z>=ﬂi A SVMZ) Han )

- %( Z, %)) IZ/ X (u, %) G k)dN()( ).
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Let 0 <z <y < = <z Then (Bk() (x))(B()()
B ) | F9) = vy [ 2N ) [ s N () = 0.

The last equality is obtamed usmg (95) (if NZ»( ) has a jump in
interval (x,y] (or (y,z]) then in the interval (y, z] (or (x,y]) it has no
jump).

By (81),(95) and Assumption A we get | %)\(k)(u,’yk) 1< ¢,
| 88 In A )(uvﬁyk) |§ C2, k = Ly-eeys, .] =L, NZ(ZO) <
I, i = L .n Then B(BP(y) — BO@)BP(E) — BY(y)) |
’ ’ 9 PO R R 2 ) 2 2 1 )
fz(k)) <esyn, CTY YOy —2) (2 —y) < K(y —2)(2 — y) where
C:fOZO Xk(u,’yk)dNi(k)(u) and 0 < A < oo is some constant. Then the
limiting process of ﬁé(k)(z) (k=1,---,s, 0< 2z < z) for fixed

Ni(k)(-) is a zero-mean Gaussian process (see [5]).
It remains to show that covariances of this limiting process are the
same as covariances of limiting process of /R B¥(z), k=1,---,5, 0 <

z < zp). By Lenglart’s inequality we get

n

0 b(u)

- as z dAF) (u, (0) - a.s.

E(BY(y)BM (z) | FF) ©5 ferv A2 ) gy g (y) B (2) | FI) 3
T

(995, 27w (z,5"), Then

E(vaB® (y) BY (2) | FH) = €Wy, 2)

where ¥ (y, 2) k = 1,--- s is the limiting covariance of /nB®¥)(-)
given by (93). The proof of the theorem is completed.

6 The Analysis of Real Data

Let us consider the failure time and wear data of 101 bus tires 01-73B
manufaktured at the Omsk tire plant . The critical tire wear value
is zo = 15 mm . The tires were used in the first quarter of 2000
year at the Tashkent bus park N7 on the buses DEU-BS-106 made in
South Korea. Traumatic failures of seven types were observed, but
taking into consideration small size of the data, traumatic failures
were grouped only in two groups related with the protector and the
side. The data are of the form (7}, Z;, Vi), ¢ = 1,---,n, n =

101. Analysis of the failure time and wear data by non-parametric
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methods shows (see [2]) that the intensities A(¥)(z) typically have one
of the following forms: (axz)"*, ar(z—ug)” (production defects and
defects caused by fatigue of tire components) or ) + agz"* (failures
caused by the mechanical damages).

6.1 The Estimators of Parameters
and the Goodness-of-Fit Test

Model 1.

Let )‘(k)(zvﬁyk) = )‘(k)(zvakvyk) = (akz)ykv ng = E?:l [(‘/Z = k)v
k = 1,2. From the tire data we get ny = 31, ny = 22. Set pp =
ok, Then A®)(z ) = upz*, k = 1,2. Then by (30) we get that
estimators vy and [iy verify the equations

ng (I)k + 1)
Mk =S o
>im Lzt

n 78
L 3 Wz s WAz L
"k Y Y Lzt Pt
Then the estimators are &; = 0.043, 77 = 6.883, &y = 0.05,
7y = 10.116. From (21), (22), (83) we get that observed value of Q*)
with tire data is ¢/ = 0.296564, ¢® = 0.248509.
Model 2.
Let

ag(z —z2%))*, it 2> 2%,

/\(k)(277k) = /\(k)(zvakv’/k) = { ( 0 if z<z*

where £ = 1,2, z* is a known constant. Set y; = o)*. From tire data
we get z* = 9.4. Then by (30) we get that estimators are (taking z* =
9.4mm) & = 0.00692, £, = 1.04423, &y = 0.05446, 0y = 2.57231.
From (21), (22), (83) we get that observed value of Q*) with tire data
is ¢V = 0.21522, ¢® =0.22707.

There were N = 10000 realizations of the Q(k), k = 1,2 process
generated to calculate the P-value for the supremum test. The P-
values (P(Q(k) > q)) are:

Model 1: 0.0847 «f k=1 and 0.0911 f k=2

Model 2: 02636 «f k=1 and 0.1252 if k=2.
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The hypothesis Hy is rejected if the simulated P-value is less than
0.05 (or 0.01). The results above show that the hypothesis Hy is not
rejected. Model 2 fits better than Model 1 but it must be noted that
in reality the value z* is unknown and must be estimated. A natural
estimator for z* is 2* = min{Z;,...,Z,}. But in the case of the
model with unknown z* Assumptions A are not satisfied and we can
not apply the proposed test.

6.2 The Estimators of Reliability Characteristics

Fig.1 and Fig.2 gives the graphs of non-parametric (solid line) and
parametric (Model 1 ) - dotted line, Model 2 ) - dashed line) estimators
of cumulative intensities A(V(z) and A®)(z) respectively.

Fig.3 and Fig.4 gives the graphs of parametric estimators of the
intensities of the traumatic failures A)(2) (solid line) and A(?)(z)
(dotted line) for Model 1 and Model 2 respectively.

Consider Model 2.

Fig.5 gives the graphs of semi-parametric estimator (solid line) and
its approximate (1 — «) confidence intervals with o = 0.05 (dotted
lines) of failure time survival function S(¢). The estimator of the
mean run of tires is ¢ = ET' = 64.518. The estimator of variance of é
is V(é) = 75.988 and the (1—a) confidence interval for é with o = 0.05
is [62.818; 66.218].

Fig.6 gives the graphs of semi-parametric estimator (solid line)
of the probability of a traumatic failure PU)(¢) and its approximate
(1—a) confidence interval with oo = 0.05 (dotted lines). When all tires
are failed we get P(") = 0.531, the variance of P(") is \A/(]AD(“’)) = 0.003
and approximate (1 — «) confidence interval with a = 0.05 of JCORT
[0.521; 0.541].

Fig.7 gives the graphs of semi-parametric estimator (solid line) of
the probability of a natural failure P(°)(¢) and its approximate (1 —a)
confidence interval with o = 0.05 (dotted lines). When all tires are
failed we get PO = 1— PUr) = 0.469, the variance of P© is V(p(o)) =
\A/(]AD(“’)) = 0.003 and approximate (1 — «) confidence interval with
a = 0.05 of PO is [0.435; 0.503].

Fig.8 gives dynamics of the proportions p(k)(t of the tires having
failures of 0, 1, 2 mode (P©)(t) (solid line), PM(¢) (dotted line)
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and P(ZA)(t) (dashed line)). When all tires are failed we get PO =
0.469, P =0.309, P® = 0.223.

7
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Figure 1: Nonparametric (solid line) and parametric (Model 1 - dotted
line, Model 2 - dashed line estimators of AV (z))
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Figure 2: Nonparametric (solid line) and parametric (Model 1 - dotted
line, Model 2 - dashed line estimators of A(?)(z))
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Tire wear = (mm)

Figure 3: Parametric estimators of A)(2) (solid line) and A?)(z)
(dotted line) for Model 1

87



o._045 7

0.040 ]

0.035 ]

0.030 ]

0.0z25 7]

o._0zoy

0.015 ]

0.010 ]

0.005 ]

0.000

Tire wear = (mm)

Figure 4: Parametric estimators of A)(2) (solid line) and A?)(z)
(dotted line) for Model 2
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Tire run t

Figure 5: Semi-parametric estimator of S(¢) (solid line) and its 95 %
confidence interval (dotted line)
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Tire run t

Figure 6: Semi-parametric estimator of P®)(¢) (solid line) and its 95
% confidence interval (dotted line)

90



0.4z

0.38 ]

0.33 ]

a.zg ]

0.z23 7]

o1&

0.13 ]

o.0s ]

0.03 ]

-0.0z 7

Tire run t

Figure 7: Semi-parametric estimator of P®)(¢) (solid line) and its 95
% confidence interval (dotted line)
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Tire run t

A

Figure 8: Dynamics of the proportions P®)(¢) (PO(¢) (solid line),
PM(1) (dotted line), P?)(1) (dashed line))
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