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Abstract
The problem of classification of the realisation of the stationary univariate

Gaussian random field into one of two populations with different means and
different factorised covariance matrices is considered. In such a case optimal
classification rule in the sense of minimum probability of misclassification is
associated with non-linear (quadratic) discriminant function. Unknown means
and the covariance matrices of the feature vector components are estimated
from spatially correlated training samples using the maximum likelihood
approach and assuming spatial correlations to be known. Explicit formula of
Bayes error rate and the first-order asymptotic expansion of the expected error
rate associated with quadratic plug-in discriminant function are presented. A
set of numerical calculations for the spherical spatial correlation function is
performed and two different spatial sampling designs are compared.

Keywords: Bayesian classification rule, quadratic discriminant function,
training samples, expected error rate, asymptotic expansion.

1  Introduction

In application areas like pattern recognition or geostatistics the data
of interest are often spatially correlated. In numerous applications it is
assumed, that data follow a Gaussian random field model. Therefore the
discriminant analysis (DA) of spatially correlated Gaussian data is of
great importance. When classes are completely specified, an optimal
classification rule in the sense of minimum classification error (or error
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rate) is the Bayesian classification rule. The expressions for the error rate
are cumbersome for the DA based on linear discriminant function (LDF).
Of course, they are even more delicate for the DA associated with
quadratic disriminant function (QDF) [1]. Moreover, in practice the
complete description of classes usually is not possible and the training
samples are required for the estimation of probabilistic characteristics of
each class. Therefore asymptotic expansions of the expected error rate
are particularly important while evaluating the performance of certain
discriminant functions and comparing different designs for training
samples.

2  The problem and the model

Let ( ){ }2:Z ℜ⊂∈Dss  be a univariate Gaussian random field having
different stationary means and factorised covariance matrices in
populations 1Ω  and 2Ω . Then the model of ( )sZ  in population lΩ  is

( ) ( )ss ll εμZ += ,

where lμ  is a mean and ( ){ }2:ε ℜ⊂∈Dl ss , is a zero-mean stationary
Gaussian random field with covariance defined by a parametric model

( ) ( ){ } ( )lll θhsεtε ;,cov σ= , where sth −= , D∈st, , and Θθ ∈l  is a q×1

parameter vector, ΘΘΘΘ being an open subset of qℜ , l=1,2. The spatial
covariance function in lΩ  is ( ) ( ){ } ( ) 2;,cov llll c σθhsεtε = , where ( )lc θh;

is the spatial correlation function and ( )ll θ0;2 σσ = , l=1,2. It is assumed
that the function ( )lc θh;  is positive definite [2]. Assume that, for all

D∈st, , st ≠ ,

( ) ( ){ } 0,cov 21 =sεtε .

Consider the problem of supervised classification [3] of the
observation ( ) R⊂∈ZrZ  with DD ⊂∈ 0r  into one of two populations
specified above. In effect, classification rule divides the feature space Z
into two mutually exclusive and exhaustive assignment regions 1U  and
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2U , where if ( )rZ  falls in lU , then the object is allocated to lΩ , l=1,2.
Under the assumption, that the populations are completely specified and
for known prior probabilities of populations ( )r1π  and ( )r2π
( ( ) ( ) 121 =+ rr ππ ), the Bayesian classification rule (BCR) ( )⋅Bd
minimising the probability of misclassification (PMC) is

( )( )
{ }

( ) ( )( )rrr zmaxargz
2,1 lllB pd π

=
= , (1)

where ( )rlπ  and ( )( )rzlp  are a prior probability and probability density
function of lΩ , respectively, l=1,2. Then the corresponding QDF is

( )( ) ( ) ( )( ) ( )rrr γ
σσ

σφ +
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where ( )T2
2

2
121 ,,μ,μ σσφ =  and ( ) ( )

( )



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rr
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1ln
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The PMC of BCR, associated with QDF ( )( )φ,rZW , usually called
the Bayesian error rate, is

( )( )( ) ( )( )( )2211 0,0, Ω>+Ω≤= φπφπ rrr ZWPZWPPB , (3)

where lΩ  under the sign of probability means that an object with
observation ( )rZ  belongs to the population lΩ , l=1,2.

As it was already mentioned, in practical applications the parameters
of density function are usually not known and must be estimated. Then
the estimators of unknown parameters are found from the training
samples 1T  and 2T  taken separately from 1Ω  and 2Ω , respectively.
When estimators of unknown parameters are used, the plug-in version of
BCR is obtained. The performance of the plug-in version of the BCR
when parameters are estimated from training samples with independent
observations is widely investigated by many authors [4]. However, it has
been founded that the assumption of independence is frequently violated.
Lawoko and McLachlan [5] for instance, investigated the performance of
sample LDF when training samples follow a stationary autoregressive
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process. In this paper we will consider the performance of the plug-in
QDF when the parameters are estimated from training samples with
spatially correlated observations. The maximum likelihood (ML)
procedure for the estimation of unknown means and variances, assuming
the spatial dependence parameter to be known, is used.

Suppose in region DD ⊂1 , ∅=∩ 01 DD , we observe the stratified

training sample { }21 ,TTT =  with { }
llNll Z,...,Z 1=T , where ( )l

l αα sZZ =

denotes the α ’th observation from Ωl, l=1,2, lN,...,1=α . Assume, that
all points in 0D  are beyond the range of spatial correlation function ([6],
ch.2) defined for points in 1D . Then ( )rZ  is independent on T .

Let lμ̂  and 2ˆ lσ  be the ML estimators of lμ  and 2
lσ , l=1,2,

respectively, based on T. Then ( )T2
2

2
121 ˆ,ˆ,μ̂,μ̂ˆ σσφ =  is the estimator of

φ .

The plug-in rule ( )( )φ̂;rzd B  is obtained by replacing the parameters in
(1) with their estimators. Then the corresponding discriminant function

( )( )φ̂,rZW , also known as the plug-in QDF, is

( )( ) ( ) ( )( ) ( )rrr γ
σσ

σφ +
−

−+= ∑
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Definition 1. The actual error rate for ( )( )φ̂;rzd B  is defined as

( )( )( ) ( )( )( )2211 0ˆ,0ˆ, Ω>+Ω≤= φπφπ rrr ZWPZWPP .

Definition 2. The expectation of the actual error rate with respect to
distribution of T designated as ( ){ }φ̂rPET  is called the expected error rate

(ER) for the ( )( )φ̂;rzd B  and expected error regret (EER) is defined by

( ){ } rr
BT PPEEER −= φ̂ .
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The goal of this paper is to find asymptotic expansions of ER
associated with plug-in QDF. K. Dučinskas [7] presented the asymptotic
expansion for the case of arbitrary number of classes and regular class-
conditional densities under the assumption, that observations in training
samples are independent. K. V. Mardia [8] considered the problem of
classifying the spatially distributed Gaussian observations with constant
means and common covariance matrices (case of LDF), but he did not
analyse the ER of PMC. In this paper we present the asymptotic
expansion up to the order ( )1−NO , where 21 NNN += , for the ER of
classifying spatially distributed Gaussian observation with different
means and different spatially factorised covariance matrices. Terms of
higher order are omitted from the asymptotic expansion since their
contribution usually is in generally negligible (see e.g. M. J. Schervish
[9]). The ML estimators of means and the bias-adjusted ML estimators of
the covariances are used in the plug-in version of the BCR. M. Taniguchi
[10] has proved under sufficiently general assumptions, that ML
estimators ensure minimum of EER up to ( )1−NO  for the considered
classification rule. A set of calculations for a certain neighbourhood
structures and spherical spatial correlation model is performed and values
of r

BP  and approximation of EER are presented in tables.

3  Asymptotic expansion
The expectation vector and the covariance matrix of the vectorised

training sample Tl defined by { }TlNl
V
l l

Z,...,Z 1=T  are

( )TlNl
V
l l

μ,...,μ 1=μ and ll
V
l CΣ 2σ= ,

respectively, where lC  is known spatial correlation matrix of order

Nl×Nl, whose αβ ’th element is ( )llc βα ss − , lN,...,1, =βα , l=1,2. Let

( )αβ
ll c=−1C , ∑

=

•• =
lN

ll cc
1,βα

αβ  and ∑
=

• =
lN

ll cc
1β

αβα , l=1,2.
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Lemma. For l=1,2, the ML estimators of lμ  and 2
lσ , based on

stratified training sample T are

∑
=

•
••=

lN

ll
l

l Zc
c 1

1μ̂
α

α
α , (4)

( )( )∑
=

−−=
lN

lllll
l

l ZZc
N 1,

2 μ̂μ̂1ˆ
βα

βα
αβσ . (5)

Proof. The log-likelihood of Tl, l=1,2, is

( ) ( )( )∑
=

−−−+−=
lN

lllll
l

llll ZZcNconstL
1,

2
2 μ̂μ̂

2
1lnln

2
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σ
σ C .

Solving the equations 0
μ 

ln 
=

l

lL
∂
∂

 and 0
 
ln 

2 =
l

lL
σ∂

∂
, l=1,2, we

complete the proof of lemma.

Since, for l=1,2, { } 22 1ˆ l
l

l
l N

NE σσ −= , further we will use the bias-

adjusted ML estimator of variance 22 ˆ
1

~
l

l

l
l N

N σσ
−

= .

It can be easily shown that lμ̂  for finite N have known exact

distribution 







∼ ••

21,μμ̂ l
l

ll c
N σ , l=1,2.

For simplicity we omit the superscript “r” in ( )φ~rP , here φ~  is φ̂
with ML estimator of 2

lσ , l=1,2, replaced by the bias-adjusted ML

estimator. Put lll μμ̂μ̂ −=∆ , 222 ~~
lll σσσ −=∆ , l=1,2. Denote by

( ) ( )
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( ) ( )
2

2
2
~, ~μ̂

~
2

ll
l

PP
l σ

φ
σ ∂∂

∂=  the partial derivatives of ( )φ~P  up to the second order

with respect to the corresponding parameters evaluated at ll μμ̂ =  and
22~
ll σσ = , k,l=1,2.

With insignificant loss of generality we consider the parametric
structure case, when 21 μμ > , 2

2
2
1 σσ >  and

( ) ( ) ( ) 02lnμμ 2
1

2
22

2
2
1

2
21 >





+





−−− rγ

σ
σσσ .

Threshold points ( )r1z  and ( )r2z , i.e. solutions of ( )( ) 0, =φrzW ,
and assignment regions 1U  and 2U  for this parametric structure case is
shown in Figure 1, assuming 5.021 == ππ  for simplicity.
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Fig. 1. Threshold points and assignment regions for the considered
parametric structure case
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On purpose to derive the asymptotic expansion of EER we need the
following assumptions.

Assumption 1. Let ( )lCλ  be the largest eigenvalue of lC , l=1,2.
Suppose, that ( ) ll κλ <C , ∞<< lκ0 , l=1,2.

Assumption 2. Assume, that τ→
2

1

N
N

, as ∞→21, NN , ∞<< τ0 .

Theorem. Suppose, that assumptions 1,2 hold for training samples
T1, T2. Then the asymptotic expansion of the expected error rate for the

( )( )φ~;rzd B  is

( )( ) ( )22
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Proof. By a Taylor expansion of the ( )φ~P  about the true values of
parameters 1μ , 2μ , 2

1σ , 2
2σ  we have
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where 3O  is the third and higher order terms of lμ̂∆  and 2~
lσ∆  and their

products.

Explicit formula (7) for BP  is obtained by straightforward
calculations in (3) for considered parametric structure case.

Since ( )φ~P  is minimised at the true values of parameters, then, for
l=1,2,

( ) 01 =lP and ( ) 01
~2 =

l
Pσ . (11)
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K. Dučinskas, [11])
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Using (4) and (5), for l=1,2, under the independence of estimators lμ̂

and 2~
lσ , we have (J. Šaltytė, [12])

{ } { } { }
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Under the assumptions 1, 2 it follows, that the expectation with
respect to the distribution of the training sample T of residual 3O  in (10)

is of order 






2

1
N

O . Hence, by substituting the estimators (4) and (5) to

(10), taking the expectation of the right side of (10) and using (11)-(15),
we complete the proof of the theorem.

As the contribution of higher order terms in the presented asymptotic
expansion is in generally negligible, for the evaluation of the
performance of QDF the asymptotic EER is used. The asymptotic EER
for the considered case is designated as

.
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1AEER
2

1

2

1
∑∑
==

•• −
+=

l l

l

l l

l

Nc
βα

Minimum of AEER could also be used as a criterion for optimal
training sample design.

4  Numerical example

As an example consider the integer regular 2-dimensional lattice. We
use two designs for training sample of size 4 for each class. Locations in
design (A) are more compact than those in design (B) (Figure 2).

In this example without loss of generality we use the convenient

canonical form of ( )T1,,0, 2σφ ∆= , where 2
21 μ-μ

σ
=∆  and 2

2

2
12

σ
σσ = .
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(A) (B)
Fig. 2. Training sample designs (locations from T1 and T2 are signed as  and ,

respectively;  denotes the location r )

Consider for both populations the spherical correlation function for
observations ( )sZ  and ( )tZ  ([6], ch.2)
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for nonnegative 0κ , 1κ , η . The nugget effect is 0κ  and the sill is

10 κκ + . For this model, observations more than η  units apart are
uncorrelated, so the range is η . Assume, that there is no nugget effect,
i.e. 00 =κ , and range 3=η .

In Table 1 the values of BP  and AEER are presented. Here also the
comparison of obtained AEER with EER obtained under the assumption
of independent observations (denoted by indAERR ) is given. The ratio

indAERR

AERR  allows us to estimate the effect of spatial correlation on the
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EER. In this table we consider only design (A). In Table 2 two
experimental designs (A) and (B) (see Figure 2) are compared in terms of
AEER.

∆ BP AEER indAERR
indAERR

AERR

0,5 0,292 0,00478 0,00474 1,00900
0,6 0,289 0,00414 0,00410 1,00921
0,7 0,287 0,00361 0,00357 1,00938
0,8 0,284 0,00317 0,00314 1,00948
0,9 0,281 0,00282 0,00279 1,00947
1,0 0,277 0,00254 0,00252 1,00934
1,1 0,273 0,00232 0,00230 1,00908
1,2 0,269 0,00214 0,00212 1,00870
1,3 0,265 0,00200 0,00199 1,00824
1,4 0,26 0,00189 0,00187 1,00772
1,5 0,255 0,00179 0,00177 1,00718
1,6 0,25 0,00170 0,00169 1,00663
1,7 0,244 0,00161 0,00160 1,00610
1,8 0,239 0,00153 0,00152 1,00561
1,9 0,233 0,00145 0,00144 1,00515
2,0 0,221 0,00127 0,00126 1,00474

Table 1. Values of the asymptotic expected error regret for
the design (A), when 5.01 =π , 14μ 2 =  and 62 =σ .

As it was expected, BP  and AEER are decreasing, when the
difference between class-means increases (Tables 1 and 2). It is seen
from the last column of Table 1, that the change in EER due to a spatial
correlation is smaller for more separated populations. Hence, for close
populations it is very important take into consideration the spatial
dependence factor, when practical problems are solved. The last column
in Table 2 confirms the advantage of design of wider spread locations.
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∆ ( )AAEER ( )BAEER
( )
( )BAEER

AAEER

0,5 0,00478 0,00477 1,00354
0,6 0,00414 0,00412 1,00362
0,7 0,00361 0,00359 1,00369
0,8 0,00317 0,00316 1,00373
0,9 0,00282 0,00281 1,00373
1,0 0,00254 0,00253 1,00367
1,1 0,00232 0,00231 1,00357
1,2 0,00214 0,00214 1,00343
1,3 0,00200 0,00200 1,00325
1,4 0,00189 0,00188 1,00304
1,5 0,00179 0,00178 1,00283
1,6 0,00170 0,00169 1,00261
1,7 0,00161 0,00161 1,00241
1,8 0,00153 0,00153 1,00221
1,9 0,00145 0,00144 1,00203
2,0 0,00136 0,00136 1,00187

Table 2. Comparison of the asymptotic expected error regrets for two
different designs (A) and (B), when 5.01 =π , 14μ 2 =  and 62 =σ .
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