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Abstract

In articles [1]-[3] a class of functions being univalent in unit disc with all
their derivatives was investigated. It was proved such functions exist and must
be the entire functions of exponential type. The example of such a function is
an exponential function zezf =)( . In this work the question on existence of
functions, beeing univalent in half-plane with all their derivatives was raised
and the negative answer to such question was given.
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1  Introduction
In the articles [1] – [3] a class of functions being univalent in a single

circle Е with a center at the origin of coordinates was considered. It was
supposed every function being univalent in Е has got univalent
derivatives of any order. It turned out that such functions exist and they
are the entire functions of exponential type. The example of such
function is function ( ) zezf = . In this article we consider a class of
functions being univalent in a half-plane }0{Re >=Π z . The interest for
such functions is stipulated, for instance, by the relation of such functions
to various tasks of continuum mechanics [4], [5]. It should be noted that
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in many cases there is no mere analogy in methods, when studying the
features of a class of univalent functions in disk E and a class of
functions being univalent in a half-plane. The example of this is a matter
of existence of functions being univalent in half-plane together with all
their derivatives. The main result of the article presented is the following
theorem:

Theorem. There is no function being univalent in half-plane, and
having non-vanishing univalent derivative of n-th order in this half-
plane,  if  n > 4.

2  Univalent Functions
In order to prove this theorem we need several lemmas. Let

denote by U  a class of functions being analytical and univalent in half-
plane }0{Re >=Π z  which are normalized by conditions ( ) 01 =F ,

( ) 11 =′F , but by means of  S a class of functions ( )ωg   being univalent in
a unit disk }1|{| <= zE  and normalized by conditions ( ) 00 =g ,

( ) 10 =′g .

Lemma 1.  Let ( ) UzF ∈ .  Then the following estimates take place:
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i.e. is univalent in a single circle }1|{| <= ωE , and normalized by
conditions ( ) 00 =g  and ( ) 10 =′g  ([6]). For any function of  S, estimates
of module take place
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being equivalent to estimates  (1).

To proof the following lemma we need a combinatorial identity
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Lemma 2. If analytical functions ( )zF  and ( )ωg  are connected by
the equality

( ) 






+
−=

1
12

z
zgzF ,

in domains П and E respectively, then their derivatives are connected
by the following equality
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In the proof we procede by induction. For 0=n  the formula (3) is

justified. (essentially, ( ) ( ) ( ) ( )21
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formula (3) be justified for mn = , i.e. the following formula takes place
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We will take derivatives with respect to z from both parts of equality
(4), and then we get
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By using combinatorial identity (2) for 2=r , i.e. that
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Now the formula (3) is obvious to be correct for 1+= mn  too. This
means the formula (3) is established for any ,...2,1=n  and the lemma is
proved.

Lemma 3. For any 1|| >z provided that επβ −=≤
2

|arg| z ,  0>ε ,

the following estimate takes place:

βcos
1

|1||1|
1 <

−−+ zz
.                                                                 (5)

Proof.  Let's denote zarg=α . Then

αα cos||2||1cos||2||1
1

|1||1|
1

22 zzzzzz −+−++
=

−−+
=

βαα

αα

cos
1

cos4

1
||

12

cos4

cos
||

21
||

1cos
||

21
||

1
222

<




 +

<
−++++

zzzzz

for any 1|| >z , επβ −=≤
2

|arg| z ,  0>ε .

Lemma 4. If ( )zF  being univalent function in  Π   half-plane, then

( )( ) ( )nn zOzF −= 2||   when ∞→|| z ,
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where επβ −=≤
2

|arg| z , 0>ε ,  ,...2,1,0=n

Evidently, it is enough to give a proof for functions of class U  ( i.e.
univalent in Π  and normalized by conditions  ( ) 01 =F  and  ( ) 11 =′F ).
For 0=n  a statement of lemma arises from the upper estimate of module
function ( )zF  (lemma 1) with account of lemma 3.  If ( ) UzF ∈ , then
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Hence it appears the stated matter with account of lemma 3.

3  Proof of the main theorem

Let the function ( )zF  is univalent in the half-plane Π . Then
according to lemma 4
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( )( ) ( )nn zOzF −= 2|| ,  when  ∞→|| z ,

where επβ −=≤
2

|arg| z , 0>ε ,  ,...2,1,0=n

From here

( )( ) 2−≤ n
n

z
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for some real K  and Rz >||  for sufficiently big R.  If ( )( )zF n  is
univalent and non-vanishing in Π , then function ( )( )zF n/1  is univalent in

Π  too, and according to  lemma 4   ( )( ) ( )2/1 zOzF n = . This means, that

( )( ) 2
1

z
KzF n ≥                                                                                    (7)

for some real 1K  and 1Rz >  for sufficiently big 1R . Thus, if 4>n
for sufficiently big || z  we get contradictory estimates (6) and (7), and
that proves the theorem.
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