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Abstract

The work considers the asymptotic expansions in the large deviation
Cramer zone for the distribution and its density functions of the quadratic
form of a stationary Gaussian sequence. To this end the general authors
lemma [1], [3] for an arbitrary random variable with regular behaviour of its
cumulants is used.
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1 Formulation of the results

Let {Xt,t =1,2,.. } be a real stationary Gaussian sequence with
mean EX; = 0 and the covariance matrix (c.m.)

R = [EX,X/] Zj’;, det R # 0. (1.1)
Denote
Cn = Z as,thXta A= [as,t] Zzlliz (12)
s,t=1
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where, without loss of generality, we can suppose the matrix to be
symmetric. A non-symmetric matrix A = [Eis,t] Z:TZ can be reduced

to a symmetric matrix A, where a,; = %(Eis,t +a;s) and a5 = G-
We denote by p1, pio, - - ., thn, a spectrum of eigenvalues of matrix
RA obtained in the solution of the n'® degree algebraic equation
det (A —pR™') =0.
We know that the distribution of a r.v. (,, defined by equality (1.2)
is the same as that of the r.v.

M = Z,ujy;?a (13)
ij=1

where Y;, j = 1,n are independent Gaussian r.v’ s with EY; =0
and DY, = EY;-2 = 1. Then

(n = Enp = Zu], B =D¢, =Dn, =2> 1 (1.4)
ij=1
Denote by
- ~ d
(=B, ((a—EG), Fr (2)=P(Ca<z), pp(e)= T Fy (z)  (15)

the distribution and the density function of the r.v. Zn and by

z

_ _ 1 1 2}
o@)= [ Wiy, o)== ew{-3a (16)
—0o0
the (0,1) — normal distribution and its density, respectively.

In order to obtain asymptotic expansions of the distribution func-
tion Fy (z) and its density p; (z) of the r.v. (,, defined by equality
(1.5), in large deviation zones, according to the general lemmas ob-
tained by the author in [1], [3], one must have the estimates of the
k" order cumulants of the r.v. 7,

1 d
Fk(nn) = i_kﬁln (@) k=1,2,..., (1.7)

t=0

where f¢(t) = Eexp{it{} is the characteristic function of the r.v.
€.
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Let Z; := ,qu;?, j =1,2,...,n. Recalling that Y; — (0,1) are normal
independent r.v., we get

f2,(t) = B = fya (uit) = (1=2ipst) "7, (1.8)
Fou () H (1—2ip;t) V2. (1.9)
=1

Then, by the definition of I'y(n,) and by equality (1.7), we obtain
Te(ma) = 257 (k=11 pb,  k=1,2,.... (1.10)

Taking into account that
I (nn—Enn) =0, Iy (nn—Enn) =TI (nn), k=23,...

we get

Tw(&) = Tu((Go—EG)/Ba) = Tu(ma) /BE =

— 2’“—1(15—1)!23,4?/( Zu])m, =2,3,...(1.11)

Hence we obtain the following estimate of the k** order cumulant
Iy (Cn) of the r.v.(,:

ITe(G)] < (B=1)1/AF2 k=2,3,..., (1.12)
where
~ 172
An = Bo/(2 max |u]) = (22/@) /(2 max |u;1). (1.13)
]:
Let
PoRA=Dulh P bl Q=i

where matrices R and A are defined by equalities (1.1) and (1.2),
respectively. Note that

max |u;| < max{P,Q}. (1.14)

1<j<n
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Next, let

A% =coA, o = (1/6)(V2/6), T, = (1/12) (1—z/A%) A,
(1.15)
0;, 1 =1,2,..., stand for quantities not exceeding a unit in absolute
value.

Theorem 1 For the distribution function an(:z;) of the r.v. Zn
defined by equality (1.5) in the interval

0<z <A,

for each integer I, [ > 3, the equality

1—F(z T =3
?{i"(i)) = exp {Ln(x)}{z;ﬁ((un)) <1 + ; L,,m(un)) +

2 B
+61(z + 1)<cl(l) R el e‘T’g/F’) (1.16)
' A2 T (1= z/A8) T, | |V '

holds.
Here
L,(z) = Z )\kyn:ck. (1.17)
k=3

The coefficients A, (expressed by cumulants of the r.v. Zn) are
found by the formula

Ak = —br_1n/k, (1.18)

where b, are determined successively from the equations

J T .
Tz:; EF’I‘-‘FI(CTZ) j1+;’r:j Z:HI b],“n - { O ] — 2’ 3, (1.19)
s

i 21

In particular,

)‘3,n = (1/3)1_‘3(67121 _
M = (1/24)(Ta(Cn) — 3T3(Cn))
Asm = (1/120)(T5(G) — 10T5(C)Ta(Ca) + 15T5(G)) - - - -
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Here the k** order cumulant Fk(gn), k = 3,4,..., is expresed by
formula (1.11). For the coefficients Ay ., the estimate

Arn| < (2/k)(16/A,) %k =3,4,. .. (1.20)
holds, and therefore
Lu(2) < (&%/2)(a/(@4887),  Lu(~2) > —(s*/(3A7)).
The function (z) has the following representation

Y(@) = p(2)/(1-2(z)), (1.21)
where ®(z) is the N(0,1) normal distribution with density ¢(z). The
quantity

-3

Un = Un(2) = 2(14 Y crna®+0c" (1) (z/A0)72), (1.22)

where ¢*(I) = 7361(l — 1)(7/2)'"2, and the coefficients ¢, are ex-
pressed by the cumulants of the r.v. {, and found by formula (11) [3].
In particular,

cl,n = O,
can = (1/24)(204(Ca) — 3T3(Ga)),
csm = (1/24)(Ts(G) — 6T5()Ta(Ca) + 6T3(C)) - -

Polynomials L, ,(u,) are determined by relation (104) [3]. In
particular,

Lin(un(®)) = —(1/2)T5(C0)(1/2) + (3/2) (2Ta(Ga) — 3TE(Cy)
+ (1/48)(7205(Gy) — 394T5(Ga)Ta(G)
+ 267T3(G)) 2+ - (1.23)
Lon(un(z)) = (1/24)(304(Ga) — 5T3(G))
+ (1/24)(3T5(Ca) — 16T5(Ga)Ta(Go)
+ 1503(G)) &+ - (1.24)
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Theorem 2 For the distribution function an(:z;) of the r.v. Zn
defined by equality (1.5) in the interval

0<z <A,

the relations of large deviations

1—-Fx (z T
ﬁ{?((x)) = exp {Lo(2)} (1460,70) T,
Fr(—z T
) = o {10} (14005 (1.25)
are valid. Here
f(z) = 60(1+10A; exp { —(1-2/A%)\ /A }) (1-2/A7)
(1.26)

and Ly(x) is determined by (1.17).

Corollary 1 For x > 0, z = o(ATl,/g) as A, — oo, where A, is

determined by (1.13)

1— F; F: (-
lim -6 @ _ ,  lim & () _ (1.27)
n—oo 1 — (I)(:U) n—00 (I)(—:U)
Theorem 3 For the r.v. Zn defined by equality (1.5)
1,2
o exp | — ;T }, o<z <A,
P{+(, >z} < { expg _faz), A, (1.28)

where A, is determined by (1.13).
Next, let

Ly, = B,*Y E|Z-EZ, L,'=64B*> |u*  (1.29)
7j=1 7j=1
Considering that EY® = 15 and |a + b> < 4(|af® + [b]*), we obtain
Ly, < L' <16A7, (1.30)

where A, is defined by equality (1.13).
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Theorem 4 For the distribution function an(:z;) of the r.v. Zn
determined by equality (1.5) the inequality

62.8
F: -0 < 1.31
sgp| 5 (2)—®(z)| < onl. (1.31)
holds. The inequality
sup |an(£v)—q)($)| < 18/A7 (1.32)

is also true, where A} is determined by (1.15)

Theorem 5 For the distribution density pZn(CI)) of the r.v. Zn
defined by equality (1.5) in the interval

0<z <A,

for integer [, I > 1, the equality

pg, () B z+1\!
o@) exp { L, (z) <1+ZMyn +91Q(l)< Ar )
2me? B 1
+ 6, e = exp{ — —Tf} (1.33)
3 2 14 5
11 o

holds. For polynomials M, ,(z) the following formula holds:

ZKM )Gy kn(), (1.34)
where
Ky(z) = S Hl,%m,( Anizna™?)
Ko(z) = 1,

wn(@) = Y Hya(e H ko '< Zzig;)) :

don(z) =1, Hi(xz) are Chebyshev-Hermite polynomials, and the sum-
mation is taken over all integer solutions of the equation ki + 2ky +
..+ vk, =vr.
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In a special case,

My,(z) = 0,
Mig(z) = —(1/2)l5(G) =,
Mya(z) = (1/8)(51%(Ga) — 204(Ga)) @* + (1/24) (3T4(Ga) — 5T3(Ga)),
Mzn(z) = (1/48) (34P3(Zn)F4(Zn) — 4T5(Ca) — 45F§(Zn))$3
+ (1/48)(6T'5(Ca) — 35T5(Cu)Ta(G) + 35T5(Ca)) - -

We get the expression of the quantity ¢(I) from (6.11) [1], suppos-
ing that v =0:
q(1) = (3v/2¢/2)'8(1+2)243¢ DT ((31+1) /2). (1.35)

The quantities B, T,, and the function ¢(z) are defined by equal-
ities (1.4), (1.15) and (1.6), respectively.

Theorem 6 For the distribution density function pg, () of the r.v.
Zn, defined by (1.5)

72 1 1
sup oz (2) — o(z)| < o ﬁeXp{ - —L2}

e -3 (5)}
— TPy~ Sl )
4 TTocy a2 4164

where iy, = 1,n, k = 1,2,3,4 and the quantities L,, A, are defined by
equalities (1.29), (1.13), respectively. Besides, L, > A,/16.

2 Proof of Theorems

2.1 Proof of Theorem 5
Since for the k** order cumulant I‘k(zn), k = 2,3,..., of the r.v.Zn,

estimate (1.12) holds, for the r.v.{ = {, the condition (S,) with
v=0and A = A,, A, being defined by equality (1.13) of Lemma
(6.1) [1] is satisfied. Basing on this lemma we have to estimate the

integral

Ro= [ ()]t (2.1

[t|>Tn
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where the quantity T, is defined by equality (1.15), and
Tu(h) = (Ma(R)=Ma(h)) /Ba(h), ma(h) =D Z;(h),  (22)
7j=1

where Z;(h) is conjugate Z; := ,qu;?, j=1,2,...,n, r.v. with the
density function

P2,y (@) = eh:z:pzj(:c)< / eh“’pzj(:l:) d:z:) ! (2.3)

and
My(h) = En,(h), Bi(h)=Dnu(h), frm) = Eexp{ith,(h)}.

Further, let
¢z, (h) == EehZi — / eh“’pzj (x) dz. (2.4)

Since fz,(t) = Eexp{itZ;} = ¢z,(it), taking into account the expres-
sion of fz,(t) by equality (1.8), we obtain

0z,(h) = (1—2u8) ", j=1,2,...,n. (2.5)

Hence, basing on the expression of the density pz;n)(z) of the r.v.
Z;(h) by equality (2.3), we get

. QOZj(h + Zt) . .\—1/2
fz;m)(8) = Ten ) (1—2v5(h)it) ", (2.6)
where
vi(h) = p;/(1=2p;h), j=1,2,...,n. (2.7)

Recalling that Y;, j = 1,2,...,n, are independent (0,1)— Gaussian
r.v’s, we obtain

Jra(w)(t) = exp {—zt]\B/I:((;:)) }jli[lfzj(h) <%(h)) (2.8)
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Note that

n

M, (k) = Eno(h) = Y v;(h), Bi(h) = Diy(h) =2 Z v; (h)

=1

where v;(h) is defined by equality (2.7).
From this, basing on equality (2.8), we derive

= 4v2(h) ,\-1/4
_ j 2
7j=1
Recalling that the r.v.n, = 77, Z;, where Z; = u;Y?, j =
1,2,...,n, are independent r.v’s, we get
=1
. (h) = Eet™ = exp { 3 HFk(nn)hk}. (2.10)
k=2

Then the mean M, (h) and variance B2(h) of the r.v.7,(h) defined by
equality (2.3) are equal to :

d

o0 1 ~
- Zm““ﬂ)hk )
> 1

respectively. Hence, basing on the expression of I'x(7,), by equality
(1.10) we obtain

Bi(h) = B2 <1+0§: k—1) 2max |,u]|h) )
k=3

= B2(1+ 0(175)) (2.12)

forall0 < h < A,/(12B,), where B, and A,, are defined by equalities

(1.4) and (1.13), respectively. Now, recalling the definition of v;(h),

by equality (2.7) and the fact that 0 < h < (1/12)(2 max |,uj|)_1 we
<j<n

get

vj(h) = pj(1—-2p;h) " = p; (146(1/11)), j=1,2,...,n.
(2.13)
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Next, using equalities (2.1) and (2.9), we have

ro= [ {0 ) T seam (5|

[¢|>T, J?‘k ( )
2.14
It is easy to check that
2 2
42 (h) Al ()i ()] 2
1k 2 > 21 2 2
g(” Bg(h)t)— (1+ B2(h) 7).
Consequently,
2
t RAQIAQIPNSE
. — )| < —_ . 2.1
g‘fz’k(h)<Bn(h))‘ < (1+ B2(h) ) (2.15)
Then
Oof[ gt < T Dal?) )1/2 (2.16)
/k l‘fz’k(’” )| < 2 (o) |

Hence, making use of the Cauchy-Schwarz inequality, we obtain

o/o LT () < A (210

Now, making use of equalities (2.12) and (2.13), one can easily check
that 0 < 4v7(h)T;/B}(h) < 1. Thus, basing on the inequality In(1 +
z)>z/2,0 <z <1, we have

4v2(h) 81
J 2 > J 2
In <1+ B2(h) Tn) > 5B72LTn . (2.18)

Hence, taking into account equalities (2.14) and (2.17), we obtain the
estimate of integral R,,:

ore’ B, 1
R, <5 ——exp {——Tj} (2.19)
3 ITeen IV 5

where T, is defined by equality (1.15).
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2.2 Proof of Theorem 1

Since for the k' order cumulant Fk(Cn) = 2,3,..., of ther. v.

Cn, estimate (1.12) holds, for the r.v.& = Cn, the condidion (S,) with
vy=0and A = A,, A, bemg defined by equality (1.13) of Lemma 1
[3] is satisfied. Basing on this lemma, we have to estimate the integral

cAiL_2
. dt
R, = / | Fary (2)
Thn

where the quantity 7;, and the function f5, () (t) are defined by equal-
ities (1.15) and (2.8), respectively. Considering that R} < (1/T,)R.,,
where the integral R, is defined by equality (2.1), and making use
estimate (2.19), we obtain

R, <

r2yane % U exp { 1T2} (2.20)
(= a/a7) Tl e P V5™

Basing on Lemma 1 [3] and estimates (1.12),(2.20), we obtain the
assertion of Theorem 1.

To prove Theorem 2, we have to use Lemma (2.3) in [1] for the

rv. £ = Zn, for the k" order cumulant Fk(zn), k=2,3,..., of which
estimate (1.13) holds. We complete the proof of this theorem making
use of equalities (1.17),(1.18) and (1.25),(1.26).

To prove Theorem 3, we have to make use of Lemma 2.4 in [1] for

the r.v. & = Zn, for the order £** cumulant I‘k(zn), k=23,...,of
which estimate (1.13) is valid, considering that (k—1)! < (1/2)kl, k =
2,3,....

2.3 Proof of Theorem 6

Let a r.v. 7, := B, '(n, — En,). Then its characteristic function
~1/2
fi () = exp {—itB; Zu]} H (1—2u,;B;it) /. (2.21)
In a view of the fact that the characteristic function f; (¢) = f3, (¢)
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of the r.v. Zn defined by equality (1.5), we have
17 1,
sup | pz, (2) —¢(@) | < 5o | [fa(t) —exp{ -5 ¢*}|dt

1
= - (h+ 5"+ 17,

where
1
I = / |f7~,n(t)—exp {—5 t2}|dt, (2.22)
[t|<(1/4)Ln
1
= [ ol = [ eo{- e,
[t>(1/4)Ln [¢|>(1/4) Ly,

(2.23)
and the quantity L, is determined by equality (1.29). Recalling the
definition of the quantity L,, by equality (1.29), and basing on Lemma
1([ 6 | p-155) and inequality (1.30), we get

1, 16, 1,
Ifgn(t)—exp{—ﬁt H < L—n|t| exp{—3 £}, (2.24)

in the interval |t| < (1/4)L, . Basing on this inequality, we get the
estimate I < 144/L, of integral I; defined by equality (2.22). It
is easy to see that for integral I2(2), defined by equality (2.23), the
estimate I2(2) < 2¢/mexp{—(1/64)L2} is valid. It remained to estimate

the integral I2(1) that is defined by equality (2.23). The shortest way
to do that is to make use of the estimate of integral R, defined by
equality (2.1), considering that

fa(t) = fﬁn(h)(t)|h:0’ Bn(h)|h:0
= Bp,vi(h)|,_g =1 i =1,2,...,n. (2.25)
Now, basing on equality (2.14), we have

M = / exp{ - i Z In (14 (4u§/BZ)t2)} X

[t]>(1/4)Ln iy,

x |z, t/B)]dt. (2.26)
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Next, making use of the Cauchy-Schwarcz inequality, and of the in-
equality (2.16), we obtain

4
B,
/ H| f2,, (t/Bn) | dt < Hk T o (2.27)

In turn, since (1/4)L, > (1/64)A,, we have |t| > (1/4)L,

42 1 %
1 (1 ’t2) - J 9.28
n B2 2 (64 max |u;])? (2.28)
1<j<n

So, basing on inequalities (2.27), (2.28) and expression (2.26) of inte-
gral 12(1), we obtain

B 1/A,\2
N TN
2 Hk 1 i |14 4164
Finally, basing on this and the obtained estimates of integrals I; and
I2(2), we conclude the assertion of the theorem.

2.4 Proof of Theorem 4

We derive inequality (1.32) by applying the conclusion (2.1) in [1] for
the r.v. ¢ = (, to the k** order cumulant I‘k((n), k=23,...,of

which estimate (1.12) holds.
To prove inequality (1.31), we make use of V.M.Zolotarev’s Lemma
1[2]. According to this lemma (or using inequality (14) [5]), we obtain

(1/4)Ln
17.4 3 dt
R N AT
st;p| C'n.(x) (x)| = \/%Ln—i_?fr / fnn exp 2 ‘
0
17.4 44.4 62.8

< =
S VarL, | VL, vy’
where the quantity L, is defined by equality (1.29), and this is the
proposition of Theorem 4.
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