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Abstract

In this paper we examine the movement of the solid body thrown

with some angle to the horizon (for example the shot mine). Such

movement is described by non-linear system of equations. This system

is being approximated by linear system, in segments. The experiment

results have been approximated and the dependence of air resistance

coeÆcient from mean value of velocity along the trajectory was found.

From the point of view of mathematics the incorrect problem must

be solved because the initial conditions of system corresponding to

�xed values of solutions (the coordinates of target points) must been

estimated. In the case of linear system it is possible to examine the

in
uence of non-large increment of initial conditions to the �nal result.

In this work the probability of destruction of some �xed target and

the mean square deviation of shooting regression. On the other hand

has been estimated the possibility of destruction of group target using

the method of Monte-Carlo.

Keywords: mathematical model, Monte-Carlo method, ballis-

tics, symbolic and numerical simulation.

1 Introduction and Main System of Equations

We examine the problems of holding under control the trajectory of mine.

The movement of the solid is described by non-linear system of equations

because the air force resistance is expressed by the polynomial of the third

power. In our case the velocity of mine 
ies not exceed that of sound so

the member of the third degree of polynomial may be given up. Having in
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mind that coeÆcient of air resistance is the function of mean velocity we

can linearize the non-linear system of equations. The starting angle of the

mine and the angle of the correction must be found, the in
uence of the side

wind must be taken into account. We suppose that initial speed of a mine

is known and the meteorological conditions are taken into consideration.

The movement of mine may be described by the following system of the

equations [1]:

8><
>:

m
d2x
dt2

= �k
dx
dt
+ F1cos(�);

m
d2y

dt2
= �k

dy
dt
+ F2sin(�);

m
d2z
dt2

= �k
dz
dt
�mg;

(1)

with the following initial conditions

x(0) = 0; y(0) = 0; z(0) = 0; (2)

m
dx

dt
= v0cos(�1)cos(�2);m

dy

dt
= v0cos(�1)sin(�2);m

dz

dt
= v0sin(�1);

where t denotes time of 
ying of mine, k is the coeÆcient of aerodynamic

resistance, m is the mass of a missile, g - the acceleration due to the force

of gravity, x(t) and y(t) (xt; yt) denote the horizontal coordinates of the

moving body at time moment t (x � axis is turn to the target), z(t)(zt) -

vertical coordinate, F1 - the front force of wind, F2 - the side force of wind,

� - is the angle between the directions of a wind and x� axis, v0 - initial

velocity.

We suppose that the direction of the initial velocity vector coincides

with the direction of the trench-mortar tube. When aiming, the position

of the trench-mortar tube is determined by two angles: �1 - angle between

the initial velocity vector and xy - plane and �2 - angle of correction, that

is the angle of compensation of in
uence of side winter.

Using the MAPLE (a symbolic computation package) [2, 3, 4], we get

the analytic solution of system of equations (1) with the initial conditions

(2)

x = f[m(1� e
�

kt

m )(F1cos(�) + kv0cos(�1)cos(�2))]=k � tF1cos(�)g=k;

y = f[m(e�
kt

m � 1)(F2sin(�) + kv0sin(�1)sin(�2))]=k + tF2sin(�)g=k;

z = f[m(1 � e
�

kt

m )(mg + kv0sin(�1))]=k � tmgg=k:

(3)
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It is rather diÆcult to choose the aerodynamic resistance coeÆcient k,

which may be established by experiment [5]. It depends on the speed of

mine and on meteorological conditions: pressure of atmosphere, air tem-

perature and air humidity in every point of trajectory. These parameters

change during the movement because the mine achieves greatest attitude.

We propose to choose it by coordinating the calculus and the results of the

experience, which that'is generalized in the following tables [6]. We choose

the coeÆcient of air resistance k correspondent to di�erent distances from

the target in accordance with the data of tables [6] and calculus and we

construct the approximation polynomial. Having performed this calculus

we have got the dependence of air resistance coeÆcient from mean value of

speed during the 
ight. The results of the calculus are presented in �g.1.

( correspondent dependence of mean velocity of mine moving along the

trajectory)
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Fig.1 Dependence of the coeÆcient of resistance k from the mean value of mine's

velocity

In the table 1, the distance to the target, the initial speed of mine and

corresponding mean speed of mine during the trajectories are presented.

Comparing the data in �g.1. and table 1 we state that dependence of

resistance coeÆcient from the mean value of speed remains linear whole

initial velocity of mine does not exceed one's of sound. Probably the linear

dependence is possible where the force of resistance is determined by air

friction (viscosity), but not by the di�erence of pressures. Because the

mean value of speed is linearly connected with the distance to the target,

provide in �g. 2 the corresponding data.
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Table 1.

Distance

to the target (m) Initial speed (m=s) Mine speed value (m=s)

1000 124 74

2000 163 103

3000 197 127

4000 228 147

4900 256 164

5800 280 179

5800 352 220

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

10002000 3000 4000 5000 6000 7000 8000
L_m

Fig. 2 Dependence of the coeÆcient of resistance k from distance to the target

The dependence of resistance coeÆcient from the distance to target,

which is more convenient for practical using. If k is known, it is possible to

calculate the trajectory of mine's 
ying. Inserting the numerical system (1)

coeÆcients values and parameters of initials conditions in the expression of

solutions (3), we transform this solutions in the functions of angles �1; �2
and of time tn. It can be solved using the numerical methods the system

of nonlinear equations:

8<
:

x(�1; �2; t) = L;

y(�1; �2; t) = 0;

z(�1; �2; t) = 0;

(4)
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where L - the distance to the target.

Having solved the system (4), using the method of simple iteration, can

be found the angle of aiming �1, the angle of correction �2 and the time of


ying t0 (40
0
� �1 � 850;�80 � �2 � 80; 10 � tn � 80sec). The example

of such calculus is presented in the �g.3.
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Fig.3 The trajectories of mine 
ying

In this case distance to the target is 5558m, the angle of throwing 680220,

the altitude of trajectory (the maximal altitude of the trajectory ) 2333m,

the length of 
ying tn � 44s. In addition, using the analytical solution we

can �nd duration all necessary parameters for practical application: the

instantaneous speed, the altitude of trajectory, the angle of a fall and etc.

application without diÆculty.

From the point of view of mathematics this problem is incorrect, because

we must choose the initial conditions (the angle of starting) when the

solution is known. It is possible to examine the di�erent interesting cases.

For example, in the case when the target is moving in the mountainous

country, the trench mortar and target may be in di�erent altitudes with

respect to sea-level. Inserting in the right side of the system (4) the

corresponding non-zero parameters, we get the following solutions

8<
:

x(�1; �2; t) = L� v1cos(�)t;

y(�1; �2; t) = �v1sin(�)t;

z(�1; �2; t) = �h;

(4a)

where L - the distance to the target, v1 - the speed of the target(par example

the speed of the tank is v1 = 10m=s ), � - the angle between the vector
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of speed of target (tank) and the principal direction of �ring, �h - the

di�erence between sea levels of target and trench mortar (if the trench

mortar is below the target, we insert the negative number). When the

altitude of target is chosen, the speed of moving and direction of moving,

one get three-dimensional solutions (because the third coordinate y is not

equal to zero). The corresponding mine moving trajectory is represented in

�g 4. The parameters in this case is: distance to the target L = 3525m, it's

speed v1 = 10m=s, the angle between the vector of speed and the direction

of shooting � = 450, the di�erence of altitudes is equal �h = 500m.
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Fig.4 Firing in to the moving target

We take into account the more important possibility. We may insert

the time t+ t0 in the system (4a)(where t0 is the time necessary for prepare

the shooting). Having solved the system (4a) we shall know the time t0

that is the moment of time after which we must shoot hitting the moving

target.

We can get the random errors of interesting variables by using the

generating program. For example, we can indicate the initial speed of mine

v0, the coeÆcient of resistance k and the in
uence of wind in the following

manner

v0 + random[normal]�v0; ; k + random[normal]�k;

F1 + random[normal]�F1; F2 + random[normal]�F2;
(5)
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here random [normal] - MAPLE command generating standard normal

distribution N(0; 1) and �v0;�k;�F1;�F2 - the maximal random errors

of indicated variables discused in speci�c situation.

2 The Establishment of the Trajectory of Flying

Actually it is impossible to avoid the most random errors. For example, the

gusts of wind, may occur the changeable air humidity, air temperature and

density are possible. Some errors may is appended due to the perfection

of technology of mines and arms production, for example the variation of

initial speed. By generating the random initial conditions (5) and solving

system (4) and (4a), we can �nd the angles �1and�2. For these angles

�1and�2 we �nd the scatter of points of the fall of mines caused by random

errors. In this way we get the dispersion Ellipse of points hitting the target,

corresponding to the chosen dispersion of our parameters. We present the

example of such calculus in �g 5.
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Probabil_coef_0,997
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Fig.5 The ellipse of dispersion of points hitting

The coordinates of the hitting points are calculated with 0; 5% maximal

error of initial velocity and 1% maximal error of coeÆcient of air resistance.
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The distance to the target Lx = 7000m. The ellipse of dispersion of the

hitting points with the con�dence level equals to 0,85 and 0,997. The

standard quadratic variance �x = 63; 1; �y = 0; 61. If the distance to the

target increase, the initial speed and the length of trajectory increases, too.

The results of those calculations are generalized in table 2:

Table 2.

Lx(m) �x(m)

1000 9,9

2000 19,4

3000 28,7

4000 37,7

5000 46,1

6000 54

7000 63

8000 67,5

Approximating the points of table 2 by quadratic polynomial (using

method of least squares) we get such expression of the function:

f� = �0; 9227910�7(Lx)
2 + 0; 009568Lx + 0; 60359(6)

These results are represented in �g. 6.
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Fig.6 The dependence of standard quadratic variation �x(m) of distance to the

target Lx(m)

In this picture the points correspond to the results of table 2 and the

line - the graph of function f�.
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Repeatedly generating the random variables using the same program

one can get the same numbers. It is possible to repeat the numerical experi-

ence and to the examine the in
uence of same parameters by changing their

values. The numerical experience can help to estimate the possibilities of

certain �re - arm and to estimate properly the meteorological factors to the

quality of shooting. Let us examine the in
uence of initial conditions to the

�nal results, so we analyze the change of shooting result depending on initial

conditions. We shall discus random errors tending to a�ect the moving of

mines and shall estimate its maximal values. First of all the "wearing of gun

tube" is of grand importance to the results of shooting and it determines

the random error of initial speed �v0. This variable is measured before

shooting. The increment of mine mass from standard (it is indicated in the

passport) and the temperature of charge also in
uences or di�er from the

initial speed. The oscillation of air resistance, atmosphere pressure and air

humidity in function of di�erent attitudes of mines determine the random

error of coeÆcient of resistance k. The rush (of a wind) determines the

random errors of values F1; F2. We can insert the maximal random errors

corresponding to speci�c conditions in the system of equations (1) and in

the initial conditions (2) in every case. In the case of changing the mine

mass, the resistance coeÆcient of , the wind force, the initial speed, that

in
uence the coeÆcients of equations system, one must change the angle

of laying �1, the correction of direction of �2 and the time of 
ight tn.

For example, we get the di�erent mean square variance for di�erent aims

shooting at the target. It's evident that necessity of careful coordination

of results presented by the program with shooting results in the polygon,

and the calculations may minimize the costs of similar experience. The

calculations need insigni�cant machine time expenditure. For example, in

the case of processors cycling density of 400MHz the modeling calculus of

1000 shooting with random initial conditions takes about 15 minutes.

3 The Choose of Optimal Numbers of Mines

Let us analyze two problems. The �rst - how many mines must be shooted

to the armed target of size 8� 4m2 (for example the tank) and situated at

some distance for hitting with the con�dence probability 0,9. The second -

how many volleys must be shooted to a group target 200�300m situated at

some distance for hitting more 95% of the target by the shell and splitters.

In the �rst case using the methodology described above we calculate the

random coordinates of the points scatter of the fall in the cases of 0; 5% of
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maximal error of initial speed and of 1% of maximal error of air resistance

coeÆcient. For example, one shoot (imitation by numerical experience)

sixteen times to the target, situated at the 4000m distance. One �nds the

number of hits (that is the number of mines fall suÆciently close to the

target). One shoots 50 times (N = 50) , each time contains sixteen series

and one gets the following hits result:

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 5]

The mean value of hits nvid and mean square variance �n are corre-

spondingly equal:

nvid = 1; 24; �n = 0; 21

that is the armored target 8� 4m2 will be hit.

By increasing the number of repeated series N we get the necessary

accuracy nvid and �n that is we �nd such N of repetitions of experience,

that some �xed number of digits of nvid and �n would not be changed.

`We present the results of numerical experience with the probability of

con�dence P = 0,9 for di�erent distances to the target Lx and the numbers

of shooting nx, in the table 3.

Table 3.

Lx(m) nx nvid �n

1000 4 1,48 0,18

2000 9 1,26 0,2

3000 12 1,12 0,19

4000 16 1,24 0,21

5000 18 1,28 0,17

6000 22 1,5 0,21

7000 25 1,16 0,23

8000 29 1,26 0,24
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Fig.7 The necessary number of mines for hurt the target

The relation between Lx and nx may be approximated by the polyno-

mial. In this case it will be possible for any distance to �nd the necessary

number of mines for hitting the target with the probability of con�dence

0,9. This relation is presented in the �g. 7. In this picture one the number

of shooting is indicated that the target would be hit with the probability of

con�dence P = 0; 9. The coordinates of points are the results of numerical

experiments .

We shall use the method Monte-Carlo to solve the second problem and

we shall estimate the probability of group hit target, so we must �nd the

necessary number of mines that the target would be hit with the chosen

con�dence (certainty) Let us assume that the battery of trench-mortars

receiveds an order-mission to annihilate the group target of 300 m in width

and 200 m in depth. If one shoots utilizing the sight three and one angular

sight, possible schemes of targets are represented in �g.8.
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Fig.8 The possible schemes of targets
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Fig.9 The fragment of group target.

We form the random variables with the mean values coinciding with

the coordinates of points indicated in �g. 8 (18 points) and mean square

variances �i (for x - axis) and �j (for y - axis) (1 � i � 6; 1 � j � 3).

They may be di�erent for distinct mortars. The variables �i and �j may

be found by formula (6).

xi = xi + �i � random[normal]yj = yj + �j � random[normal]:(7)

Having generated 18 random hits corresponding to the scheme rep-

resented by �g.8 we can calculate the results of one realization. For that
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purpose the target is divided in the zones according to the type of target. If

the soldiers under �re are without cover they may be hurt by shell-splinters

if they are not further than a meter from explosion place.

In the �g. 9 it is represented the fragment of group target. The cross

note the hit point. The points in the hit zone are hurt.

The quotient of squares fallen in the zone of hit ni with all squares n

correspond to the hurt part of group target (the ratio between hurt area Si
and whole square S ):

Ui =
nis

ns
=

Si

S
(8)

We repeat the numerical experience N times and every time we evaluate

the hurt part of target (8). We continue the experience until the mean value

of target hurt part U would be evaluated with precision desirable (its value

no more change within the limits of given precision when N increase):

MU =
1

N

NX
i=1

Ui(9)

Further we determine the variance of this value and �nd the probability

to injure some part U0 of group target

P (U > U0)

and the mean value of mines Nn which missed the target.

The results of the numerical experience are presented in the table 4.

Table 4.

Lx(m) S1(1) N% (1) Nn(1) S5(2) N% (2) Nn(2) S10(3) N% (3) Nn(3)

1000 1 73 0 5 87 0 10 90 0

2000 1 68 0 5 94 0 10 98 0

3000 1 64 0 5 97 1 10 99 1

4000 1 63 1 5 97 2 10 99,6 4

5000 1 60 1 5 97 4 10 99,7 8

6000 1 56 2 5 97 7 10 99,8 13

7000 1 56 2 5 97 9 10 99,9 17

8000 1 53 3 5 96 13 10 99,8 24

Hitting the target the scheme of �g.8. is the following. The mean

quadratic variance �i; �j may be calculated by the formula (6) (see also

formula (7)). After each volleys of eighteen hits one determines the degree

of target destruction with given accuracy and calculate the number of mines

that have missed the target. If the calculations are repeated of a given
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number of times, one �nds mean value and evaluates the percentage N%

injured part of target and average number of missing of the target using

the formula (9).

4 Final Remarks

It follows from the data a in table 4 that if the target is dislocated further

than 5000m, one destroys fewer than 60% of group target. One must choose

necessary number of volleys to achieve the desirable level of group target

destruction, we present in table 4 the results when one destroys the target

with �ve or ten volleys. Using the methodology described above we �nd

the percentage N% of injured part of a target and average number Nm of

missed hits. With these data one can choose the desirable level of target

destruction. It is interesting to note that in the case of neigh boring target,

no further than 1000m or 2000m, the dispersion of mines is not large and

hurt part of target is less than in the case of a large distance to the target.

For the sake of ammunition economy, it would be necessary to increase the

numbers of target points, indicated in the �g. 8, on the second hand a new

formed, scheme and a distance decreases as far as 25m. This calculation

may be ful�lled after evaluating the individual characteristics of �re-arms

and it is necessary to choose the target-points in a such manner that the

eÆciency of its application would be maximal.
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