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Abstract

In the paper the denseness of the set of all convergent series related
to a class of multiplicative functions is obtaned.
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Let s = ¢ + it is a complex variable, and let, for o > 1,

— g(m)
Z(s)= > e
m=1
Here g(m) is a multiplicative function (g(m,n) = g(m)g(n) for (m,n) = 1),
lg(m)| < 1. It is known [1] that for some class of functions ¢g(m) the function
Z(s) is universal, i.e. any analytic function can be approximated uniformly
on compact sets by translations of Z(s). To prove this, usually we need a
denseness of a certain set of convergent series. The aim of this note is to
obtain the denseness of a set of convergent series related to a new class of
multiplicative functions g(m).
We say that a multiplicative function g(m) belongs to the class M, ¢(C')
if the following conditions are satisfied:
1% |g(m)| < 1 for all naturals m;
20, There exists a constant @ such that, for z — oo,

S 19 = (1 + o(1));

p<w
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3°. There exist constants 5 and C,0 < C' < 1, 1/2 < 5 < 1, such that

o]
a=1

)| c
prr =

for all primes p.
Note that in [1] a class of multiplicative functions with a condition

igf lg(p)| >0

was considered. In the class M, ¢ the latter condition is replaced by the
asymptotical condition 2°.

By C and P denote the complex plane and the set of all prime numbers,
respectevely. Let, for N > 0, Dy ={s € C:n <o < 1,|t| < N}, and let
H(Dy) denote the space of analytic on Dy functions equipped with the
topology of uniform converegence on compacta. Moreover, let + stand for
the unit circle on the complex plane, and, for a, € v, s € Dy,

fo(s) = fy(s,a) = log (1 0y %)
a=1

where, for |z] < 1,

2 28

log(1 I A
og(l+z)== 2—|—3

In virtue of condition 3% of the class M, ¢(C') we have that the definition
of f,(s) is correct.

Theorem. Suppose that a multiplicative function g(m) € i, 4(C).
Then the set of all convergent series

pr(s,ap)

is dense in H(Dp).
For the proof of the theorem we will apply some properties of functions
of exponential type. Let 0 < 6y < wm. We recall, that a function f(s)
analytic in the closed angular region | arg s| < 6 is said to be of exponential
type if
log | f(re)]

limsup ———— < >
r—00 r
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uniformly in 6, |8] < 6.

Denote by B(C) the class of Borel sets of the complex plane. Let u be
a complex measure on (C,B(C)) with compact support contained in Dy,
and

po) = [ dute), zec
C
Lemma 1. Suppose that

Zlg )lp(log p)| < oo.

Then
/srd,u(s) =0, r=0,1,2,---
C

Proof of the lemma leans on a version of the Bernstein theorem, see
Theorem 6.4.12 [1].

Lemma 2. Let f(s) be an entire function of exponentional type, and
let {\,,} be a sequence of complex numbers such that

1°. lim sup log”yﬂ < o

Y—>00
2001\ — M| > 8lm — nl;

30, lim 2=z = g;

m—00
49, aff < 7.
Then
lim sup 22Ol _ o los /]
Mm—00 |/\m| r—00 r

Proof of Lemma 1. We take f(s) = p(s) in Lemma 2. By the definition
of p(s) we have that

Ip(iy)] < €N / du(s)

for y > 0, therefore
< N,

lim sup
Y—>00

log |p(£iy)
y
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and the condition 1° of Lemma 2 is valid with & = V. Let a fixed positive
number [ satisfy

T
5 < ﬁ7
and

A:{mEN:EIrE((m—i)ﬁ,(m—l—%)ﬁ] with |p(r)] <e "}

We fix a number p, 0 < p < 8, and denote

Pu={peP:lg(p)>p}.
Then the condition of the lemma yields
> |pllogp)| < 0. (1)
pEP,

However,

Y lplogp)l 2 X 320, Ip(logp)l > 2 370, 5,

pEP, mgA mgA

where Z;ﬂ denotes the sum over all primes p € P, satisfying the inequalities
(m— 1B <logp < (m+ 1)B. Therefore, in view of (1)

Yt )
mgA peEP, p
a<p<b

where a = exp{ (m - %)5}, b = exp{ (m + %)5}

Denote
mTu(z) = Zl, m(z) = Zl.

p<z p<1
pEP,

Then the condition 1° of the class M 4(C') gives, for a < u < b,

Yol < D 14u” ) 1=

a<p<Lu PEPL PEPpu
a<p<u a<p<Lu

(mu(u) = mu@)) + p* (7 (w) = 7 (w) = (7 (a) = 7u(a))) =
(1= 1) (mu(u) = mu(a)) + p? (7 (u) — 7 (a)).
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Hence, using condition 2° of the class M, ¢(C), we find
O(m(u) — (@) (1 +0(1)) < (1= p*)(mu(u) — mu(a)) + p* (7 (u) — 7 (a)).

Therefore

() = (@) (14 o(1)

for w > a(1 4 §), m — oo. This and the partial summation yield

il S ) (2 )=

)

mu(u) = wu(a) >

€EP, eP pEP
a<p<b a<p<b a<plu
1 / d
= ) = ma) + [ (male) = ma(a) 35 2
1 / d
> S -ma)+ [ (maw-mla) 2 g

> f:l’; (%(T(b)—ﬂ(a(l—l-&))—l- (w(u)—ﬂ(a(ua)))%)(1+0(1)) >
a(149)
6 — p? 1
= 3 — (1 +0(1))
Lo (a(l-l-%;péb )

as m — o0o.
It is well known that, for z > 1,

1
Z — =loglogz + ¢; + Bexp{—cgy/logz}
P

p<z

whith some constants ¢; and ¢ > 0. Here B denotes a quantity bounded
by a constant. Thus, for m — oo, in view of the definition of ¢ and b

1 (1 log(l+&)\1 B
Z g_(Q_ J&; )m—l_m?'

a(148)<p<d
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This together with (3) gives

as m — 0o. Since 0 < p < 6 and, of course, § < 1, and 14§ < /2, we

have that b_ 2 | 5
— 1
p? (1 log(l+9) 5o,
1—p?\2 B
Consequently, by (2) and (3)
1

> — <. (4)

mgA
Let

A=Aay :m=1,2,---}, ay<ay<---.
Then from (4) we deduce that

. (1255
lim — =1.
m—00 M

By the definition of the set A there exists a sequence {\,,} such that

lp(Am)| < exp{=An}.

and

Then we have

Am
lim — = p5,
m—o0 M
and
lim sup [p(Am)l < -1
m—r00 m
Now, applying Lemma 2, we obtain
lim sup lp(r) < 1. (5)

r—00 r
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If p(2) # 0, then from this and Theorem 6.4.14 of [1] (Let p be a
complex measure on (C, B(C)) with compact support contained in the half-
plane ¢ > gy,

£6) = [ e dutz)

C
and f(s) 0. Then
1
lim sup log |7(r)] > 0g.)
r—00 r
we find that |
lim sup m-1 EAWI /()] > —1,
r—00 r

and this contradicts (5). Therefore p(z) =0, and hence the lemma follows
by differentiation.
We will deduce the assertion of the theorem from the following lemma.

Lemma 3.Let {f,,} be a sequence in H(Dy) which satisfies:
1°. If w is a complex measure on (C,B(C)) with compact support contained

i Dy such that
S| [ fudute)
m=1 C

/ sdu(s) = 0

C

< oo,

then

foranyr=20,1,2,---;
20, The series

S
m=1
converges in H(Dn);

39, For any compact K C Dy

o0

Z sup | fm (8)]* < .

me1 seK

Then the set of all convergent series

o0

ZamerM Gm €7,

m=1
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is dense in H(Dp).
Proof. The lemma is a special case of Theorem 6.3.10 from [1].

Proof of Theorem. We have that

Ta _ 9Py ro(s;a
Jo(siap) = s +7p(s; ap) (6)

with

rp(s; ap) = W’

uniformly in a,. Therefore the series
Y rplsiay) (7)
p

converges uniformly on compact subsets of Dy for all a, € v. Let pg > 0

and
9(p)

A P B lf p > p07
Lr=ls)=9 7 |
0 it p < po.
Then there exists a sequence {a, : G, = £1} such that the series
2 ayfy
P

converges uniformly on compact subsets of Dy. Now we will prove that
the set of all convergent series

Zapfpv ap E 77 (8)
P

is dense in H(Dy). For this aim we apply Lemma 3. Clearly, it suffices to
show that the series of all convergent series

Zapgpv ap €7, (9)

p

with g, = @, f, is dense in H(Dy).
It was mentioned above that the series

29
p
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converges on H(Dp). Moreover, for any compact subset K C Dy

Z sup l9,(8)]?* < <.

p seK
Therefore it remains to verify the condition 1° of Lemma 3.

Let 1 be a complex measure on (C, B(C)) with compact support con-
tained in Dy such that

Z\ [ onoints| < o

Hence we have that
S 1ot [ 7o an(s)] < o,
p C

or, by notation of Lemma 1,

Zlg )||p(log p)| < oo.

In consequence, it follows from Lemma 1 that the condition 1 of Lemma
3 is also satisfied. Thus, Lemma 3 shows the denseness of the set of all
convergent series (9), and therefore that of all convergent series (8). This
together with uniform convergence of the series (7) in view of (6) proves
the lemma. Really, let 2¢(s) € H(Dy), K be a compact subset of Dy, and
g > 0. We choose pg for which

€
Z sup sup |rp(s, ap)| < 3 (10)

p>10 ap€y s€K

It follows from the denseness of the set of the series (8) that there exists a
sequence {a, : @, € v} such that

s €
sup |zo(s Z fo(ss1)— Z ap fp(s)| < 3 (11)
s€K p<po P>po
Now let

P 1 if p§p07
P la, it p > .
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Thus in view of (10) and (11) we find

sup
seK

<

vols) = 3 fylsiay)

sup wo(s) = 3 fy(si1) = 3 apy(s) |+
seK p<po P>po
p| X 6~ X s <
s€k P>po P>Po
c € €
=~ 4+ sup rp(siap)| < o+ 5 =e.
2 o pgp:o p( p) 2 2
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