Nonlinear Analysis: Modelling and Control, 2001, v. 6, No 1, 105-131

Dissolved Oxygen Balance Model for Neris

Gaudenta Sakalauskiené
Institute of Mathematics and Informatics
Akademijos 4, 2600 Vilnius, Lithuania

Received: 28.03.2001
Accepted: 12.04.2001

Abstract
We consider a dissolved oxygen balance model for Neris, which includes
biochemical oxygen demand, nitrification, sedimentation, algae
respiration and photosynthesis. The load from point sources, tributaries
and distributed sources are taken into account. Long-term systematic
components such as drift and seasonal components are analysed by
applying time series analysis.

The model is adapted according to the State Environmental Monitoring,
and source data of controlled pollution covering the period 1978-1998.

Keywords: water pollution, dissolved oxygen, modelling, time series
analysis.

1 Introduction

Dissolved oxygen is one of the key parameters when analysing the
water quality. Dissolved oxygen depends on the biochemical oxygen demand
(deoxygenation), nitrification, reaeration, sedimentation, and photosynthesis
and on the algae respiration (Fig. 1). These constituents have six effects on
oxygen. First, the biochemical oxygen demand (BDSs) is an equivalent
indicator rather than a true physical or chemical substance. It measures the total
concentration of dissolved oxygen that would eventually be demanded as
wastewater degrades in the river. Second, the conversion of ammonia to nitrate
in the nitrification process uses oxygen. Third, the nitrogen can induce plant
growth. Fourth, the resulting photosynthesis and respiration of plants can add
and delete oxygen from the river. Fifth, the demand of oxygen by sediment and
benthic organisms can, in some instances, be a significant fraction of the total
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oxygen demand. This is particularly true in small rivers. The sixth effect is the
reaeration process. If oxygen is removed from the water column and the
concentration falls below the saturation level, there is a tendency to reduce this
deficit by the transfer of the gas from the atmosphere through the surface into
the stream. If oxygen is added and the water column concentration is greater
than the saturation level, the supersaturation is reduced by the transfer of
oxygen from the river to the air.
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Fig.1. Dissolved oxygen balance.

The mathematical modelling of the river water quality has been and is
being dealt with by many authors. In 1925, Streeper and Phelps [1] created a
model describing changes in oxygen concentration and its dependence on the
organic substances in water (demand of biochemical oxygen). In 1970-1977 the
nitrogen transformation impact on oxygen was assessed. The nitrogen
transformation rates in water (transformation of ammonia nitrogen into nitrites
and nitrates (NH; - NO, — NOj3) were first established by O’Connor and

other authors [2, 3]. This transformation was analysed in different rivers [4 and
5]. Stratton, Bridle and others established the nitrification temperature ratio [4].
O’Connor and Di Toro have established the dependence of oxygen
concentration in water on photosynthesis and algae [2, 3]. Di Toro [2, 3]
established a relationship among the river depth, light energy and amount of
algae. The impact of algae on nitrogen transformation was established and
described by Thomann, O’Connor and other authors. Thomann and Mueller [6]
established the highest algae growth rate within their different populations.
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Auer, Canale and Vogel studied the dependence of algae growth on temperature
[7, 8].

Daubaras, who studied the demand of biochemical oxygen (BDS5) self-
purification of the Neris and the Vilnius city sewage disposal effects [9],
applied the Streeper-Phelps model. The study of processes related to change in
the amounts of organic substances (BDSs), to nitrogen transformations in the
Nemunas was made by Vinceviiené and StaniSkis [10]. The study of
biochemical oxygen demand, nitrification, nitrogen transformations and the
load from point sources and tributaries in the Neris was analysed by
Sakalauskiené [11, 12].

The models of dissolved oxygen described in the literature contain
many empirical parameters. Applying a model to a concrete river, these
parameters have to be adjusted according to the specific river conditions and the
data available. This adjustment for Lithuanian rivers is difficult since the state
monitoring measurements are rare (once per month) and asynchronous.
Moreover, some important parameters are not measured at all.

In this paper we develop the models described in [11, 12] by modelling
the algae impact and more precise modelling of distributed sources. Moreover,
applying tie series analysis, we estimate the drift, seasonal components of the
main processes determining the water quality.

The paper contains four sections. Section 2 presents the mass balance
principle and governing equations that form the basis for most water quality
models used to simulate the key processes of interest. In the section 3 the model
adaptation and some applications to BDSs, NH,", NO,", NO; and O, is given.
Section 4 is devoted to the time series analysis and estimating of drift and
seasonal components of the main processes determining the water quality.

The following notation is used throughout the paper:

Co(t) dissolved oxygen concentration (mgQO,/1);

Cos(t) saturation concentration of dissolved oxygen (mgO,/1);
cp(t) biochemical oxygen demand (mgO,/1);

cu(t) ammonia concentration (mgN/1);

ci(t) nitrite-nitrogen concentration (mgN/1);

Ce(t) nitrate-nitrogen concentration (mgN/1);

A(t) algae biomass concentration (mgA/l);

ko reacration rate coefficient (per day = d);

ky demand of biochemical oxygen decomposition rate coefficient (d™);
ka ammonia oxidation rate coefficient (d);

k; nitrite oxidation rate coefficient (d™);

u algae growth rate coefficient (d™);

p algae respiration rate coefficient (d);

K, light extinction coefficient (m™);
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SOD temperature-adjusted rate for sediment oxygen demand (g/m>-d);

a; oxygen consumed in ammonia oxidation to nitrite (mgO/mgN);

a, oxygen consumed in oxidation of nitrite to nitrate (mgO/mgN);

B oxygen production in photosynthesis per unit of algae biomass
(mgO/mgA);

B: oxygen uptake in respiration per unit of algae biomass (mgO/mgA);

F@) fraction of algae nitrogen uptake from ammonia pool;

algae preference factor for ammonia;
temperature (°C);

average period (d);

photoperiod (d);

total daily solar radiation (cal cm™ d™);
saturating light intensity (cal cm™ d™);

half saturation constant for nitrogen (mgN/1);
half saturation constant for phosphorus (mgP/1);
basin area of the reach being loaded (m?);

flow velocity (m/s);

river flow (m?/s);

distributed flow (m3/s);

distributed source concentration (mg/1);
average river depth (m);

travel time (s);

distance downstream of effluent or monitoring section (m).

T T ARRSSTIE N

2 Dissolved Oxygen Balance Model

Dissolved oxygen depends on the biochemical oxygen demand,
nitrification process, reaeration, sedimentation and photosynthesis as well as on
the algae respiration (see fig. 1).

The full dissolved oxygen balance follows the equation (a first order

reaction)

de, (1 SOD
C;t( ) = k() [Cos (t) —C, (t)] _kbe (t) _—H _kaalca (t) _kia2ci (t) + (ﬁlu - B2 p)A(t) (2])

with the initial condition

co (tO) = coO s

where ¢,(t) and c,(?) is the dissolved oxygen concentration and its saturation
concentration, c,(?) is the BDSs concentration, c,(?) is the NH, concentration,
ci(t) is the NO, concentration, A(?) is the algae biomass concentration, k, is the
reaeration rate, k, is the BDSs decomposition rate coefficient, &, is the NH,"
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oxidation rate coefficient, k; is the NO, oxidation rate coefficient, U is the algae
growth rate coefficient, p is the algae respiration rate coefficient, SOD is the
temperature-adjusted rate for SOD, H is the average river depth, a; is the
oxygen consumed in ammonia oxidation to nitrite per unit, O, is the oxygen
consumed in oxidation of nitrite to nitrate per unit, [3; is the oxygen production
in photosynthesis per unit of algal biomass and [3, is the oxygen uptake in
respiration per unit of algal biomass.

2.1 Reaeration

Oxygen saturation concentration decreases with the increase in
temperature and salts at normal pressure (APHA 1992):

Cos (1) = exp(§(T,) = LBICIOY(T,) .
where
’ 7 10 .
B(T,) =-13034+ 2210 604 210 + 1,z4x310 8,62 ><410 ;
T, T, T T
3
W(T,)=1,77%x107% - 1,07x10 | 2,14x10 |
T, Ta2

T,=T+273,15 is the temperature (K) and Cl(?) is the chloride concentration
(mg/1).

If the water is undersaturated (¢, <c,, ), then the atmospheric oxygen
transfers into the water, partially restoring the equilibrium state of saturation. If
the water is oversaturated (¢, >c,, ), then this transfer will be inverse.

Many empirical formulas have been suggested for estimating reaeration
rate coefficients. Among these, two are commonly used: the O’Connor-Dobbins
formula:

k, =k,(H,T,v)=393v""H ™ (1,047)" (2.3)
and Churchill’s formula
k, =k,(H,T,v)=5026vH """ (1,047)" % . (2.4)

Here v is the average river velocity, H is the average river depth and T
is the temperature.

The O’Connor-Dobbins and Churchill formulas were developed for
different types of streams. Equation (2.3) is applied for ranges of depth
H=0,3+9,14m and velocity v=0,15+0,49 m/s and equation (2.4) for ranges
H=061+-335mand v=0,55+1,52 m/s.
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2.2 Biochemical Oxygen Demand

The steady BDS; regime in a river is usually described as the first order
reaction, 1.e.
de, ()
zt =—kyc, (1) (2.5)
with the initial condition
cp(tg) =cpo s

where ¢, (¢) is the BDSs and £, is the decomposition rate coefficient.

Literature data have been compiled to correlate &, with the stream depth
in lieu of any other parameters. The rationale behind this correlation is that the
greater the wetted perimeter, the greater the contact with the biological
community in the streambed, the most important factor in natural oxidation
processes. The tendency for this relation to hold is greater rocky streambeds
than for silt beds. However, the general trend appears reasonable up to depths of
about 1,5 to 3 m.

To calculate the decomposition rate coefficient, we make use of the
formula recommended by Chapros [1]:

. H - _
kyy =k (H.T) = 0.3[min(_—.D)] 0434 (1,047)" 2 (2.6)

il

In other words, for larger and deeper streams (greater than 3 m), the
characteristics of the streambed become less of a factor and the level of
treatment would distance the following k;, values: primary — 0,4; intermediate —
0,3; secondary — 0,2 and advanced — 0,1 (d'l). That is, for increasing levels of
treatment, the residual waste contains a large proportion of refractory organisms
and will be less easily oxidised since the treatment processes are designed to
oxidise the labile components of the organic matter.

2.3 Nitrification

Nitrification follows two stages: the Nitrosomonas bacteria transform the
ammonia to nitrites, while the Nitrobacter bacteria transform nitrites to nitrates
(NH} - NO; - NOj), i.e.

NH; +1,50, - NO; +H,0+2H" and NO; +0,50, - NOj. (2.7)

The process of nitrification depends on the amount of oxygen, flow rate,
suspended solids, concentrations of nitrogen and oxygen, pH and water
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temperature (nitrification is most active, when pH 7 + 9, and the water
temperature greater than 10°C).

The nitrification process in a river is usually described as the following
first order reactions:

Ammonia nitrogen % =~k c,(t) - F(t)auUA(?),
Nitrite nitrogen dc;t(t) =k,c, ()~ k;c; (), 2.8
Nitrate nitrogen dc;t(t) =k;c; (t) = (1= F@)auA(r),

with the initial conditions
Ca (IO) =Ca0> Ci(to) =Cio and ce(IO) =Ce -

Here cu(1), ci(t) and c.(t) are NH;', NO, and NOs concentrations,
respectively, A(t) is the algae biomass concentration, O is the nitrogen fraction
of algae biomass, U is the algae growth rate coefficient,

k, =k,(T)=k,,1,085"7*° is the NH," oxidation rate coefficient,
k; =k, (T) =k,,1,058" > is the NO,  oxidation rate coefficient.
The fraction of algae nitrogen uptake from ammonia pool follow the

formula:
F(t) = AU 2.9

" P, )+ (1= B)e, (1) 9
where P, is the algae preference factor for ammonia (P,=1 if ¢,(z)=0 and P,=0 if
c.(t)=0), k,,, and k;, are specific oxidation rates at 20°C.

2.4 Photosynthesis and respiration

Through photosynthesis and respiration, phytoplankton, periphyton, and
rooted aquatic plants (macrophytes) could significantly affect the dissolved
oxygen levels in the water column. The average algae growth rate as a function
of light intensity over a given depth of water, is given by Canale and Vogel [5]:

p = H ) =180066) 20 28 (oo _ oo ] CatCe P H5 )
K, HL stc.,tKy p+Kp

e

-K,H _ Ir

where L is the average period (day), f is the photoperiod, /7 is the total daily
solar radiation, /; is the saturating light intensity, K,=I,7/H is the light
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extinction coefficient, Ky and Kp is the half-saturation constant for nitrogen and
phosphorus.
The approximate respiration rate is given by Thomann [2]

p=p(T)=p,(108)" % (2.11)
where p, varies from 0,05 to 0,25. A value of 0,15 is usually used as a first
approximation.

2.5 Point pollution sources

Applying equation (2.7), we use the standard time-distance change.
Suppose that in a river stretch [x,,x| there is neither point nor distributed

pollution sources. If at time #) a water column with an oxygen concentration c,

were at a river section x, i.e. ¢, (x,) =c¢,(fy) =¢,, , then this water column will

00
reach a river section x (downstream) at time 7 =¢, +(x—x,)/v (v is the average
river flow velocity in the stretch [xo,x] ), and its oxygen concentration will be
¢, (x)=c,(ty +(x—xy)/v=c,(t), the solution to equation (2./) with the initial
condition ¢, (t) =c¢,, .

All the tributaries with significant flow (exceeding a certain chosen
value €) are regarded as point pollution sources. Calculating the oxygen
concentration after a point source, we assume that the river and tributary flows
are mixed immediately at the location of tributary, i.e. if a point source is
located at a river section x, then the oxygen concentration after the confluence,
¢, (x+) is given by
¢, (x)0(x—) + EoQ

O(x—)+Q

where O and ¢, are the tributary flow and its oxygen concentration, while Q(x-

¢, (x+) =

(2.12)

) and c,(x-) are the river flow and its oxygen concentration before the
confluence. The same approach is applied to other concentrations.

Hence the point sources are included in the model as the new initial
conditions considering river stretches between tributaries.

If there were no effluent discharge from the wastewater treatment plant
at the end of first reach, all concentrations calculated at the end of the first reach
would have been used as boundary concentrations for the second reach.
Because of the wastewater treatment plant discharge at x, all water quality
constituent concentrations have to be calculated assuming a complete mixing of
effluent water with stream water and the new values will be used as boundary
concentrations to the second reach.
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2.6 Distributed sources

In order to model the impact of distributed sources, denote the river flow
by O(y), the flow velocity by w(y), the O, (BDSs, NH,", NO,, NO;)
distributed source concentrations by ¢,(y), ¢,(y), ¢,(»), ¢;(») and C.(»),
respectively. We assume that these functions are continuous and bounded
together with the first derivatives.

Consider the river stretch [x, x+/4], as & —0. Regarding the dispersed
pollution as a point pollution at the section x+/4 and using (2.7) and (2.12), we
have

Cox ¥ h) ={Q<X>+AhQ<X>}_1xg';°(x)e_¢(k“)Q<x)+cm<x)e¢(k0)Q<~) kklfg)ci,(,?oa P o @( x)-
SOD
—T_(ﬁlu_ﬁzp)A(X)H—e_lp(k")%( k(2)c; (r)02§ (k) _ -9, )%( Y- (2.13)
ky(x) ki, (x) = k;(x)

k,(Xac () O-pk,) —¢(k) ~ g
a 1"a a >
e " )% e o %(XHLO()C)A,Q():)[H o(h),h - 0

where A, 0(x) = O(x+h) = 0(x) ,

k,)=k ky)=k k) =k (x)—, ¢p(k,) =k (x)—.
¢(k,) (x)()¢(b) b(x)( » (k) (x)()¢() (x)()

In a similar way, using (2.5) and (2.12), we have
- ~¢(k )
¢, (x+h) ={Q(x)+AhQ(x)} x @cbme ’ Q(x)+5b(x)AhQ(x)ﬁ+0(h),h ~o0 (219

Furthermore, using (2.8) and (2.12), we get
¢, +hy={o +a, 00} 1 x

a -¢k ) a
— k _ a
xE(:a 0”000 - Femvnaan 1= 00 4, 008,000 - 0,(2.15)
a
-1
e+ ={ow) +a,001

X

g

by kW, 0-96)  —dk)E £
(e Q(x)+m% o ¢ %(x)+ci(x)AhQ(x)E+o(h),h -0

¢, v+ ) =000 +8, 000} ' x

Q

X
oo

o (DO(X) +k; (x)c; (X)Q(X)—-(l F())apA(x)Q(x) (

~ 0
) ) +c, (x)AhQ(x)E+ o(h),h - 0.

113



Using Taylor’ expansion and passing to the limit as # — 0, we obtain the
following first-order differential equations:

09+ ¢, ) "V“(S) +[cg(x)—a(x)]% Bty (00 ks 502 k(3 e (= P —ﬂzp)A(x)QV}—x) =0
ky (x) [ ~ 0'(x)

() +te, () —=+|c,(x)—-c,. (x =0,

(e, (97 ey ()-8, (0]
k 0'(x)

. «(¥) ~ 1 _
c, (x)+ <, (x) ) + [ca (x)- , (%) + F(x)auA(x) @ =0,

O(x)

i () o o] Q@ _Kaeg )
TR e

Q'(x) - F(x))au :
O(x) ((1 (x)auA(x) ki( ) l(x))E '

(2.16)

c;. (x)+ c; (%)

>

c'e (x)+ [ce (x)- Ee (x)]

The flow may be related to river basins area from which all the point
sources are exclude.
Consider the river stretch [x,,x,] where there is no point source

loading. We assume that the river flow and the basin area are described by
bounded and continuously differentiable functions f(y) and g(y), i.e.

0(x) = 0(x¢) = f(A(x) — A(x¢)) , (2.17)
Ax)—A(xg) =g(x—x), xD[xO,xl].
Then
0'(x) _ /(400 = A(xg))g'(x=x0) 2.18)
O(x)  O(xg)+ f(A(x) =~ A(xo))
If we assume that f'and g are linear functions, i.e.
J»=pB, g =ny,
then

O(x)  Qxg)+ B(AX) +n(x=x))
Hence, applying a linear approximation to the river stretch [xo,xl], the
coefficients S and n are defined by
B= O(x)) = 0(x) - O(x;) = 0O(xp)
A(x)) = A(xo) Nl —xp)
and
n= A(x;) — A(xg)

X1 = Xo

(2.20)
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We assume that the distributed source and the basin area are described
by bounded and continuously differentiable function A4(y), i.e.

c(x) =¢(xg) = h(A(x) = A(x)) . (2.21)
3 Model adaptation

The mathematical model for dissolved oxygen balance (2.16) is
involved therefore we simplify it. Consider the river stretch [x,,x] we assume
the initial condition:
k,(x)=const, k;(x)=const, k;(x)=const, k,(x)=const, v(x) = const ,

¢(x) = const .

According to the State Monitoring Programme, BDSs, NH,",NO, ,NO; and O,
are measured in five sections P1-P5 of the Neris and four sections Z1-Z4 of
Zeimena (Fig. 3.1) once per month. The sewage disposal of the towns
Nemenc¢iné, Pabradé, Svenéionéliai, Jonava and the city of Vilnius is subjected
to laboratory monitoring.

We have analysed seven river stretches, namely, P1-P2, P2-P3, P3-P4, P4-P5,
and Z1-72, 72-73, Z3-Z4. Stretches P1-P2 and Z1-Z2 are the least affected by
anthropogenic activity, and for this reason they serve best for the adaptation of a
mathematical model and calculation of its coefficients. The mathematical model
adapted for the first stretch is then applied to other stretches.

Nemunas
Je 39k T4 35.5km
lonava m N 4
44.5k
“Achema” 44 km T3 A% Sventoji 44.5 km
P4} 51.5km
£
141 km P. = 3
Vilnius 148 km T2 : 3
3 S
184 km (P E ;g
Nemencinée 197 km TI E 5
Zeimena 212.6 km @ @ @ A @

226 km @ 13.7km 20km  527km 786 km

Baltarusijos Respublika

Fig.3.1. State monitoring sections (1996).
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Model adaptation is the first stage of testing and tuning a model to a set
of field data, preferably a set of field data not used in the original model
construction. The distributed source, chemical and biological kinetic
coefficients may be determined from statistical analysis.

Adapting water quality model, the analyst selectively determines some
model-input parameters that, when used in the model, yield reasonable
simulations of observed water quality data. Some of these input parameters,
such as Q, v, BDSs, NH,', NO,, NOs", O,, Cl, T and solar energy are directly
measured. Other model parameters, such as oxidation rates, reaeration rates,
nitrification rates, SOD, distributed source, distributed flow, and algae are not
directly measured. These parameters are determined by empirical formulas and
their values are obtained in the process of model adaptation. The decomposition
rate coefficient, reaeration rates coefficients, distributed flow, SOD and algae
are determined from empirical formulas. The distributed sources concentration
and oxidation rates coefficients are determined by model adaptation (i.e. in

terms of the least square deviation)
N

Z(c(t,»)—E(t,»))2 M. min 3.1)

where ¢(#;) is the measured concentration and ¢(¢;) is the value obtained from
the model, both at time ¢, .

Goodness of fit of the model and the field data are measured by the
correlation coefficient

N

Z (c(ti) _E)(E(ti) _g)

Pz (3.2)

J i -3 i ety -e)

and the determination coefficient

i (ctH-2())
R =1-— (3.3)
Z (c))’
l:N = 1 =
where ¢ = — 2 c(t;) and ¢ :W,ZC(II)
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On the basis of long-term hydrological and hydrochemical state
monitoring data for the Neris River and the Zeimena River, the dependence of
dissolved oxygen on the biochemical oxygen demand, nitrification, reaeration,
sedimentation, photosynthesis and algae respiration are studied.

Modelling the stretch P1-P2 and assessing the Zeimena River and the
town of Nemendine, we obtain that the NH," correlation coefficient 7 is 0,98
NO; -0,98; NO; —0,95; BDSs — 0,94 and O, — 0,74 (table 3.1).

When data from a winter survey are first used to calibrate a model, the
dissolved oxygen balance is not sensitive to the nitrification rate and, therefore,
decomposition rate and distributed source can be determined more accurately.
During model validation, another set of data collected in the summer months is
used. Since the nitrification process is highly sensitive to the temperature, the
modelling analysis is able to tune the nitrification rate with greater accuracy.
Then, in winter months error of estimate is smaller than in summer months.

Without assessing the BDSs distributed sources, we obtain that the
BDS;s determination coefficient is 1,14 time smaller than for simulation through
the assessment of distributed sources [11]. The NH;" determination coefficient
is 1,18 (NO, gives 1,22, NO; gives 1,07) time smaller than for simulation
through the assessment of distributed sources and algae quantity [12].

Recall that for the stretch immediately below the discharge, biological
activity is primarily heterotrophic. That is, it is dominated by organisms such as
bacteria that obtain their energy by consuming organic matter, and in the
process, deplete oxygen. Plant growth in this area is suppressed because of a
number of factors, including light extinction due to turbidity.

Further downstream, as the stream begins to recover, levels of nutrients
such as organic matter (nitrogen, phosphorus) will be high.

Because photosynthesis is light dependent, this effect can have
seasonality.

The month average oxygen production due to photosynthesis and
reduction due to respiration is formulated as follows:

Cont*D7C00 ) 1y (3.4)
BiH-B,p
where c,9(?) is the dissolved oxygen concentration, 4 is the algal biomass
concentration, U is the algae growth rate coefficient, p is the algae respiration
rate coefficient, 3 is the oxygen production in photosynthesis per unit of algal
biomass and [3; is the oxygen uptake in respiration per unit of algal biomass.
Using formula (3.4), the algal biomass concentration in May-October
month has been assessed. The largest algal biomass concentration was in spring,
and the next largest concentration in autumn (see fig. 3.2). In other months
(winter months) the algal biomass concentration was not assessed since the

Ay (1+1) = Ay (1) =
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water temperature and light energy was lower, which means that algal biomass
grows slowly or even does not grow at all.

There are two peaks in figure 3.2. In winter months algal biomass
growth is slow, since water temperature and light intensity is low, but there is a
large amount of accumulated organic matter in the water. Water temperature
and light intensity determine the fast algal biomass growth, because biogenic
matter (spring flowering) does not limit them. The fast decrease of organic
matters, determine the end of flowering and accumulation of organic matter in
the water. Then the algal biomass grows fast, i.e. the autumn flowering will
continue while the limit factor of algal biomass growth appears (lower water
temperature and light intensity).

12
10
8 A X
6 A4
4 /,,//é-\-_./\,\
2 Vil S\
O—M —_—
1 2 3 4 5 6 7 8 9 10 11 12

Fig.3.2. Mean algae concentrations in the section P2 1991-1997 m.
(¢ -section P1; m - section Z1)

The simulation of O,, without nitrification, algal respiration and
photosynthesis assessment, we obtain 1,13 times smaller correlation coefficient.
In particular, the process of nitrification as well as the algal affects dissolved
oxygen during the warmer period, i.e. without assessing nitrification and algae
we have 1,45 times smaller correlation coefficient in May - August.

The NH,", NO; and BDS;s distributed pollution source has been
calculated according to pollution mass balance formula (2.72) in the stretch P1-
P2. The largest load of the distributed NH," (NOs;~ and BDSs) source is in
March-May. The NH," distributed source is 0,74 and 0,63 kgN/ha month (NO; -
3,17 and 2,52kgN/ha month, BDSs; — 59 and 51 kgO,/ha in month.). The
smallest load is in July-August (NH; - 0,15 kgN/ha month; NO;™ - 0,47 kgN/ha
month; BDSs — 26 and 32 kgO,/ha month) (Fig. 3.3). The yearly load of the
distributed NH," source is 4,3 kgN/ha year, NO;™ - 17 kgN/ha year and BDS;s —
424 kgOy/ha year.
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kg/ha per month
100
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1%&
W

0,1

1 2 3 4 5 6 7 8 9 10 11 12
month

Fig.3.3. The load of the distributed pollution source (NH;", NO; and BDS;)
in the stretch P1-P2 in 1980-1997. (M - NH,"; ¢ - BDS;; A - NO;)

It has been noted that the distributed sources polluting the Neris depend on the
temperature (see fig.3.3). This kind of dependence can be expressed as a
regressive equation:

¢, =2,4106T +12,779; - 0,91, N — 191,

¢, =0,08387 +0,7883; - 0,92, N - 112, (3.5)
¢, =—0,2436T +7,8908; » - 0,93, N - 105.

Here 7 is the correlation coefficient (equation 3.2) and N is the number
of observation.

The equation (3.5) is reflected the general distributed sources tendency
in the stretch P1-P2.

Examining the point source impact (Vilnius City) on the Neris water
quality, we use the laboratory monitoring data: the flow of the city of Vilnius
and NO, , NH,", NO; ", BDSs concentrations.

Applying the 1986-1997 model for the stretch P2-P3, we obtain the
determination coefficient R?: BDSs — 0,37 (r=0,61) and O, — 0,38 (+=0,62).
Applying the 1991-1997 model for the stretch P2-P3, we obtain the
determination coefficient R?: NH, — 0,18 (=0,41) and NO; — 0,50 (+=0,71).
Correlation coefficient 7 in the section P3 is 1,2-2,4 time smaller than in the
section P2.

When modelling stretch P3-P4, it was noted that the sectional
measurements are asynchronous. We assume that distributed sources are
identical to those in stretch P1-P2. When simulating section P4, we obtain the
following correlation coefficient » is =1,2 time smaller than in the section P2
(see table 3.1). The nitrite concentrations are close to measurement errors.

The simulation errors in the section P4 are greatly affected by the
asynchronous nature of measurements between sections P3 and P4. In sections
P3 and P4 measurements are taken with a difference of 4 to 15 solar days,
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which accounts for the fact that the monitoring data mayn’t reflect actual
dynamics (i.e. they mayn’t reflect actual organic pollution dependence between
the sections). It is only with the change of the state monitoring system that the
parameters could be assessed with a sufficient degree of accuracy (i.e. in respect
to distance and flow rate, measurements in the section P4 should be taken after
one to three solar days compared to those in the section P3).

Applying the model for section P5 of the years 1991-1997 in pollution
load assessment for the town of Jonava and for “ACHEMA” company, we
obtain the correlation coefficient 7 in the section P5 is =1,6 time smaller than in
the section P2 (see table 3.1).

When modelling the Zeimena River, we obtain the average
determination coefficient R”in the sections Z2-Z4 is NH,; - 0,86; NO; - 0,83;
BDSs - 0,72 and O, — 0,68 (Table 3.1). The nitrite concentrations are close to
measurement e€rrors.

Table 3.1. The results of statistical assessment of the mathematical model of the
Neris and the Zeimena.

BDS; 0, NH," NO,” NO;~

Sec- r R2 r R2 r R? r R2 r R2
tion

P2 0,94 0,88 0,74 0,55 0,98 0,96 0,98 0,96 0,95 0,90
P3 0,61 038 0,64 047 0,53 0,28 0,70 0,49
P4 0,75 0,56 0,62 0,38 0,93 0,86 0,77 0,59
P5 0,52 0,27 0,56 0,31 0,68 0,46
72 0,89 0,79 0,80 0,64 0,91 0,83 0,91 0,83
Z3 0,81 0,66 0,73 0,53 0,93 0,87 0,94 0,88
74 0,85 0,72 0,93 0,86 0,94 0,88 0,38 0,77

The smaller load of the distributed NH," (NO;™ and BDSs) source is 4,5
kgN/ha year (NO; - 1,45 kgN/ha year, BDS; — 21 kgO,/ha year) in the stretch
Z1-72. The load of the distributed NH," (NO; and BDSs) source in the stretch
72-73 is 2-4 time larger than in the stretch Z1-Z2.

In comparing the distributed sources in Zeimena and Neris Rivers, it
was noticed that in the similar area of used land (40% agricultural land, 52% -
forest and 3% water (calculated using programs “ArcView” and “Corine”))
distributed source of BDSs in the stretch P1-P2 of Neris River, increased twice
the pollution in the stretch Z3-Z4 of Zeimena River caused by antrophogenical
impact. Besides, there are the same seasonal prevalence of distributed source in
Zeimena and Neris Rivers, i.e. there is increasing in spring, decreasing in
summer, in the other seasons the pollution is constant.

Using the state monitoring data for sections P2 and P3, one can estimate
the NO,, NH,4', NO; and BDS; pollution load of the Vilnius city. Using the
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equation (2.12), we obtain

_ _ el D0 ) +0)=c(xo )0(xy )
Q b

where O and ¢ are the point flow and BDSs; (NH,, NO,, NO;)

concentration, while Q(x-), c(xy-) and c(xy+) stand for the river flow, BDS;

(NH4+, NO, ", NO3") concentration before the confluence and after it.

The calculated NO, and NH," pollution loads for 1980-1997 differ
about 15%, NO;  about 26% and BDSs about 18% from the Vilnius sewage
disposal laboratory monitoring data (Fig.3.4) [11, 12].

NH," and NO, oxidation rate coefficients (k, and k;) before and after

the purification plants of the city of Vilnius were fluctuating in the range 0,04-
0,29 and 0,1-0,65, 0,84-2,86 and 0,48-1,7 d™".

(3.6)
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Fig.3.4. Estimated BDS; pollution load brought from the Vilnius city purification
plants in the years 1987-1996.
(- data from the Sewage Laboratory of Vilnius city. B - model estimates based on the
monitoring data in sections P2 and P3)

Using the state monitoring data for sections P4 and P5, may be estimate
the NO,, NH,", NO;~ and BDSs pollution load of the Jonava city and the
“ACHEMA” company.

4 Time series analysis

In order to establish the long-term tendencies of the water quality
parameters, i.e. the concentrations of BDS;, NO5, NH," and O,, we apply the
standard time series model
X, =m, +S,+Y,,t=1...,N. 4.1)

Here m, is a deterministic trend, S, is a deterministic seasonal
component with the natural period 7 of 12 months (7=12, S,=S,,, and
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ZS =0, Or), Y, is a random component, and N is the number of
j:

observations.

When analysing the time series of NH," in the Neris River, we replace
X, in (4.1) by
Z, =In(X,). 4.2)

Since N the number of observations of the time series analysed, is
comparatively small, it is reasonable to use trend models containing only a few
parameters to be identified. We apply a linear model for the trend, i.e.
m, =a+bt, (4.3)
where a and b are unknown coefficients.

The coefficients of deterministic components (m, and S,) are estimated
by the Ordinary Least-Squares method (OLS).

Denote by 7, and S, the estimated trend and seasonal components. For

the series:
Y, =X, -m, =S, (4.4)
we apply the autoregressive moving average (ARMA) model:
P q
Y, + ZC'YH =g, + Zdis,_j ,t=0,1,...N, (4.5)
= =

where ¢, is a white noise series.
The coefficients ¢; and d, are estimated using the OLS method

(statistical package STATISTICA 5.0).

The p—value is used in the package to evaluate the null hypothesis
validity.

Recall that the p—value is the probability that the -statistic (in the case,
when H, is true) is not less than the observed value of the #-statistic.

Let o denote a significance level and p denote a p—value. The
hypothesis H| is accepted if p =a, and is rejected otherwise.

For testing the null hypothesis 5=0 ( H,: b=0) agains the alternatyve
b#0 (H,:b#0) we use ¢ - statistic and standart significance level a=0,05. For
the BDS;, we obtain that the null hypothesis is accepted (p—value is 0,3+0,9).

N
The parameter a is estimated by a = % z X, .
t=1
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By N we denote the number of complete periods, so that a =1....,n . Given this
notation, a sequence X, (¢/=1..,N) can be written as X, , (i=L..,p,
a=l,..,n).

The seasonal coefficients §, of S, are calculated as follows:

ln
A.:—E Xy ~Pian) - 4.
S; na:l( i+pa mlp) (6)

In fig. 4.1, the BDSs time series seasonal coefficients §; in the Neris
and the Zeimena are plotted. Statistical analysis shows that the seasonal
coefficients s,,(P3), so(P4), s,(Z1), 515 (Z1), 5,(Z2), 57(Z2), 57(Z3), 5,(Z4),
s5(Z4), s¢(Z4), 5,(Z4), s,0(Z4), and s,,(Z4) are statistically insignificant at
the 0,05 significance level (p—values are 0,42, 0,31, 0,85, 0,69, 0,65, 0,48, 0,12,
0,12, 0,15, 0,9, 0,64, 0,6, and 0,45, respectively). The remaining seasonal
coefficients are statistically significant at the 0,05 significance level.
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Fig.4.1. The seasonal coefficients $; . (¢ in the sections P1, P2, Z1 and Z2; A in the
sections P3 and Z3; o in the sections P4, P5 and Z4, respectively)

In order to test hypothesis about ARMA coefficients significantly
analysis of ARMA coefficients, we assume that the series Y, is Gaussian.
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For the series Y, , we can define its autocorrelation function is defined
by:

Ry(s)= EY()Y(t+5), Ot . (4.7)

It’s necessary to emphasize, that p-values are calculated according to
supposition, that I?t is white Gaussian noise, wich isn’t correct, as it shows
further statistical analysis.

Statistical analysis of series ¥, shows that R; has a positive peak at lag
1,ie. R;(1) is 0,2 in section P1, 0,19 in section P2, 0,27 in section P3, 0,45 in
section P4, and 0,26 in section PS5 and vall them are non zero with the
significance level 0=0,05 (N=96). For the Zeimena, the R;(1) in all sections
assumes small value in a ranging from 0,08 to 0,14 and can be assumed to be
zero (p=0,3). Thus, for the series I?t the model is that of AR(/) in the Neris
River and a pure white noise in the Zeimena River.

Thus, for the series Y, , the chosen model is AR(/). For this model the
Mean Square Error (MSE) is 3,73 in the section P1, 2,93 in the section P2, 6,06
in the section P3, 4,35 in the section P4 and 2,87 in the section P5.

Finally, the statistical analysis of the residual series &, shows that
R, (t), t >0, can be assumed to be zero ( p =0,3+0,92). Hence, the series ¢, is

actually a pure white noise.
Hence, the estimated model for the BDS; can be written as:

Pl: X, =331+5,(P)+7,, Y, +02Y,, =¢,, (4.8)
P2: X, =3,13+5,(P2)+7,, Y, +019Y,_, =4,,

P3: X, =6,42+5,(P3)+Y,, Y, +027Y,, =&,,

P4: X, =526+5,(P4)+7,, Y, +045Y,_, =¢,,

P5: X, = 4,14+3§,(P5)+7,, Y, +026Y,_ =¢,,

Z1: X, =159+3§,(Z1)+Y,, Y, =€,

72: X, =1,68+5,(Z2)+Y,, /. =€,,

73: X, =1,6+5,(Z3)+7,, /. =¢,,

Z4: X, =18+5,(Z4)+Y,, /=€,

The seasonal coefficients s,(P1), s,(P2), s5,(P3), 5,(P4), s5;(P5),
§;(21), 5,(Z2), s,(Z3) and s,(Z4) are given in the table 4.1.
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Table 4.1. The seasonal coefficients 5, (P1) - §;(P5) and 5;(Zl) - §,(Z4).

Month I 1 Il IV V VI VI VII IX X X XI
BDS;5
§,(P1) -1.86 -1,38 -0.73 -0.90 2,53 1,69 254 241 054 -0.85 -146 -145
§,(P2) -1.66 -1,67 -098 -0,72 2,65 229 2,13 227 070 -093 -120 -147
§,(P3) 223 -142 -0.50 -1,61 3,75 430 151 123 081 019 -180 -26l
§,(P4) 256 -1,87 116 -1,41 330 328 381 196 -027 -1,53 -1,15 -2.41
§,(PS) -1.83 -1.21 -0.89 -0.68 1,31 348 367 247 050 -196 -178 -2,07
§,(z1) 023 045 -024 007 081 004 008 -033 -029 -0.04 -0.24 -0,08
§,(22) 0.29 0,03 -0.24 033 050 051 005 -0.53 -044 017 -034 025
§,(z3) -0.13 041 001 005 035 032 -008 -0,12 -039 -0,32 -0,18 0,08
§,(z4) 0.37 0,04 -0.55 032 027 0,09 -0,05 002 008 012 -0.05 007
NO;~
§,(P1) 042 051 033 034 -031 041 -040 -032 -026 -0,15 0,03 022
§,(P2) 048 037 022 -035-048 -0.46 -031 -013 -0,08 014 020 041
§,(P3) 037 040 032 030 -039 -0,56 -045 -039 -021 -0,07 021 048
§,(P4) 0.67 079 076 024 -0.55 -0.75 -0,63 -076 -044 009 0,15 042
§,(PS) 0,79 081 0,61 026 -0,17 -0,55 -0,78 -081 -0,62 -026 0,17 0,55
§,(z1) 005 027 0,18 0,13 004 0,02 -0,17 -016 -0,14 -0,14 -0,01 0,05
§,(z2) 0,18 026 0,18 0,11 -0,13 -0,10 -0,17 -0,18 -0,14 -0,08 0,00 0,09
§,(z3) 0,15 0,14 026 008 -012 -0,13 -023 -017 -0,15 -0,07 0,11 0,13
§,(z4) 0,14 0,12 0,18 0,05 -0,14 -0,08 -022 -0,15 -0,14 -0,06 0,06 0,24
NH,"
§,(PI) 028 0,55 0,65 0,14 -0.61 -034 -087 -0.58 -0,19 071 004 022
§,(P2) 0,89 0,72 041 000 -0,15 -025 -0,76 -0.82 -0,56 -029 0,17 0,63
§,(P3) 0,68 076 035 0,16 -0.23 -0,55 -0,53 -075 -037 -0,14 0,19 042
§,(P4) 043 026 0,51 -0,06 0,04 -029 -034 -072 -0,55 000 033 039
§,(PS) 043 026 051 -0.06 004 -029 -034 -072 -0,55 000 033 039
§,(z1) 0,04 001 001 -0,01 -0,01 0,01 -0,03 -0,01 -0,03 001 001 001
§,(z2) 0,03 0,04 001 -0.01 0,02 -0,02 -0,02 -0.03 -0,02 001 001 004
§,(z3) 0,02 0,04 0,02 -0,01 -0,03 0,00 -0,03 -0,03 -002 001 002 0,03
§,(z4) 0,03 005 001 -0.01 -0,02 -0,04 -0,02 -0.04 -0,03 001 002 003
0,
§,(z1) 0,19 0,09 126 146 043 -0,62 -0,57 -1,17 -0,77 -0,52 -0,18 0,40
§,(z2) 027 0,15 121 090 -0.03 -0,52 -1,01 -097 -042 -0,04 -0,16 0,62
§,(z3) 023 0,03 130 057 -0,14 -0,51 -1,01 -0,51 -034 006 -0,10 043
§,(z4) 023 006 130 035 -036 -0.41 -134 003 -020 -0,04 001 038
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The same statistical analysis for the NO;™ shows that the null hypothesis
H,:b=0 is accepted (p—value is 0,12+0,82, a is 0,05). Thus, the trend is
N

X, .
t=1
Fig. 4.2 represents the NO; seasonal coefficients s; in the Neris and

A

mt:a:

L

the Zeimena. Statistical analysis shows that the seasonal coefficients s,,(P2),
s10(P3) 5 s10(P5), 54(P4), 510(P4), 511 (P4), s3(Z1), s54(Z1), s510(Z1), s9(Z2),
s4(Z4), and s4(Z4) are statistically insignificant at the 0,05 significance level
(p—values are 0,38, 0,36, 0,32, 0,47, 0,28, 0,09, 0,63, 0,89, 0,24, 0,78, 0,09, and
0,13, respectively). The remaining seasonal coefficients are statistically
significant at the 0,05 significance level.
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Fig.4.2. The seasonal coefficients S, .
(0 in the sections P1-P3, Z1 and Z2; o in the sections P4, P5, Z3 and Z4, respectively)

After estimation of the components (trend and seasonal), and the
computation of the residuals. The series f, autocorrelation function Rj (s)
showed significant peaks at lags 1 at the a=0,05 in the sections P1-P5 and Z3-
Z4.The R;(s) in the sections Z1-Z2 reveals a pure white noise.

For the series Y, the model AR(/) can be chosen. For this model the

MSE are 0,049 in the section P1, 0,054 in the section P2, 0,04 in the section P3,
0,17 in the section P4, 0,2 in the section P5, 0,028 in the section Z3 and 0,023 in
the section Z4. The statistical analysis of the residual series £, shows that

R, ()=0, t>0, (p=0,73+0,87). Thus, the series ¢, is actually a pure white
noise. Hence, the estimated model for the NOs™ can be written as:

Pl: X, =0,68+5,(P1)+Y,, ¥, +0,467_, =¢,, (4.9)
P2: X, =0,69+5,(P2)+Y,, Y, +036Y,_, =£,,
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P3: X, =0,79+5,(P3)+Y,, Y, +0,23Y,_ =&,
P4: X, =0,94+5,(P4)+Y,, Y, +0,54Y,_ =§&,,
P5: X, =1,04+5,(P5)+Y,, Y, +0,53Y,, =§,,
Z1: X, =038+5,(Z1)+Y, Y, =€,

72: X, =0,42+5,(22)+Y,, Y, =€,

73: X, =047+5,(Z3)+Y,, Y, +0,23Y,_, =§&,,
Z4: X, =0,51+§,(Z4)+7,, Y, +0,22Y,_, =&, .

The seasonal coefficients s,(P1), s,(P2), s5,(P3), 5,(P4), s5;(P5),
§;(Z1), 5,(Z2), 5,(Z3) and s,(Z4) are given in the table 4.1.

When examining the ammonia nitrogen (NH4") time series in the Neris
River (sections P1-P5) we observe that it is difficult to separate the seasonal
component from the data. Therefore, we first perform the following data
transformation. For the Zeimena, the NH," time series of sections Z1-Z4 are
analysing by equation (4.7).

For the NH," we obtain that H,: 5=0, ¢ =0 is rejected in sections P1-
PS5 and Z4 (the significance level a=0,05 is greater than p-value of 0,002) and is
accepted in sections Z1-Z3 (p=a, i.e. p=0,1, a=0,05). Thus, we reject the null
hypothesis that the series has a linear trend m, =a+bt (P1-P3, Z4) and
parabolic trend m, =a+bt +ct* (P4 and P5).

Fig. 4.3 represents the NH," time series seasonal coefficients §, in the
Neris and the Zeimena. Statistical analysis shows that the seasonal coefficients
for the Neris s,(P1), s,(P3), so(P3), s;0(P3), s15(P3), so(P4), s50(P4),
s4(P5), s5(P5), and s,,(P5) are statistically insignificant at the 0,05
significance level (p—values are 0,6, 0,16, 0,32, 0,83, 0,06, 0,36, 0,99, 0,94,
0,27, and 0,99, respectively). The other seasonal coefficients are statistically
significant at the 0,05 significance level. The seasonal coefficients for the
Zeimena s,(Z2), $3(Z2), $,(Z3), s,(Z4), s¢(Z4), and s¢(Z4) are statistically
significant (p—values are 0,02, 0,03, 0,04, 0,04, 0,02, 0,03, and 0,04,
respectively), and the other seasonal coefficients are statistically insignificant
(p—value is 0,07 +0,95) at the 0,05 significance level.
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Fig.4.3. The seasonal coefficients 3, .
(¢ in sections P1 and Z1; o in sections P3-P5 and Z2-Z4, respectively)

The R;(s) has a positive peak at lag 1, i.e. R; (1) are 0,35 in the section

P1, 0,46 in the section P2, 0351 in the section P3, and 0,43 in the section P5 at
the 0=0,05 (N=96). For the Zeimena, the R; (1) are 0,43 in the section Z2, 0,36
in the section Z3 and 0,45 in the section Z4, and all them are non zero with
0=0,05 (N=36). The autoccoreliation function of I?t in the sections P4 and Z1
reveals a pure white noise.

For the series ¥, the chosen model is that of AR(/) model, we obtain

the MSE: 0,34 in P1, 0,35 in P2, 0,52 in P3, 0,24 in P5 and 0,0004 in Z2-Z4.
The statistical analysis of series £, shows that R, (¢), >0, can be assumed to

be zero (p=0,3+0,68), i.e. &, is actually a pure white noise series.
Hence, the estimated model for the NH,' can be written as:

Pl: Z, =-105-0,023¢ +5,(P1)+7,, Y, +035Y,_, =4,, (4.10)
P2: Z, =-11-0,027¢ +5§,(P2) +7,, Y, +046Y,_, =, ,
P3: Z, =-017-0,03+§,(P3)+7,, Y, +052Y,_, =¢,,
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P4:

Z, ==2,06-0,05:-0,0006:> +5,(P4)+Y,, Y, =€,,
P5: Z, =-1,77+0,03t —0,0004:> +§,(P5)+Y,, Y, +045Y_ =¢,,
Z1: X, =0,05+5,(Z)+Y,, Y, =€,
72: X, =0,048+5,(Z2)+7,, Y, +043Y,_, =4,
73: X, =0,044+5,(23)+7,, Y, +037Y,_, =4,
Z4: X, =0,074-0,0011¢ +§,(Z4) +7, , Y, +045Y,_, =¢,.

The seasonal coefficients s,(P1), s,(P2), s§,(P3), 5,(P4), s5;(P5),
§;(Z1), 5;(Z2), 5,(Z3) and s,(Z4) are given in the table 4.1.

Further, we consider the time series of dissolved oxygen (O,) in the
Neris River. It has been noted that the time series has no seasonal component
(S,=0).

Now, usual ¢ — statistic for H,: b=0 reveals that the null hypothesis
can be accepted in sections P3-P5 and Z1-Z4 (p—value is 0,14+0,9) and is

rejected in sections P1 and P2 (p—value is 0,006) at the 0,05 significance level.
Thus, we have linear trend only in the sections P1 and P2.

Fig. 4.4 represents the O, seasonal coefficients s; in the Zeimena.
Statistical analysis shows that the seasonal coefficients s,(Z1), s,(Z1), s;,(Z1),
55(22), $10(Z22), $1(22), $,(Z3), s5(Z3), $,0(Z3), s1(Z3), s,(Z4), and
sg(Z4) - 5,,(Z4) are statistically insignificant at the 0,05 significance level (p—
values are 0,06, 0,28, 0,55, 0,93, 0,64, 0,82, 0,28, 0,25, 0,95, 0,86, 0,22, 0,84,
0,06, 0,67, and 0,28, respectively). The remaining seasonal coefficients are
statistically significant at the 0,05 significance level.
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Fig.4.4. The seasonal components §; in the Zeimena.
(0 in the sections Z1 and Z2; o in the sections Z3 and Z4)

Comparing of ARMA models, we find that the smallest MSE are
obtained for AR(/) models in sections P1, P2 and Z1-Z4 ( MSE =2,24, 2,24,
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1,67, 1,55, 1,43 and 1,66, respectively). The best model in the section P3 (P4,
P5) is AR(3) (respectively, MA(1), ARMA(/,1)) (MSE are 3,18, 3,35, 2,42).
For the Zeimena and the Neris, the autocorrelation function of Y, is statistically
significant by non zero at the 0,05 significance level. Finally, the statistical
analysis of the residual series &, shows that R, (1)=0, t>0 (p=0,73+098).
The series ¢, is actually a pure white noise. Hence, the estimated model for the
O, can be written as:

Pl: X, =11,29-0,02/+7,, Y, +039Y,_, =£,, (4.11)
P2: X, =1132-0,02+7,, Y, +0,56Y,_, =¢,,

P3: X, =10,04+7,, Y, +0,36Y,_, +0,18Y,_, —0,16Y,_, =£,,

P4: X, =10,83+7,, Y, =¢,-0,07¢,,,

P5: X, =11,03+7,, Y, +0,82Y,_, =&, +0,61¢,_,,

Z1: X, =9,56+5,(Z1)+Y,, Y, +037Y,, =&,,

72: X, =9,54+5,(22)+Y,, Y, +0,41Y,_, =£,,

73: X, =9,76+5,(Z3)+7,, Y, +0,41Y,_ =&,,

Z4: X, =9,76+5,(Z4)+Y,, Y, +034Y,_, = £,.

The seasonal components s;(Z1), §,(Z2), §;(Z3) and s;(Z4) are given
in the table 4.1.

The BDSs, NO; -, and NH,' time series are analysed similarly to those
for the Neris and the Zeimena rivers. The time series for BDSs, NO; and
NH," may be written as a trend m,, seasonal component S, with the period
equal to 12 month, and a random component Y,. For the series Y,, the best
model and the smallest MSE is that of AR(/) model.
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