Nonlinear Analysis: Modelling and Control, Vilnius, IMI, 2000, No 5
(©Lithuanian Association of Nonlinear Analysts, 2000

Levels of Detail: An Overview

Zoran Constantinescu

Dept. of Computer & Information Sciences,
Norwegian University of Science and Technology
Gloshaugen, 7491 Trondheim, Norway
zoranc@acm.org

Received: 05.09.2000
Accepted: 11.10.2000

Abstract

This paper overviews some aspects of using different levels of accuracy
and complexity for the visualization of large data sets. Current status of
the volume of data sets that can be generated is presented, together
with some of the inherent problems due to such large data volumes,
visualization requirements, and display limitations of existing hardware
graphics. Some methods for selecting, generating and implementing
different levels of detail are presented.

Keywords: computer graphics, visualization, level of detail, imple-
mentation.

1 Introduction

Very fast development of the computers in the last years made possible for
the scientists to simulate larger and larger numerical models of physical
processes. For example, the recent ASCI Red supercomputer is capable
of 1.3 Terra-flops, making it possible to generate data sets of complex
phenomena in very short time. One of the problems which come with such
large data sets is how to understand them. Scientific Visualization or the
use of computer graphics to represent the data in human understandable
way, has an important role in dealing with it. As R. Hamming stated: ”The
purpose of computing is insight, not numbers”.

"http://www.idi.ntnu.no/zoran

39

There are mainly two ways of handling such large data sets: feature
extraction and data inspection. We will concentrate on the second method,
the interactive navigation through the data set, describing some of the
problems imposed by the volume of data and the limitations of current
hardware, and how it is possible to deal with them using reduced versions
of the data sets,

One way of displaying large data sets is to use different levels of detail
(LOD) to represent the data. Depending on how important the data is
for the user, it can be displayed in a more or a less complex definition,
or resolution. This is closely related to the way the human visual system
works. The level of detail solution reduces displayed detail in order to
improve system responsiveness, instituting a tradeoff between visual and
temporal fidelity.

2 Problems

Current powerful computers used in numerical simulations are capable of
producing huge amounts of data. The first Terra-operations per second
supercomputer, ASCI Red was finished in July 1997. It was developed
by Intel Corporation and Sandia National Laboratories, and consists of
more than 9,000 Intel Pentium-Pro processors. The power of this computer
allows the scientists to simulate larger physical models than before. Data
sets of hundreds of Giga bytes and even Terra bytes can be the results of
such simulations. These large data sets are very important, since they can
reveal new complex phenomena in the models. Understanding the data
results of this magnitude is a significant challenge, both from the technical
and human side. High-end hardware equipment is required to process and
transmit this volume data in reasonable time.

There are two basic approaches in dealing with such large amounts
of data. One is to extract some particular (known) features from the
data. This means an automated way of identifying a specific phenomena
and then creating or extracting a much smaller subset of the original
data which describes that particular phenomena. The other one is to
interactively browse or navigate through the data, looking for new aspects of
the simulation and understanding the phenomena. It allows to investigate
the original data, which can contain new phenomena, whereas the first
method would extract only the known ones. The disadvantage of the second
approach is that it needs a more powerful computer system which is capable
of accessing, processing and visualizing the data in an interactive way.

40

There is a minimum number of frames per second that should be gen-
erated in order to be able to navigate in an interactive way through the
data. When talking about interactive visualization, a rate of around 15-30
frames per second is required. Usually, a frame rate of 15 frames/sec is
considered acceptable for the human visual system. However, for a real-
time navigation a frame rate of minimum 30 is required.

The interactive navigation through large data sets is currently limited
by the existing capabilities of the graphics hardware. The maximum num-
ber of frame rate the graphical hardware can achieve depends directly on
the complexity of the rendered image. It means that a less complex image
can be rendered at a higher frame rate than a more complex one. For large
data sets, i.e. more complex images, the number of frames that can be
displayed in one second is dramatically reduced.

Current hardware for 3D image rendering impose a limit in the com-
plexity and size of the large data sets that can be displayed at such rates.
Recent advances in 3D accelerated graphic cards for PCs have performance
of rendering about 10-30 million triangles per second. High end graphical
systems with multiple graphic pipelines are capable of achieving rendering
of at most one order of magnitude higher. However, with very large and
complex models, the number of frames per second which can be rendered
can drop easily. This means that the graphics hardware itself is not enough
for this amount of data, and some more advanced software techniques must
be used.

3 Classification

One of the possible solutions for representing such large data sets is to
use the idea of varying level of detail. This refers to model and rendering
complexity, which can be varied to ensure rendering at some acceptable
frame rate.

The concept of Level of Detail (LOD) is generically related to the
possibility of using different representations of a geometric object (a surface,
a volume, an image, etc.), having different levels of accuracy and complexity
[PS97]. The visualization system can select a particular representation to
use for each object. The outline of the object could be considered as the
least complex representation (the coarsest mesh), whereas the full detail
object is the most complex representation (the finest mesh). Using a less
complex representation of the object we can obtain a much better displaying
speed than using a more complex representation.

41

Of course there is a price for this: the less complex objects are rep-
resented in a lower detail, while the complex ones offer a more accurate
representation. However, the human visual system is far more tolerant to
reductions in image quality than to delays in the visual updates. This means
that there is possible a tradeoff between the human performance impact
of changed responsiveness and the impact of the corresponding change in
displayed visual detail. Using principles of the human visual perception
can result in more efficient visualization system, that can work with larger
data sets.

3.1 Selection of LOD

There are different techniques for selecting a specific level of detail. They
attempt to sidestep the LOD tradeoff by reducing detail only when it is not
perceivable, giving the benefits of improvements in system responsiveness
without the corresponding cost of detail loss.

We can organize these methods in the following groups. One group
which focuses on removing details that don’t need to be rendered by the
graphics display hardware. Here we have different culling techniques, which
based on certain criteria remove some parts of the model. A second group
consists of techniques that remove details that cannot be rendered by the
hardware. Methods based on distance and object size fall in this group.
In another group we have algorithms that try to strip away details that
could not be perceived by the human viewer. These are methods based
on eccentricity, depth of field and velocity [Red97]. There is also another
method with the main goal of maintaining a constant high frame rate,
regardless of the complexity of the model.

3.1.1 Culling

There are certain situations when some parts of the geometry are never
seen by the user. In these cases, those parts are not represented by the
graphical system. In the following, some of these situations are presented
[Cab97].

The view frustum culling method removes all the objects that are out-
side the user’s viewing pyramid. Such a case is presented in figure 1 a). All
the objects which are outside the frustum are discarded (the gray ones in
the figure). This improves the performance of the graphical representation
by eliminating unnecessary work in early stages of the rendering pipeline.

Another technique is contribution culling. The objects whose visual

42

a) View frustum culling b) Contribution culling ¢) Occlusion culling

Figure 1: Culling techniques (from [Cab97])

contribution is smaller than a certain threshold are discarded, even if they
may be visible. The factors defining the contribution are generally object
size and range, display window size, and monitor resolution. This situation
is presented in figure 1 b). Some of the small objects (in gray) are discarded,
even though they are inside the frustum. This method reduces the high-
fidelity provided by the original scene, but it can reduce very much the
complexity especially when we have a lot of small objects.

Perhaps the most powerful culling techniques is occlusion culling. In
this case, presented in figure 1 c), the culling is obtained by further finding
and removing all the objects that are hidden or occluded by other objects.
It is also possible, as further refinement, to discard objects that are only
partially occluded.

3.1.2 Distance

A second technique considers how far the objects are from the viewer.
The measure is based upon the Euclidean distance between the viewpoint
and a predefined point inside the object. This approach is based on the
theory that as an object progresses further away from the viewpoint, fewer
of its high detail components are visible. This means that we can select
a lower detail without greatly affecting the fidelity of the image. Use of
numerical methods like wavelets or cosine transform can be very efficient
for representation, expressing the details in terms of frequency components.

There are two main advantages for this method. One is its simplicity: all
that is required is to check if a distance exceeds a predefined threshold. The
second one: it is efficient in that only one computation needs to be done, the
distance between the view point and the object. The main disadvantage is
how to choose the point from the object’s volume. If we choose a fixed point

43

in the object, the actual distance between the near side of the object and
the viewpoint can change depending upon the orientation of the object.
For large or very close objects, the choice of this point is not very easy.
Use of some numerical measure of the complexity of the object can help in
selecting such a point.

Another problem is that if we scale the object (to make it larger or
smaller), or if we use a different display resolution, then the original dis-
tance threshold is no longer valid and must be scaled appropriately. This
technique has been successfully used in the flight simulator field and for
terrain visualization.

3.1.3 Size

A second technique takes advantage of the eye’s reduced ability to perceive
objects as the size of those objects decreases. It takes into consideration
the size of the objects represented, the smaller objects being represented at
a lower detail, while the larger ones at a higher detail. It can be considered
also as another way of implementing distance LOD, as objects which move
further away will appear smaller on the display device.

Figure 2: LOD by size

There are however a number of advantages over the distance approach.
It provides a measure to determine the visibility of features within an
object, regardless of displaying resolution or object scaling. There is no
more need to select a point for the calculation of the distance. The method
has also a main disadvantage. Compared to the previous method, it is more
computationally expensive, because we need to project a number of world
coordinates into view coordinates and then compute the projection’s size.
However, there exists some very eflicient implementations for this in the

44

literature.

3.1.4 Eccentricity

Another technique for selecting a LOD takes advantage of the eye’s reduced
ability to perceive objects out of the center of the field of view (periphery).
The center of the retina (fovea) is used for a high detail search in the area
of fixation, hence a higher resolution, while the periphery of the retina is
used during selection of the next fixation point. This suggests in a way
to divide the display in a central, high detail area, corresponding to the
center of the eye’s field of view, and a surrounding, simpler periphery area,
corresponding to the peripheral areas of the field of view.

Experiments shown that we can reduce visual complexity in the pe-
riphery without adversely affecting visual search task performance. This
suggests that a useful LOD management system might be implemented
using a peripheral degradation approach. This peripheral degradation
technique requires knowledge of the user’s current gaze direction. For this,
head and/or eye movement should be tracked. It is also possible to assume
that the user is looking towards the center of display. Elements that the
user is looking at will be displayed in higher resolution than those in the
visual periphery.

3.1.5 Depth of Field

The representation of an object can be selected based on the depth of
focus of the user’s eyes. Objects in front or behind this fusional area are
unfocused. This means that objects out of the fusional area will appear
in lower detail, whereas those in that area will have a higher detail. Both
eyes focus on the objects in the fusional area. In order to obtain an correct
value of the convergence distance both eyes must be tracked accurately.

3.1.6 Velocity

Velocity LOD is when an object’s representation is selected based upon
its angular velocity relative to the viewer’s gaze. Objects moving quickly
across the screen appear blurred. They can be seen for only a short period
of time, and hence the user may not be able to seen them clearly. It is
possible then to represent these objects at lower level of detail. Different
metrics can be used for selecting the detail, for example the ratio of the
object’s apparent speed to the size of an average polygon.

45

3.1.7 Fixed Frame Rate

Essential for good interactivity is to maintain a high and consistent frame
rate. This means that once chosen a specific frame rate, it is maintained
without fail regardless of the complexity of the view.

This techniques usually includes a scheduler, whose job is to analyze
the system load and assign LOD ratings to each object accordingly. There
are different approaches for this: reactive system, predictive system, pre-
emptive system.

The reactive system simply adjusts the detail based upon whether the
previous frame was rendered within the target frame rate. If the last frame
was completed after the deadline, then detail is reduced, otherwise detail
can be increased.

A predictive system estimates the complexity of the frame about to be
rendered and enforces level of detail assignments to ensure that the update
deadline is never exceeded.

In a preemptive system [Wie96], the objects from the model are priori-
tized and rendered in priority order. The user sets the desired frame rate,
and if the allowed time for a frame has elapsed, the rendering for that frame
is stopped and started for the next frame. So, if a frame rate is chosen and
the computer is not powerful enough, then less detail will be seen from
the model when navigating. When the navigation is stopped, the rendered
frames being the same, it is possible to fill in the missing detail.

3.2 Generation of LOD
3.2.1 Illumination Models

Using different illumination techniques for lighting and shadowing, the dis-
played detail can be enhanced and different levels of detail can be obtained
for the objects. This means that, for example, we can use less polygons and
an improved illumination algorithm to obtain a similar representation as a
more-polygons representation of the object. However, some of these tech-
niques require a lot of computation to be done, so that not always their use
is appropriate. Such lightning models include Phong and Gouraud (smooth
shading), which produce more realistic results than the Lambertian model
(flat shading).

46

3.2.2 Texture Mapping

Another way of representing different levels of detail is by using some
textures. Regions with high geometric detail could be replaced by a single
textured polygon. The polygon’s texture is simply a rendered image of that
section, from a certain viewpoint and distance. However, this optimization
can introduce visual artifacts if the model is viewed from a different view-
point or distance. Different techniques exist for this, including warping the
texture image or the adjacent geometry, or smoothly transforming between
geometry and texture.

3.2.3 Polygon Reduction

The objective of a polygon reduction algorithm is to take a high-detail
model with many polygons and to generate a simpler model with fewer
polygons that looks reasonably similar to the original, retaining its impor-
tant visual characteristics. The advantage of the simplified representation is
that it can be rendered faster than the original model, possible at interactive
rates.

The simplification must be made in such a way that the general shape of
the model is preserved. Some of the features that a simplification algorithm
must be aware of are [KBGT97]:

e planar area is identified inspecting the normals of adjacent polygons;
these polygons can be merged to form bigger ones. This is the easiest
type of simplification;

e sharp edges are found by comparing the angles between the normals
of adjacent faces; they can be simplified by merging connected edges
which are nearly collinear;

e pointed edges (like the tip of a pyramid) must be preserved; they can
be detected by using the local curvature around a vertex.

Algorithms for polygon reductions require some kind of heuristics to
choose the relevant primitives and control the simplification. A few simple
operators can be used for removing primitives from a model [AP94]:

e normalization: removal of degenerated faces or edges and any primitive
defined multiple times;

e vertex simplification: merging of all points included within a volume (a
sphere or a grid cell);

47

e edge simplification: removal of all edges shorter than some threshold;
e angle based simplification: removal of edges which form a closed angle;

o face size simplification: removal of all faces which have an area smaller
than some threshold;

e face normal simplification: merging of all adjacent faces with near-
parallel normals.

To produce a good low-polygon model, at each step is selected such an
element that, when collapsed, will cause the smallest visual change to the
model.

There are three main categories of simplification algorithms:

e geometry removal: an algorithm that simplifies a model by removing
vertices or polygons from its description; the selection is made using
some kind of heuristics; this is one of the most popular algorithms for
simplification;

e sampling: an algorithm that samples a model’s geometry and then
attempts to generate a simplified model that closely fits the sampled
data; it is usually difficult to choose the samples in a manner that
preserves the overall shape of the object;

e adaptive subdivision: an algorithm that begins with a simple base
model and recursively subdivides it, adding further detail to local
regions of the model at each iteration.

3.3 Implementation of LOD
3.3.1 Static LOD

This is the simplest case for a LOD representation of a mesh, consisting of
a collection of meshes of different sizes, each representing the object at a
different resolution. Each of these is defined in an independent way from the
other meshes, and is associated with a certain range of detail, representing
a measure of the mesh. The range is used later to select between meshes for
representation. Each representation is generated in a preprocessing stage
and stored. At run time, one of the representation is chosen based on
certain LOD selection criteria.

One of the most important advantage of static LOD is the simplicity of
programming. The generation has no real time rendering constraints, since

48

it is made in a preprocessing step. We have a separation of the simplification
algorithm and the rendering, resulting in a simpler programming. The only
thing to do at run time is to select the appropriate LOD. Another advantage
is that the preprocessing stage can generate better representations which fit
better the existing graphics hardware, like triangle strips and display lists.
This polygonal representations can render much faster than unorganized
representations.

There are also some drawbacks for such static representations of LODs.
Each mesh being stored independently, the requirement for memory in-
creases with the number of levels of detail stored. In practice there are
always some constrains for memory requirement, which means that we can’t
store too many levels. A problem of static LODs is how to choose the scales
at which the generated representations are stored. Usually some heuristic
measures are used for these scales (for example reducing the complexity of
each mesh by a factor of two from the previous mesh).

Because the number of levels of detail stored are very limited, the
changes between consecutive representation levels are usually abrupt, cre-
ating undesirable popping effects in visualization during switches from one
level to another. Different methods are used for the transition between
these levels of detail. The simplest one is based on instantaneous switch,
one level of detail being rendered during one frame, and a different one
during the following frame. This is the most efficient of the methods, but
results in the most noticeable artifacts. Another technique is the morphed
transition, which involves gradually changing the shape of the surface as the
transition occurs. This requires the use of some correspondence between
the two levels of detail.

3.3.2 Dynamic LOD

In a dynamic LOD a data structure is created from which any desired
level of detail can be extracted at run time. Such a data structure is
called a multiresolution mesh. Depending on the complexity of such a data
structure, it is possible to obtain a smaller or a higher number of meshes at
different resolutions, or even a continuous range of meshes. The number of
different levels of detail that such a model can provide will not be fixed a
priori. Some of desirable properties of a multiresolution mesh are: it must
be able to provide a mesh at a given resolution in a very short time (real-
time); the size of the model should not be considerable higher than the
size of the highest resolution mesh it can provide; the transition between
different meshes extracted from the model must be as smooth as possible,

49

avoiding abrupt changes when moving from a mesh to another at a close
LOD.

Because the total number of possible LOD representations for an origi-
nal mesh can be very large, creating and storing independently each of the
representation is not possible. Instead, the common information for these
representations is used to create a unified single representation. From this
unified representation the desired LOD is extracted at run time, depending
on the viewing parameters.

There are a few main classes in which data structures for dynamic
LOD can be divided. One of them is based on the evolution of the mesh
throughout the simplification or refinement process. Such a representation
is called a progressive mesh and is simply the original mesh plus an ordered
list of the simplification operations performed on the mesh [Hop96]. It
is generally more convenient to reverse the order of this and store the
simplest mesh plus the inverse of each simplification operation. To extract
a desired LOD, a number of such operations is performed. Another class of
representations for dynamic LOD is based on tree-like hierarchies. These
structures, for example, can capture the dependency of each simplification
operation on certain previous operations in a vertex hierarchy [Hop97], or
can represent the mesh as a hierarchy of nested region subdivisions, each
region being recursively subdivided in a set of smaller regions covering
it exactly. A general framework for the representation of multiresolution
meshes as multi-triangulation can be found in [PS97]. Other methods
for generating dynamic LOD structures can be based on wavelet-based
representations.

Dynamic levels of detail perform some of the simplification as a prepro-
cess, but defer some of the work to be computed by the visualization system
at run time. This allows to incorporate more view dependent criteria in
the selection of LOD representation. Another advantage is that dynamic
LOD can adjust detail gradually and incrementally, reducing visual pops.
The shortcoming of such representations is that they have more memory
and computation requirements in the visualization system than the static
LOD.

4 Conclusions

The main idea is that less detailed models will be rendered when the user
will perceive less detail. This suggests to represent some parts of the object
at different resolutions than other parts. For example more close parts at

50

a higher definition, while more distant ones at a lower definition.

There are many challenges remaining in the visual representation of
large data models. Rendering of extremely large models (with millions and
more polygons) in real time is not easy, limitations of current hardware
graphics capabilities being a major drawback. Implementing a system
which uses contemporary models of visual perception in order to efficiently
modulate levels of detail of the objects is also a challenge.

References

[AP94]

[Cab97]

[Cla76]

[Hop96]

[Hop97]

[KBGTY7]

[Lue9s]

[PC99]

Peter Astheimer and Maria-Luise Poche. Level of Detail
Generation and Its Applications in Virtual Reality. In Proc.
of VRST 94, pages 299-312, 1994.

Brian Cabral. OpenGL Optimizer 1.0: The Power of
Silicon Graphics’ Next-Generation Visualization Technology.
Dewveloper News, 1997.

James H. Clark. Hierarchical Geometric Models for Visible
Surface Algorithms. Communications of the ACM, 19:547-554,
October 1976.

Hugues Hoppe. Progressive Meshes. In Proc. SIGGRAPH 96,
1996.

Hugues Hoppe. View Dependent Refinement of Progressive
Meshes. In Proc. SIGGRAPH ’97, 1997.

Mike Krus, Patrick Bourdot, Frangoise Guisnel, and Guillaume
Thibault. Levels of Detail and Polygonal Simplification. ACM
Crossroads, (3.4), 1997.

David P. Luebke. View-Dependent Simplification of Arbitrary
Polygonal Environments. PhD dissertation, University of North
Carolina at Chapel Hill, 1998.

Gerald Pitts and Daniel Cornell. Peripherality Based Level
of Detail Switching as a Visualization Enhancement of High-
Risk Simulations. In Proc. of ACM Symposium on Applied
Computing, pages 98-104, 1999.

51

[PS97]

[Red97]

[Wie96]

[WWH97]

Enrico Puppo and Robert Scopigno. Simplification, LOD, Mul-
tiresolution: Principles and Applications. EUROGRAPHICS,
16(3), 1997.

Martin Reddy. Perceptually Modulated Level of Detail
for Virtual Environments. PhD dissertation, University of
Edinburgh, 1997.

Tim Wiegand. Interacting with Very Large CAD Databases.
NavisWorks, http://www.arct.cam.ac.uk/mc/cadlab, 1996.

Benjamin Watson, Neff Walker, and Larry F. Hodges.
Managing Level of Detail through Head-Tracked Peripheral
Degradation: A Model and Resulting Design Principles. In
Proc. ACM VRST 97, pages 59-63, 1997.

52

