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Abstract

We prove Schinzel’s theorem about the lower bound of the Mahler
measure of totally real polynomials. Under certain additional condi-
tions this theorem is strengthened. We also consider certain Cheby-
shev polynomials in order to investigate how sharp are the lower
bounds for the heights.
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1 Lower Bounds

Let
P(z) = agritag 12 4 tag = ag(z—ay)...(r—ag)

be a polynomial with complex coefficients of degree d (so that a4 # 0).
Its Mahler measure (height) is given by

d
M(P) = |ag] Hmax{l, ;] }.
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Theorem A (Schinzel). Suppose that all d zeros of a polynomial P €
Z[z] are real, and let P(—1)P(0)P(1) # 0. Then

M(P) > (Hﬁ)dm.

- 2
Moreover, if the zeros of P € Z[z] are all positive, and P(1) # 0, then

iy (L)

Define the absolute (logarithmic) Weil height of P by

(7)< M)

The absolute logarithmic Weil height of an algebraic number is defined to
be the Weil height of its minimal polynomial over Z[z].

Corollary A. If « is a totally real algebraic number of degree d > 2,
then

1+\/5)'

1
h(a) > 5 log ( 5

Moreover, if « is totally positive, then

’
LS5

h(a) > log (

In [4] we investigated the following quantity

=2 =3 1
R(P) = laal|en[|ag| =t as[#=T .. Jag o [+T,
where |aq| > |ag| > -+ > Jag_1| > |agl|. Let us write
log R(P

resembling the definition of h. Suppose that P is a polynomial in Z[x] such
that ag # 0. We proved in [4] that /M (P) < R(P) < M(P). So that

%h(P) < ha(P) < h(P).

Let hg(a) for an algebraic number « be defined as hg (P), where P is the
minimal polynomial of «a over Z[z].

68



Corollary B. If « is a totally real algebraic number of degree d > 2,
then

.
L)

Moreover, if « is totally positive, then

y
L)

1
hr(a) > 7 log (

1
hr(a) > 5 log (

Various proofs of Theorem A (Corollary A) were given by Schinzel [9],
Smyth [10], [11], Flammang [6], Hoehn and Skoruppa [8], Everest and Ward
[5]. We give two different proofs here. Firstly, we prove Corollary B fol-
lowing Zaimi [13]. Secondly, we give a very simple proof of Theorem A.
This leads to a refined version of Schinzel’s theorem if some additional in-
formation about zeros is known. For both proofs, the following lemma is
crucial.

Lemma. Let y1,ys, ..., Yy, be nonnegative real numbers. Then

1+(1i[1yj)l/n < (i (1+yj))1/n-

j

Although the lemma is well-known (see, e.g., Hardy, Littlewood and
Polya [7], we give a self—contained proof.

Proof of the lemma. Assume without loss of generality that y; are all
positive. Let us fix a product of these Y = y;...y,. The infimum of the
product Z = (1 4+ y1)...(1 + y,) with fixed Y is clearly the minimum.
Suppose it is attained at (y1,...,¥n) = (21,...,2,). Suppose also that for
some pair 7, j, we have z; # z;. Replacing z; and z; both by ,/z;z; (which
will not change V'), we get a smaller value for 7, a contradiction. So that
z1 = -+ = z,, and the lemma is proved.

Proof of Corollary B via discriminant. Suppose first that « is totally
positive aq > agy > - -+ > ag > 0. By the lemma, we have

i 2/d(d—1) d ey
G- (I
7=1

1

2/d(d—1)

@ 2_ disc () B
H o T 2d-2 2 4 2(d-1)

a, Q505 ...0
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V

~dise (@) (R(@) /aa)* ™/ R(a) 2
B ) - (ad|a0|) '

|ag[2(4-1

Also,

d 2(d—1) 2(d—1
ez _ (R@)/a) 0 R(a) \HY
H ! (Jaol/aq)"™" (vad|aol) '

We deduce that

” (ijo)|)2/d . (ijo)|)4/d‘

This implies that

R()* = R(a)?* > (aglao)** > 1.

Therefore, R(a)?% > (1 + /5)/2, and the second part of Corollary B
follows. The first part can be proved analogously, by replacing above each
by a2
a; by aj.
Proof of Theorem A via the value of a polynomial at 1. We begin with
the second part again. Suppose k is a nonnegative integer such that

a1 > ey > > ap > 1> apgr > > ag > 0.

Using the lemma twice, we obtain

U< Pl lad T & IT (o - )] s -

7=k+1 7=k+1 7=1

aqao 1/(d—k 1/k
: kﬂpl(@ﬁoﬁ)“ )—1) (" )
= M(P) (M (P g R (g ()R Jag) )
< M(P)THM(PYMER - )T ey - 1)
So that
M(P) < (M(P)UH 1) (ar Py E 1), (1)

Applying the lemma once more we get M (P) < (M(P)Q/d— 1)d, and the
second part of the theorem follows. The proof of the first part is analogous
(replacing each «; by 04? and arguing as above).
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Note that in order to obtain (1) we only used the inequalities
|P(1)|7 |ad|7 |a0| > 1.

The conditions on polynomial P €Z[z], P(1) # 0 are much stronger. It
is also clear that inequality (1) implies a stronger bound if the number of
roots of P in intervals (0;1) and (1;400) is dictinct. Taking the d-th root
in (1) we have the following statement.

Theorem 1. Suppose that all d zeros of a polynomial P € R|z] are
real, and let |P(—=1)P(1)|,|aq|, lao| > 1. If P has Ad roots in the interval
(—1;1), then

M(P) > w(A\)"?,

where w(\) is the solution of the equation
(w0 =) T (1w ) = 1 2)

in [(1++/5)/2;2).
Moreover, if the zeros of P €R|x] are all positive, exactly Ad of these
lie in the interval (0;1), and |P(1)|, |a4|, |ao| > 1, then

M(P) > w(\)%.
It is clear from (2) that w(A) = w(l — A). The maximum of the function
w() is the golden ratio w(1/2) = (1 ++/5)/2 = 1.618.... For A € (0;1/3]U
[2/3;1) we have w(A) > w(1/3) = 1.656.... If X is very small or close to 1,
say, A € (0;1/100]U[99/100;1), then w(A) > w(1/100) = 1.986... (compare

with the results in [3]). In the next section we investigate some upper
hounds.

2 The Heights of Chebyshev Polynomials

We consider two Chebyshev polynomials:

d .
T(z)= 1_[1 (96—2605 (ﬁ]l)),



Clearly, T'(z—2) = Q (). Also, T',Q € Z[z], both polynomials are of degree
d, the zeros of T are all in (—2;2), the zeros of @) are all in (0;4). If d+1
is not a multiple of 6, then 7'(—1)T(0)7'(1) # 0. If d+ 1 is not a multiple
of 3, then Q(1) # 0.

Theorem B (Boyd). We have

M(T) = pHet),

M(Q) = p*H+o0),

where = 1.381... and O(1) is an absolute constant.
The constant 8 in Theorem B is the Mahler measure of a polynomial
in two variables

Its logarithm can also be expressed as the integral

1 27 /3
log 5 = —/ log (2 cos(t/2))dt,
T Jo
or via the value of the L — function
3V3 3V3 =, =3, _,
log 8 = ?L(ZX—:Q = ?; (?)5

(see Boyd [1], Smyth [12]). Boyd [2] also found that § is the optimal upper
bound for the d-th root of the ratio of two norms || ¢ || / || f ||, where g
divides f (with degree d) and g, f are both complex monic polynomials.
See [2] for more examples involving the number 3.

In [4] we showed that if

d

P(e) = [[« - o))

7=1
is a monic polynomial of degree d with nonzero roots, then
R(P) = /IP(0)[M(Q)"*~1),

where

Qz) = H (ac—oei/oej)

i#J
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is the "ratio” polynomial of degree d(d —1). So that R(P) (which we call
the Remak height in [4]) is also essentialy the Mahler measure. Therefore,
it is not surprising at all that for R(T") and R(Q) we get the same type of
constants.

Theorem 2. We have

R(T) = 4200
R(Q) = y*+oW),

where v = exp (7{(3)/2772) = 1.531....
The constant + here is the Mahler measure of a polynomial in three
variables

y=M(A+z1+r2+23)

(see Boyd [1], Smyth [12]).
Proof of Theorem 2. We have

d .
log R(Q z::d ‘]log (QCOS(Q(dil)))

:2d/01( —t)log (2608(2 ))dt—l—(’)( ).

Replacing ¢ by (1 — t)/7 in the integral and using the well-known repre-
sentation

/0 log (2 sin ( ))dt Z Sinlifu)v

we compute the integral:

[ a-ne (m(?))dt
< o[ £

1- k)
:7722 el _77221@24772'

k—odd
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So that
7¢(3)

g R(Q) = =3

d+0(1).

The proof for R(1') is analogous. Theorem 2 is proved.
The heights of irreducible polynomials

n = ] (r=2e00(5))

(7,m)=1

Qo(z) = H (36—46052 (%)),

(7,m)=1

where d = p(n) are essentially the same, because of
lim —— 3 f(i) - /1 F(z)dz
n—oo o(n) Gm=1 " 0

for a ”smooth” enough function as above. Similarly as to in Theorem B
and in Theorem 2 we get

M(Ty) = 0% o),

M(Qo) = B+ o0,
R(Ty) = »\/D0+ o)),
R(Qo) =710+ W),

where 0(1) — 0 as d — oco. Thus, in Corollary A the constant (1/2)log ((1+
\/5)/2) = 0.240... cannot be replaced by a constant greater than log g =
0.323.... In Corollary B the constant (1/4)log ((1+ +/5)/2) = 0.120... can-
not be replaced by a constant greater than 7¢(3)/47% = 0.213....

The polynomial Ty has (d/3)(14 o(1)) roots in the interval (—1;1). So
that the constant w(1/3) = 1.656... in Theorem 1 cannot be replaced by a
constant greater than 4% = 1.908....

Smyth [11] showed that the set {h(«)}, where o runs over the set of to-
tally positive algebraic integers, is everywhere dense in (0.546...;+00). The
first accumulation point here is closely related with the so—called Gorshkov—
Wirsing sequence {8, }n>0, where 81 = 1 and B,q41 = (B, + VB2 +4)/2.
The smallest elements is this set {h(a)} are known to be of two types: of
Chebyshev type h(a,), where «,, = 4cos?(27w/n), or of Gorshkov-Wirsing

type h(52).
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