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Abstract

We obtain a lower bound for the minimum over positive integers such
that the sum of certain powers of some integers is divisible by a prime
number, but none of these integers is divisible by this prime number.
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Let k > 2 be a positive integer and let p be a prime number. We put ~y(k, p)

for the smallest v such that for any integer = the congruence
r =k +x§+...+x§(modp)

is solvable in integers 1, x2,...,&,. The problem of finding v(k,p) is called
Waring’s problem modulo p. Let also 6(k,p) be the smallest § such that the
congruence

o + 2k + ..+ 2k = 0(mod p)

has a nontrivial solution, i.e. not all x; are divisible by p.

Notice firstly that substituting = —1 into the first congruence we obtain

0(k,p) < v(k,p) + 1. (1)

Secondly, if d is the greatest common divisor of k and p — 1 then v(k,p) = v(d, p)
and 6(k,p) = 6(d,p). Therefore, without loss of generality we can assume that
p = 1(mod k).

In 1927, G. H. Hardy and J. E. Littlewood [8] proved that

v(k,p) < k- (2)

For p = k 4+ 1 we have v(k,p) = k, so that the inequality (2) cannot be improved

in general. However, if p is large compared to k the upper bound (2) can be



strengthened. In 1971, M. M. Dodson [5] showed that v(k,p) < c¢1 logk if p > k?
(here and below c¢1,¢2, ... are some positive constants). Various improvements of
(2) were also obtained by M. M. Dodson and A. Tietdviinen [6], J. D.Bovey [1],
A. Garsia and J.F. Voloch [7]. By (1) all these results imply that the inequality

O(k,p) <k +1 (3)

can be strengthened for p > k+1. The inequalities better that (3) were obtained by
S. Chowla, H. B.Mann and E. G. Straus [3], I. Chowla [2]. In 1975, A. Tietdviinen
[12] proved that 8(k,p) < ca(e)k'/?*e for p > k + 1.

Using E.Dobrowolski’s work on Lehmer’s conjecture [4] S.V.Konyagin [10]
obtained new estimate for Gaussian sums which implies new upper bounds for

~v(k,p) and 0(k,p). In particular, he proved [10, Theorem 3] the inequality
0(k,p) < c3(e)(log k)***

for p > k + 1 which gives an affirmative answer to Heilbronn’s question [9].
Moreover, he conjectured that a stronger inequality 8(k,p) < c4logk holds and
gave lower bounds on y(k,p) [10, Theorem 4] and 6(k, p) [10, Theorem 5] for an
infinite set of values k and p.

Our principal objective in this paper is to illustrate some of the techniques
used in the proof of [10, Theorem 5] and at the same time make a contribution
to the subject by improving slightly the lower bound on 6(k,p) and giving more
precise information on primes p for which this lower bound holds.

Suppose f : N — [1;00) is a nondecreasing function. Let k be a sufficiently
large positive integer. We will consider three cases:

i) f(k) <logk/2loglogk,

ii) log k/2loglogk < f(k) < 2logk,

iii) 2logk < f(k) < (logk)? for some A > 1.

THEOREM. Let € > 0. There exist infinitely many positive integers k and primes
p such that p = 1(mod k),

log k

Fmax {f(k); 2loglogk

log k
} <p<(L+e)k max{f(k);m}

and
1) 6(k,p) > logk/2loglogk in case i),
2) 6(k,p) > f(k)/6 in case ii),
3) 6(k,p) > logk/5log (f(k)/logk) in case iii).



REMARK. Taking, e.g., f(k) = (logk)? with A > 1 (case iii)) we obtain

log k

0(k
(k,p) > 5(A—1)loglogk’

whereas [10, Theorem 5] gives 8(k,p) > (log k) <.

Note that by (1) the lower bounds for 8(k, p) imply the lower bounds for y(k, p)
of the same shape.
Proof of the theorem. Let us fix a number p > 1 and let f(z) = f([z]) for
z € [1;00). We will show first that there exist infinitely many s € N such that
flos) < of(s). This will allow us to replace the function of the form f(k) =
(log k)* used in [10] by an arbitrary nondecreasing function satisfying i), ii) or iii).
Indeed, suppose that f(es) > of(s) for all s > sg. Then

A
1 m
( og o 50) <

1 1
1< f(so) < f(QSO)S---<Q—mf(9m50)< o 2

1
0
for all sufficiently large m, a contradiction.

Let s be one of these. We will show that there is an integer k, s < k < gs, for
which the statement of the theorem holds. Suppose ¢ is a smallest prime greater
or equal than max {gf(gs); glog(gs)/210g10g(gs)}.

Now we will estimate the number of primes in the arithmetic progression

A(s,t,0) ={st+1,(s+1)t+1,...,[os]t +1}.

Suppose p = kt + 1 is a prime in A(s,t, ) and let a be a primitive root modulo p.
Put 8 = o*. Clearly, 3t = (mod p) and each number z*¥ modulo p is congruent to
one of the numbers 0,1, 8, 32,..., 8L, If (k, p) < o, there is a set of nonnegative

integers lg,ly,...,l;—1 such that

O<lo+li+...4+1l;—1 <b (4)
and
=1
Zl]ﬂ’ = 0(mod p). (5)
=0
Let

t—1
P(z) = Z 1z
j=0

be a polynomial corresponding to a fixed set ly,[1,-..,l;—1. Consider the resultant
of P(z) and Q(2) = 1+ 2z +...+ 2!~L. If §y is equal to the right hand side of 1),



2) or 3), then y < t. Combining this with the fact that Q(z) is irreducible we get
that Res(P, @) is a nonzero integer. By Hadamard’s inequality

[Res(P, Q)| < 65t1/% < #3172,

On the other hand, let p be a prime in A(s,t,p) for which the inequality opposite
to 1), 2) or 3) holds and let 5 be a respective power of a primitive root. Then
for at least one of the sets satisfying (4) we have P(f) = 0(mod p) (see (5)) and
Q(B) = 0(mod p). Thus, p divides Res(P, Q) for at least one of the polynomials
P(z). Suppose there are r such distinct primes which divide |Res(P, @)|. Then

(St-}-].)r <t3t/2,

and
3tlogt 3tlogt

2logs ~ 2log(k/o)’

In case i) we have
ologk < 0?logk
2loglogk 2loglogk’

so that 7 < 30%/4 < 1 if g is sufficiently close to 1. This shows that for all primes
in A(s,t, o) the inequality 1) holds. The smallest prime in A(s, t, 0) is greater than
st = kt/o > klogk/2loglog k
and smaller than
0%st < 0%kt < o*klogk/2loglogk.

This completes the proof of 1), since in case i) we have

~ logk _ logk
" 2loglogk

max{f(k) " 2loglogk’

In cases ii) and iii) the number of sets satisfying (4) is equal to
i jt—1

‘ t—1 )’

j=1

By Stirling’s formula, this does not exceed

o) <1+ ) (145)" < st (ios 14700



Hence, the number of primes in A(s,t, ) for which the inequality opposite to 2)
(or 3)) holds is less than (see (6))

3tlogt HZO j+t—1
2log(k/ o) t—1

j=1

) < 3 exp (00 log (6(1 + t/eo))) . (7

In case 2) 6y = f(k)/6,
t <0’ flos) < 0’ f(s) < &’ f(k) < 20°logk,

so that (7) is less than k%99,
In case 3) 6 = log k/51log (f(k)/logk),

t < 0’ f(k) < o*(log k),
so that (7) is less than

log k(1 + log (1 4 50°(f(k)/logk) log (f(k)/logk)))
5log (f(k)/logk) '

Since f(k)/logk > 2, this expression is less than k. In both cases 2) and 3) we
see that the number of primes in A(s,t, ) for which the inequality opposite to 2)
(or 3)) holds is less than k°-99.

By the asymptotic distribution law for primes in arithmetic progressions [11,

0" (log k)** exp (

Theorem 8.3] the set A(s,t, 0) contains at least

ost _ st
=0 i togtesn ~ 0 o tos(et)

primes for a given ¢ > 0 and sufficiently large s. Since ¢(t) =t — 1 and

(8)

t < 0*f(es) < (logs)**,

(8) is greater than

(log s)?

This proves 2) and 3), since the smallest prime in A(s,t, o) is greater than

s 0.991

st 2 k(f(0s) 2 k f(k)

and smaller than
0’st < 0%kt < o'k f(0s) < 0’k f (k).
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Apie Varingo problema pirminiam moduliui

A. Dubickas
Straipsnyje gautas ivertis i§ apacios p-adzioje Varingo problemoje, kai tam tikra
sveikyju skaiciy laipsniy suma dalijasi i§ pirminio skaiciaus.
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