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Abstract

The goal of the paper is to overview contemporary theoretical and
experimental research of the microwave electric noise and fluctuations of hot
carriers in semiconductors, revealing sensitivity of the noise spectra to non-
linearity in the applied electric field strength and, especially, in the carrier
density. During the last years, investigation of electronic noise and electron
diffusion phenomena in doped semiconductors was in a rapid progress. By
combining analytic and Monte Carlo methods as well as the available
experimental results on noise, it became possible to obtain the electron
diffusion coefficients in the range of electric fields where inter-electron
collisions are important and Price’s relation is not necessarily valid.
Correspondingly, a special attention to the role of inter-electron collisions
and of the non-linearity in the carrier density while shaping electric noise
and diffusion phenomena in the non-equilibrium states will be paid. The
basic and up-to-date information will be presented on methods and advances
in this contemporary field - the field in which methods of non-linear analytic
and computational analysis are indispensable while seeking coherent
understanding and interpretation of experimental results.
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1. INTRODUCTION

Fluctuation processes have been intensively investigated during the last three

decades. Owing to the developments in theory, instrumentation, computers and other

advanced techniques, a profound understanding of various fluctuation phenomena in

non-equilibrium systems has been achieved. It has become evident that phenomena
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such as the noise of hot carriers in semiconductors, light scattering from non-

equilibrium carriers, or from a gas or fluid with gradients, non-equilibrium diffusion in

these systems, as well as a number of other non-equilibrium phenomena have major

similarities from a fundamental kinetic point of view. A unified description of all these

physical processes on the basis of the currently available kinetic theory of non-

equilibrium fluctuations could be presented but would be beyond the scope of this

review paper. The goal of the paper is to overview contemporary theoretical and

experimental research of the spectra of electric noise and fluctuations of hot carriers in

semiconductors in the microwave region, revealing sensitivity of these spectra to non-

linearity in the applied electric field strength and, especially, in the carrier density.

Correspondingly, a special attention to the role of inter-electron collisions while

shaping electric noise phenomena in the non-equilibrium states will be paid.

Fluctuation phenomena in non-equilibrium steady state of a dissipative system are

known to be quite sensitive to details of kinetic processes in the system, often being

much more sensitive than average values of physical quantities. In particular, data on

electric noise in semiconductors subjected to high electric field contain valuable

information on charge carrier scattering processes and band structure of the crystal not

easily obtainable from charge transport characteristics (Bareikis et al. 1992, 1994). The

productive area of modern physics which can be called fluctuation spectroscopy, or

noise spectroscopy, of solid state plasma (Bareikis et al. 1992), especially of effects

non-linear in applied electric field strength and carrier density, is based on this

distinctness of fluctuation phenomena. The aim of the present review article is to give

a coherent summary of the state of the art of this contemporary field. Basic and up to

date information about the methods and advances in the field will be presented,

providing the necessary analytical tools needed for a competent understanding and use

of these developments.

In particular, sensitiveness to non-linearity in carrier density of electronic noise in

doped semiconductors was revealed during the last years. It was shown (Katilius et al.

1996, Matulionis et al. 1997) that noise properties of a doped semiconductor at

moderate applied electric fields can be remarkably influenced by inter-electron

scattering, even provided its current-voltage characteristic is not. In particular, the

available experimental results (Aninkevicius et al. 1993, Bareikis et al. 1994, Katilius

et al. 1999) on microwave noise in doped n-type GaAs channel (impurity density

exceeding 1017 cm-3) could not be interpreted, even qualitatively, within the framework

of models neglecting inter-electron collisions. The comparison with the results of

Monte Carlo simulation (Katilius et al. 1996, Matulionis et al. 1997) showed that
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inter-electron scattering causes an essential (over a hundred times) increase in the field

strength required for the excess electric noise to manifest itself. This example, in

which the influence of inter-electron scattering on noise was well controlled, provoked

detail investigation in terms of the earlier developed kinetic theory of fluctuations.

The theory (Gantsevich et al. 1969 a,b, 1970) (see also Gantsevich et al. 1979,

Bareikis et al. 1992, Kogan 1996, Katilius 1997) predicts, among other effects,

appearance, in non-equilibrium, of correlation between occupancies of electronic

states (even provided the individual collisions between electrons remain uncorrelated).

Moreover, it was demonstrated that the analytical treatment of the “kinetic” (or

“additional”) correlation created by inter-particle collisions in non-equilibrium is

possible in cases where frequent enough inter-electron collisions control the shape of

electron distribution in energy (Shulman 1970; see also Gantsevich et al. 1979,

Bareikis et al. 1992), or both in energy and momentum (Barkauskas and Katilius 1979;

see also Bareikis et al. 1992). Recently (Katilius et al. 1999) the available analytic

expressions for noise temperature and additional correlation contribution were used for

interpretation of the mentioned-above and newly obtained experimental results in the

range of applied fields where the measured noise spectrum is remarkably influenced by

inter-electron collisions.

An investigation of the influence of inter-electron scattering on noise spectrum

performed by combining analytic and Monte Carlo methods in the case where

experimental results are available was called for also by practical reasons. For rare

inter-electron collisions, Price’s fluctuation-diffusion relation (Price 1965) connects the

spectral intensities of current fluctuations, in a uniform stationary electron gas, with

the diffusion coefficients entering the expressions for the current induced by a small

spatial gradient of the electron density. For weakly doped semiconductors, Price’s

noise-diffusion relation proved to be very useful while providing information on the

hot-electron diffusivity from noise measurements performed in spatially homogeneous

states (Bareikis et al. 1992, 1994). One of the predictions of the kinetic theory of

fluctuations is the violation of Price’s relation in a non-equilibrium electron gas in the

case when inter-electron collisions cannot be neglected  (Gantsevich et al. 1969b; see

also Gantsevich et al. 1979, Bareikis et al. 1992). On the other hand, direct

measurements of the carrier diffusion coefficients in doped semiconductors, being

possible in principle, are difficult in practice and up to now were not performed.

Effective methods of Monte Carlo simulation of the carrier diffusion process in the

case of the concentration-dependent distribution function are absent (Reggiani et al.

1989, Thobel et al. 1997). As a result, quantitative data on hot-electron diffusion
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coefficients were lacking in doped semiconductors at high densities of electrons. Only

recently, by combining analytic and Monte Carlo methods as well as the available

experimental results on noise, it became possible (Katilius et al. 1999) to obtain the

electron diffusion coefficients in the range of electric fields where inter-electron

collisions are important and Price’s relation is not necessarily valid.

Hence, during the last years, investigation of noise and carrier-diffusion

phenomena in doped semiconductors was in a rapid progress. In what follows the basic

and up to date information will be presented on methods and advances in this

contemporary field - the field in which methods of non-linear analytic and

computational analysis are indispensable while seeking coherent understanding and

interpretation of experimental results.

The review is organised as follows. Basic concepts concerning noise and

fluctuations in non-equilibrium states are introduced in Section 2. Theoretical results

on noise and electron diffusion in the effective electron temperature approximation are

presented and discussed in detail in Section 3. Available experimental and Monte

Carlo results on noise in doped semiconductors under non-equilibrium conditions are

presented in Section 4. An interpretation on the lines of the theory exposed in Section

2 of the results described in Section 4 is given in Section 5. Field-dependent electron-

diffusion coefficients in doped n-type GaAs are determined in Section 6. The results of

calculation of diffusion and correlation at intermediate (lower than in Sections 3-6)

densities of carriers are reviewed in Section 7. Analytic solutions valid in the special

case of inter-electron scattering more effective than scattering of the quasi-momentum

of the system of carriers (case of “drifted” Maxwellian distribution of carriers) are

presented in Section 8. The article concludes in Section 9 with a look at the open

problems and a discussion of some likely future directions for research.

2. FLUCTUATIONS IN NON-EQUILIBRIUM: BASIC CONCEPTS

The goal of this Section is to introduce main concepts, to give a short historical

survey, and to present a theoretical background. We begin with a reasonable definition

of what is called an electric noise. “When one tries to measure or amplify small

signals, one usually arrives at a lower limit set by the spontaneous fluctuations in

current, voltage, and temperature of the system under test. These spontaneous

fluctuations are referred to as noise” (Van der Ziel 1986). Noise is commonly viewed

by researchers as the limiting factor: “Noise is an important problem in science and



6

engineering, since it sets lower limits to the accuracy of any measurement and to the

strength of signals that can be processed electronically” (Van der Ziel 1986).

But there is also another aspect of the problem, now fully realised and widely

exploited. Fluctuations in macroscopic observables result from microscopic random

processes; the measurement of noise enables to obtain information about these

processes. Indeed, every source of fluctuations is associated with some microscopic

mechanism accompanied by dissipation. Moreover, measuring fluctuations out of

equilibrium provides new information about the system - new as compared to that

obtainable while measuring the average values of the observables. Measuring

fluctuations is often a way of measuring quantities that are much harder to obtain in

other ways.

A typical measured quantity is a spectrum of noise power, i.e., the noise power in

a given frequency range. Accordingly, the field in question can be called fluctuation

spectroscopy.

2.1. Equilibrium and non-equilibrium noise spectra

Since the beginning of the 20th century, when A. Einstein and M. von

Smoluchowski developed the theory of Brownian motion, fluctuation science has been

one of the most important integral parts of statistical physics and physical kinetics.

Fluctuations in a physical system take place due to its discrete nature and the thermal

motion in it. Investigation of fluctuations is indispensable if one seeks a perfect

understanding of the connection between the microscopic and macroscopic properties

of the physical system.

In equilibrium, thermal noise is related to energy through the equipartition

theorem which states that every physical system at not too low temperature 0T  contains

an average amount of kinetic energy of 2/0TkB  per degree of freedom, where Bk  is the

Boltzmann constant. The theorem is true for macroscopic degrees of freedom as well,

the macroscopic thermal motion at thermal equilibrium in average being possessed of

‘‘microscopic’’ amount of energy 2/0TkB . The transformation from total average

energy (including the fluctuation components at all frequencies) governed by

equipartition and considered in thermodynamics, to the power in a given frequency

range was achieved by Nyquist (1928). In Nyquist's derivation, some trace may be seen

of Rayleigh's (1900) application of the equipartition theorem to the standing-wave

modes of black-body radiation. In some sense, the available noise power is a special

low-frequency case of the black-body radiation (cf. Bell 1985). At thermal equilibrium
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the power spectrum of noise has no features. The Nyquist theorem (or the more general

fluctuation-dissipation theorem (Callen and Welton 1951; see also Lifshitz and

Pitaevskii 1980) states that, while every source of fluctuation is associated with a

mechanism of dissipation, the available noise power of a thermal-noise source at the

temperature 0T  in a frequency interval f∆  is a universal function of 0T . The

fluctuation-dissipation theorem relates noise in some variables to the admittance of the

system for these same variables, so that the measurement of fluctuations in equilibrium

gives the same information as the measurement of a related transport coefficient. For

example, the Nyquist theorem enables to relate the spectral intensity of current

fluctuations in a conductor and the real part of the conductivity.

However, this is not true for systems that are not in thermal equilibrium. In the

case of an open system subjected to a continuous energy flow, some energy being added

from the external world and then dissipated out to the external world, the whole

argument in terms of thermodynamic equilibrium collapses. In the typical non-

equilibrium conditions, the system is being displaced from thermal equilibrium with

the ‘environment’ (the thermal bath), so that the system does not have the energy

distribution corresponding to the temperature of the thermal bath. The situation can be

induced by the “driving force” transferring energy from outside to the system. The

system may be driven into a state stationary in time for an interval long enough for

some measurements to be made, provided the energy is steadily passed on the thermal

bath. Fluctuations in such a virtually stationary state of the system substantially

displaced from the equilibrium with the thermal bath do not obey the fluctuation-

dissipation theorem. The noise produced in such a non-equilibrium state of the system

will be different from that in the equilibrium state.

In the case of a semiconductor or semiconductor structure, the fluctuation-

dissipation theorem is applicable only as long as the charge carriers are in thermal

equilibrium with the crystal lattice. When a sample has a biasing voltage and current,

the non-equilibrium distribution of carriers can be realized with comparative ease. The

gas of carriers, which determines electrical properties of the structure including its

electric noise characteristics, in such a current-carrying state can be pretty far from the

equilibrium with the lattice provided the electric field is of sufficiently high strength.

The losses of the carrier energy and momentum due to interaction with the thermal

bath (the lattice) are compensated by the work done by the external electric field. The

customary name for this situation is hot carriers (or hot electrons; we shall often write

“electrons” meaning in fact “charge carriers”, i.e., electrons or holes indifferently).

The non-equilibrium distributions of carriers maintained by the electric field have been
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widely investigated both theoretically and experimentally during the number of

decades and are realized in a great number of semiconductor devices. Taking into

account the present tendencies in micro- and nano-electronics, one can predict a

further growth of the role of non-equilibrium states, especially of those very far from

equilibrium, and a growing importance of noise characteristics of micro- and nano-

structures.

Since there is no necessary connection between the electric noise and the

impedance of the non-equilibrium system, one must examine the noise in terms of its

internal mechanism. On the other hand, it is the failure of fluctuation-dissipation

theorem that makes the fluctuation spectroscopy a valuable tool for the diagnostics of a

non-equilibrium system. This tool has a fundamental as well as a practical aspect: the

mechanisms of momentum, energy, and inter-valley relaxation, as well as free-carrier

number relaxation, reflect themselves in the noise spectrum pattern of a semiconductor

having a biasing current. In the case of semiconductor structures (structures with

quantum wells, etc.), the inter-sub-band, real-space transfer and other kinetic processes

impresses their fingerprints on the non-equilibrium noise spectra of the structures. The

hot-electron noise measurements - the fluctuation spectroscopy of hot electrons - is a

very active field at the moment.

2.2.Theoretical background

The statistical description of a many-particle system in a thermal equilibrium state

is based on a few very general properties or principles, such as the Gibbs distribution,

possibility to introduce thermodynamic potentials, and validity of fluctuation-

dissipation theorems. For non-equilibrium states, these principles do not work (in

particular, thermodynamic potentials cannot be introduced). Contrary to the universal

functional form of the Gibbs distribution, the non-equilibrium distribution function

depends on both the external forces creating the bias from thermal equilibrium and on

details of the interaction of the system with the thermal bath. Accordingly, the

distribution function is much more dependent on the experimental situation and should

be found for each case. In other words, instead of thermodynamics, other concepts and

theoretical apparatus had to be and were invented and used.

What was said applies equally to fluctuation phenomena. Fluctuation-dissipation

theorems fail in a non-equilibrium state, the correlation functions depend on external

forces and details of the interaction of the system with the thermal bath. Calculation, or

measurement, of the spectral intensity of noise proves to be an independent problem
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which cannot be reduced to the problem of calculation, or measurement, of the

response of the system to the external perturbation. Fluctuation characteristics of a

non-equilibrium system in fact are new independent kinetic (transport) characteristics

of the system.

The quantitative description of non-equilibrium states is accessible provided the

standard kinetic theory is applicable to the system (see, e.g., Lifshitz and Pitaevskii

1981). The macroscopic quantities then are expressible in terms of the distribution

function obeying the kinetic, or transport, equation introduced by Ludwig Boltzmann

to describe a neutral gas with pair, or two-particle, collisions and then adapted to a

gaseous plasma as well as a gas of excitations (free electrons, holes, phonons,

magnons, etc.) in solids. Later, the apparatus of the kinetic theory was generalized to

describe fluctuations: kinetic equations for two-particle correlation functions were

derived (Gantsevich et al. 1969 a,b, 1970; see also Gantsevich et al. 1979, Lifshitz and

Pitaevskii 1981, Bareikis et al. 1992, Kogan 1996, Katilius 1997). Also an  alternative

- Langevin - approach was made suitable for non-equilibrium conditions (Kogan and

Shulman 1969; see also Kogan 1996). These achievements have shaped the modern

theory of fluctuations in a non-equilibrium state. The criteria of applicability of the

theory coincide with those of the Boltzmann kinetic equation: if the kinetic equation

for the one-particle distribution function can be worked out and solved, then the kinetic

equations for fluctuations can also be written and, though more complicated,

successfully solved. These results, in principle, complete the theory of classical

fluctuations in a weakly interacting many-particle system - in the same sense in which

the Boltzmann equation exhausts the theory of transport in such a system. This review

article is devoted to applications of the general theory of fluctuations to a gas of mobile

(“free”) electrons in semiconductors, especially of “hot” electrons, at rather high free

electron densities, when the most non-trivial consequences of the theory take a shape

allowing comparison with the experimental results.

The frequencies associated with the characteristic relaxation times of hot electrons

in semiconductors and semiconductor structures lie in the frequency range from  109

to  1012 Hz. Therefore, it is quite natural that the investigation of the noise spectrum in

the microwave frequency range has proved to be a powerful diagnostic tool of the hot-

electron state realized by creating in a semiconducting channel the electric field of

sufficiently high strength (see Bareikis et al. 1992, 1994). The remarkable progress has

been made, and continues to be being made, in the theoretical and experimental

investigations of noise and fluctuation phenomena in semiconductors and

semiconductor structures under hot-electron conditions at high frequencies, including
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microwave frequencies. The current, or voltage, fluctuation spectral intensity when a

biasing voltage creates a current in the structure proved to be quite sensitive to the

details of the scattering mechanisms and band structure. The satisfactory agreement

with the microscopic interpretation has enabled an improved understanding of the

different scattering mechanisms that mobile charge carriers undergo in their motion.

Furthermore, when carrier-carrier interaction is negligible, the current-fluctuation

spectral intensity, as noticed in Introduction, can be simply related to the diffusion

coefficient of hot carriers. The relation has provided a useful method for the

experimental determination of the diffusion coefficient through noise-conductivity

measurements: it provides the possibility to determine the hot-carrier diffusion

coefficient from noise measurement in homogeneous materials without producing a

carrier density gradient. This is a good example illustrating what was said above:

measuring fluctuations can be a way of measuring quantities that are much harder to

obtain in other ways.

2.3. Available power. Equivalent noise temperature

A typical measurement is that of the maximal power
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The bar designates the ensemble average, or time average. Equation (2.1) is rather

transparent having in mind the text-book expression for the power as the current

squared times resistance.

At thermal equilibrium the spectral intensity of the current fluctuations and the

small-signal AC conductivity, )0;()( =ω≡ω αα ESS j
eq
j  and )0;(~)(~ =ωσ=ωσ αααα Eeq ,

are related by the Nyquist relation (see Lifshitz and Pitaevskii 1980):
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Here Bk  is the Boltzmann constant and 0T  is the absolute temperature; the quantum

correction factor is neglected, i.e., the inequality hω <<  is assumed. From Eq.(2.2) it

follows that the expression for the available noise power in the absence of the biasing

voltage, when the charge carriers are in thermal equilibrium with the crystal lattice, is
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Equation (2.3) means that the available power per unit bandwidth is related to

energy through the equipartition law. It follows from Eq.(2.3) that, in principle, the

noise power available at the equilibrium source can serve for the establishment of the

absolute scale of temperature (see Bell 1985, p.21).

Equation (2.2) means that, for thermal equilibrium, an independent determination

of the spectral intensity of current fluctuations, as was mentioned above, does not add

information that is not available from the conductivity. Under non-equilibrium

conditions, the equivalent noise temperature ),( EωαnT  can be defined (Van der Ziel

1986) as
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In equilibrium, by virtue of the fluctuation-dissipation theorem (2.2),

T Tn
eq = 0  , (2.5)

while under non-equilibrium conditions the noise temperature  Tn  is a convenient way

of expressing the noise power. Its macroscopic meaning is related to the measurable

quantity  ∆ ∆P k T fn B nα ≡ ,  which is the maximal noise power at frequency ω,

which can be displayed by the network in an output circuit (see Van der Ziel 1986). In

conductors, the noise temperature  Tn  represents a property of the ensemble of mobile

carriers which, in general, differs from both its “energy temperature” (conveniently
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defined as 32 ⋅ Bk/>ε< ,  >ε<  being the carrier average energy) and from the

thermal-bath temperature 0T . The hot-electron condition leads to a frequency-, field-,

and direction-dependence of the noise power and is therefore responsible for the

introduction of the frequency-, field-, and direction-dependent equivalent noise

temperature.

2.4. Noise and diffusion

At thermal equilibrium, three basic kinetic coefficients are interrelated: the free

electron mobility µ  , the spectral intensity of current fluctuations jS , and the free-

electron diffusion coefficient D . The Nyquist relation (2.2) expresses the spectral

intensity of current fluctuations in terms of the conductivity and the thermal

equilibrium temperature. The so-called Einstein relation expresses the carrier diffusion

coefficient in terms of their mobility eqµ and thermal-equilibrium temperature 0T  For

carrier densities far from degeneracy this is given by

D k T eeq
B

eq= 0µ / , (2.6)

e  being the carrier charge. Thus, in the linear-response regime an independent

determination of the diffusion coefficient and noise temperature, in addition to the drift

velocity, does not add any particular information about the transport properties of the

material as compared to the knowledge obtained from a determination of the Ohmic

mobility.

Under hot-electron conditions, not only Nyquist's relation but also Einstein's

relation no longer hold in general. Therefore an independent determination of

conductivity, diffusion coefficient, and noise temperature provides new information.

However, when carrier-carrier scattering can be neglected, an exact relationship exists

between noise in the low-frequency region, associated with the velocity fluctuations of

carriers, and the diffusion of carriers. The low-frequency region means here the region

of the noise spectrum for which the frequency  ω  is high enough to neglect 1/f  noise

as well as generation-recombination noise but sufficiently low to satisfy the condition

ωτ << 1 , (2.7)
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iτ  standing for the carrier relaxation times characterising different kinetic processes

inside the conduction band (processes conserving the number of mobile carriers;

inequality (2.7) should hold not only for carrier momentum relaxation, but also for the

slower relaxation processes in the conduction band, such as energy relaxation, inter-

valley relaxation, etc.).

Provided carrier-carrier scattering is neglected, then, as mentioned in the

Introduction, the low-frequency spectral intensity of current fluctuations is related to

the tensor of the carrier diffusion coefficients by the relation originally proposed by

Price (1965):

S e n V Djα ωτ ααω( , ) ( / ) ( )EE EE
<<

=
1

2
0 04 (2.8)

where 0n  is the average carrier density, )(EαβD  is the diffusion constant determining

the flux of carriers, Dj , resulting from a small gradient of the carrier density n

according to

j D n xD
α αβ β∂ ∂= − / .  (2.9)

Price's noise-diffusion relation proved to be very useful. Due to this relation, the

noise measurements in a spatially-homogeneous steady state provide information about

the response of the non-equilibrium system to the induced gradient, and  vice versa.

2.5. Additional correlation tensor

In the cases where inter-electron collisions must be taken into account, the

Boltzmann equation is non-linear in electron density. Due to non-linearity of the

Boltzmann equation and the extra correlation created by inter-electron collisions in the

non-equilibrium state, it is impossible to express the low-frequency spectral intensity of

current fluctuations through the diffusion coefficient as was done by neglecting inter-

electron collisions in the previous Subsection (see Eq.(2.8)). In the general case

(Gantsevich et al. 1969 b)

( ) ( / )( ) ,δ δα β ωτ αβ βα αβj j e n V D D<< = + −1
2

0 0 ∆ (2.10)
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where Dαβ  is the tensor entering the expression for the diffusion current (Eq.(2.9))

while ∆ αβ  can be called the tensor of additional correlation. It describes the specific

influence of inter-electron collisions on electric noise, being a characteristic of the

degree of correlation in the electron gas (or of non-ideality of the electron gas) and of

significance of non-linearity, in electron concentration, of the distribution function of

the non-equilibrium electron gas.

The additional correlation tensor  vanishes in thermal equilibrium (Gantsevich et

al. 1969a):

∆ αβ ωeq ( ) ,= 0 (2.11)

So, in the  thermal equilibrium  the Price relation

( ) ( / )( ) .δ δα β ωτ αβ αβj j e n V D Deq eq eq
<< = +1

2
0 0 (2.12)

holds independently of frequency of inter-electron collisions.

3. FLUCTUATION SPECTRA, CORRELATION, AND DIFFUSION IN EFFECTIVE

ELECTRON TEMPERATURE APPROXIMATION

As mentioned in the Introduction and Section 2, in the framework of the kinetic

theory of fluctuations in a non-equilibrium electron gas (Gantsevich et al. 1969a,b,

1970; see also Gantsevich et al. 1979, Lifshitz and Pitaevski 1981, Bareikis et al. 1992,

Katilius 1997) it has been shown that the pair collisions lead to the additional

correlation between the electrons as a result of which the fluctuation-diffusion relation

is violated. It was demonstrated that under non-equilibrium conditions the contribution

of the additional correlation to the current noise in general is not parametrically small.

We shall present the explicit results for the spectral intensities of the current

fluctuations and for the diffusion and correlation tensors for few simple but rather

realistic cases, making possible interpretation of the available and future experimental

results on noise in semiconductors and semiconductor structures with moderate

(moderately high) carrier density.
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A detailed study is possible (Shulman 1970; see also Gantsevich et al. 1974, 1979)

of the case where collisions between electrons govern the electron distribution in

energy but not in quasi-momentum:

τ τ τ<< <<ee en . (3.1)

Here τ  and enτ  are the characteristic electron momentum and energy relaxation times

due to electron collisions with the lattice (i.e., with impurities, phonons, etc.), and eeτ

is the characteristic time for energy and quasi-momentum transfer  within  the system

of electrons. While the rates of quasi-momentum and energy transfer to the thermal

bath can differ essentially, those for quasi-momentum and energy exchange within the

electron system are known not to differ drastically from each other. Hence, in some

range of electron densities, the rate at which inter-electron collisions redistribute

energy within the electron system can happen to be larger than the rate at which the

electron system transfers the energy to the thermal bath:

τ τee en<< ,       (3.2)

while the fast relaxation, due to scattering on the thermal bath, of the  odd part  of the

electron distribution function can remain unaffected by still comparatively rare inter-

electron collisions:

τ τ<< ee .                   (3.3)

This particular region of electron densities (the typical values for bulk semiconductors

are 0n  ~ (1015  - 1017) cm-3 ) is the subject of the investigation in this Section. In this

case, the analytic expressions are available both for the spectral intensities of current

fluctuations (Kogan and Shulman 1967, Shulman 1970) and for the diffusion tensor

(Gulyaev 1969; see also Gantsevich et al. 1974, 1979). A comparison of these

expressions demonstrates the degree of violation of the fluctuation-diffusion relation

for the particular case.
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3.1 Effective electron temperature and its relaxation

The theoretical investigation of effects of carrier-carrier scattering on high-

electric-field properties of semiconductors goes back to Compton (1923), Davydov

(1937), Fröhlich and Paranjape (1956), and Stratton (1958). Inter-electron collisions,

though conserving energy and quasi-momentum in the electron system, have an

indirect effect on high-field transport. When the rate at which the inter-electron

collisions redistribute energy within the electron system is larger than the rate at which

the electron system transfers the energy to the lattice, the energy distribution,

irrespective of the initial distribution, after a time interval of the order of eeτ  turns out

to be nearly Maxwellian:

.)/exp()( eTF ε−∝ε     (3.4)

Correspondingly, the situation where the inequalities (3.1) hold is referred to as the

case of effective electron temperature. The  effective electron temperature eT  differs,

in general, from the temperature 0T  of the thermal bath and changes comparatively

slowly in time due to the gain of energy by the electron system from the external field

and the transfer of energy to the lattice:

),(/)2/3( 00 TTPtTn ee −⋅=∂∂ Ej , (3.5)

where

j T Eα αβ βσ= ~ ( )   (3.6)

is the current density and ),( 0TTP e  is the rate of energy loss by the electron system.

The explicit form of the functions ~ ( )σαβ T  and ),( 0TTP e  - the “chord” conductivity

and the rate of energy loss by the electron system - depends on the details of electron

interaction with the thermal bath. The steady-state value of the effective electron

temperature eT  is determined from the condition that the rate at which the electron

system gains energy from the field, ~ ( )σαβ α βT E E  , equals the rate ),( 0TTP e  at

which the electron system loses energy through scattering by the thermal bath:
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~ ( ) ( , ).σαβ α βT E E P T T= 0        (3.7)

For small deviations from the steady state,

eeee TTtTtT <<−≡∆ )()( ,          (3.8)

equation (3.5) takes the form

Tee TtT τ∆−=∂∆∂ // ,         (3.9)

the  differential time for the electron temperature relaxation  Tτ  being given by the

expression

τ
∂ ∂ ∂σ ∂α β αβ

T

n
P T T T E E T T

=
−

3 20

0

/
( , ) / ~ ( ) /  (3.10)

(Kogan 1962). The values of derivatives in Eq.(3.10) should be taken at the stationary

value of the electron temperature found from Eq.(3.7).

3.2. Small-signal conductivity

From what was said it follows that at not too high frequencies, namely, at those

less than the characteristic frequency of inter-electron collisions:

ωτ ee << 1, (3.11)

the frequency dependence of the kinetic coefficients is conditioned by time evolution of the

electron temperature. The tensor of AC small-signal conductivity at frequencies complying

with inequality (3.11) is given by the expression (see, e.g., Gantsevich et al. 1979).

σ ω σ
∂σ

∂

σ σ

ω ταβ αβ
γ δ αγ βδ δβ

( ) ~
~ ~ ~

/
.= +

+

− +

2

3 10

E E

n T i T
     (3.12)
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In the case of isotropic medium, where

 jj EE= ⋅~( )σ T  , (3.13)

the longitudinal and transverse, with respect to the direction of the applied electric

field, AC small-signal conductivities are given by the expressions (Lifshits et al. 1966):

σ ω σ⊥ =( ) ~( ) ,T            (3.14)

σ ω σ
∂σ ∂

ω τ
( ) ~

~ /
( / )

.= +
− +









1

4
3 1

2

0

E T
n i T

  (3.15)

In particular, the  static  longitudinal differential conductivity 
σ

 is given by the

expression (see Eq.(3.13))

σ σ σ
σ

≡ ⋅ = + ⋅
d
dE

T E T
d
dT

dT
dE

E(~( ) ) ~( )
~

2 2
2

       (3.16)

or, in the equivalent form following from expression (3.15),

~
/ ~ /
/ ~ /

.σ
∂ ∂ ∂σ ∂
∂ ∂ ∂σ ∂
P T E T
P T E T

+
−

2

2      (3.17)

Below we shall make use of these expressions in the limiting case of comparatively

low electric fields (the case of  weakly heated electron gas, also referred to as the

warm electrons ). This is the case where the effective electron temperature eT  only

slightly exceeds the lattice temperature 0T :

00 TTTe <<− , (3.18)

the difference 0TTe −   being proportional to the field strength squared:
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2
0 ETTe ∝−  . (3.19)

Neglecting terms of the order higher than 2E  in the expression (3.16), we have:

σ σ
σ

= +
− 


















=

~
( ) ln~

ln
.1

2 0

0 0

T T
T

d
d T T T

(3.20)

The dimensionless quantity eTdd ln/ln σ  can be referred to as the coefficient of

electric sensitivity to electron heating of the system in question.

3.3. Expressions for diffusion tensor

In the effective electron temperature case, side by side with the expressions for the

small-signal conductivity, the expression for the tensor of electron diffusion

coefficients (“tensor of diffusivities”, see (2.9)) is available (Gantsevich et al. 1979):

D
T

e n n
E E

T
T

T
T

αβ αβ γ δ
αγ

βδ δβ
βδσ

τ ∂σ
∂

σ σ
∂σ
∂

= + + +








2

0 0

2
3

~
~

(~ ~
~

) .       (3.21)

In the case of an isotropic medium, the expressions for the longitudinal and

transverse, with respect to the direction of the external electric field, electron diffusion

coefficients are (Gulyaev 1969, Gantsevich et al. 1974):

D T e n⊥ = ~ / ,σ 2
0   (3.22)

D D
n

E
T T

T= + +














⊥ 1

4

3
1

1
20

2τ ∂σ
∂

∂ σ
∂

~ ln ~

ln
.       (3.23)

By comparing Eqs. (3.15) and (3.23) we rewrite the latter as follows:
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D D
T

= + −








 +





















⊥ 1 1 1
1
2

σ

σ
∂ σ
∂~

ln~

ln
.

    (3.24)

 - the magnitude of the coefficient of electric sensitivity to electron heating,

eTdd ln/ln σ , determines to what extent the anisotropy of the electron diffusivity

differs from that of differential conductivity.

3.4. Expressions for additional correlation tensor

We have noticed in Section 2.5 (see Eq.(2.11)) that the contribution of the

additional correlation, created by the inter-electron collisions, into current fluctuations

vanishes provided the electron  distribution is Maxwellian. In the case of

comparatively frequent inter-electron collisions we are now investigating, the  main

part  of the distribution function is Maxwellian. May we conclude that the extra

correlation is unimportant in the case where inequalities (3.1) hold, and that the

spectral intensities of the current fluctuations at low frequencies in this case are

proportional to the electron diffusion coefficients?

It would be incautious to jump to such a conclusion without a detailed

investigation of the problem. Inter-electron collisions play a double role, shaping the

distribution function and creating the additional correlation. The more frequent the

inter-electron collisions are the more considerable the additional correlation should be.

On the other hand, in the case of more frequent inter-electron collisions the energy

distribution is Maxwellian with greater accuracy, and so the extra correlation should

more effectively vanish. As was shown by Shulman (1970), these opposing tendencies

counterbalance each other, and the extra correlation is, generally speaking, as

important in the formation of the longitudinal current fluctuations in a heating electric

field as the electron temperature fluctuations are.

To obtain a comparatively simple explicit expression for the additional correlation

tensor Ä  entering Eq.(2.10), one should assume, side by side with inequalities (3.1), a

weak inelasticity of the scattering of electrons by the lattice ( ∆ε << ε , where

∆ε << ε  is the characteristic change of the electron energy upon collision). The

following expression was derived for 1<<ωτee  (see Gantsevich et al. 1979):
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∆ αβ
γ δ αγ βδω

τ

ω τ

∂σ
∂

∂σ
∂

τ
( )

( )

~ ~
=

+
−

−







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T

T

T
    (3.25)

from which in the case of an isotropic medium the expressions obtained by Shulman

(1970) follows:

∆ ⊥ =( )ω 0 (3.26)

∆ ( )
~ ( ) ~

ln~

ln
.ω

ω τ

σ

σ

σ

σ
∂ σ
∂

= −
+

−










−
−









 −













⊥D T
T T TT1

1
2

12 2
0

(3.27)

 - the extra correlation contributes only to the longitudinal current fluctuations. The

contribution is of Lorentz form shaped by the electron temperature relaxation time - as

far as the inequalities (3.1), (3.11) hold, only the extra correlation of electron energies

play a role.

It is quite easy to see that, thanks to Eq.(3.20) valid up to linear in 0TTe −   terms,

the right-hand side of Eq.(3.27) vanishes in the linear, with respect to 0TTe − ,

approximation, the additional correlation term )(ω∆  appearing only as a correction of

the order of 42
0 )( ETTe ∝−  (cf. Gantsevich et al. 1979, Bareikis et al. 1992,

Dedulevich 1989). In other words, for warm electrons in the effective electron

temperature approximation the additional correlation contribution vanishes. On the

contrary, when 0TTe −  is comparable to 0T  or even larger, the longitudinal additional-

correlation term  )(|| ω∆   in general is of the same order of magnitude as the diffusion

coefficients are.

3.5. Expressions for spectral intensities of current fluctuations

The formula for the tensor of spectral intensities of current fluctuations in non-

equilibrium has been derived by Gantsevich et al. (1979). In the general form it sounds

as follows:
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In the case of an isotropic medium this expression reduces to those obtained by Kogan

and Shulman (1967) (see also Shulman (1970)):

( ) ~ / ,δ σωj T V⊥ =2
02  (3.29)

and

( )
~ / ~

( ) ~ .δ
σ σ σ

ω τ

σ

σωj
T
V

T
T TT

2

0
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(3.30)

The frequency dependence of the spectral intensity of the longitudinal current

fluctuations reflects the way in which fluctuations of the electron temperature die

down, the second term in the curl brackets in Eq.(3.30) having the Lorentz shape. In

the low-frequency limit ωτT << 1

( )
~

~ ( ) ~
δ

σ σ

σ

σ

σωτj
T
V

T
T TT

2
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0 0

2
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
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      (3.31)

 - in the effective electron temperature case, the spectral intensities of current

fluctuations in the isotropic medium in the low-frequency limit ωτT << 1 are

expressible in terms of the longitudinal differential conductivity ||
~σ , the chord

conductivity
~σ , the electron temperature eT  and the ambient temperature 0T  only (this

is not true for the diffusivity D  and additional correlation ∆  taken separately, see

Eqs. (3.23), (3.27)).
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3.6. Expressions for noise temperature

Now we are in position to calculate the noise temperature, defined by Eq.(2.4), in

the effective electron temperature case. It follows from Eqs. (3.4) and (3.29) that, in

the case of an isotropic medium, the transverse noise temperature is equal to the

electron temperature:

T Tn⊥ =( ) ,ω (3.32)

while the frequency dependence of the longitudinal noise temperature is given by the

expression (Gantsevich et al. 1979)

T T
T

T Tn
T

( )
( ) ~ ( / ~)

ω
σ

σ σ σ ω τ
= +

−
−


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

1
4

1
1

0

2

2 2 (3.33)

so that

T T T
n n( ) ( ) .ω ω≥ =⊥      (3.34)

 - the longitudinal noise temperature exceeds (or, in special cases, is equal to) the

transverse one, the latter, in its turn, being equal to the electron temperature. At low

frequencies, where ωτT << 1,

T T T
n n( ) ( ) .ω ω≥ =⊥

(3.35)
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Let us remind that )(ETe  is the electron temperature in the electric field E , the

lattice temperature is 0T ; the steady current density is ETj e )(σ= , the longitudinal

differential conductivity is dEdj /~
|| ≡σ . The expressions (3.33), (3.35), (3.36) are valid

provided the inequalities enee τ<<τ<<τ  hold, τ  and enτ  being, respectively, the

electron momentum and the electron energy relaxation times caused by the electron

collisions with the lattice (with impurities, phonons, etc.), 1−τee  being the frequency of

the inter-electron collisions.

It follows from Eqs. (3.35), (3.36) that the degree of anisotropy of the low-

frequency noise temperature is the function only of the anisotropy of the differential

conductivity,

σ

σ

σ

σ⊥

=
~   , (3.37)

and of the degree of heating of the electron system, being characterised by the ratio

0/TTe  :
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⊥

= = +
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σ
σ

σ

σ      (3.38)

Relations (3.38) enable one to verify, to some extent, the validity of the approximations

leading to those relations. If the quantities σ⊥ , 
σ

 and ⊥nT , ||nT  are measured and/or

computed through a simulation procedure, the validity of relation (3.38) can be

checked up. Remarkable deviations would definitely mean that the electron energy

distribution is rather far from the Maxwellian one.

In the case of weakly heated electron gas, where the effective electron temperature

eT  only slightly exceeds the lattice temperature 0T  (i.e., 00 TTTe <<− , see Eqs.

(3.18), (3.19)), we have

T

T
T T

T T
n

n T T⊥ =

= +
− 






1 0

0

2

0

∂ σ
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ln~

ln  (3.39)
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i.e., in the warm-electron case the sensitivity coefficient  squared  enters the expression

for the anisotropy of the noise temperature.

The theoretical results presented in this Section will be used in the following

Sections while seeking an interpretation of the available experimental and Monte Carlo

simulation results.

4. ELECTRONIC NOISE IN DOPED n-TYPE GaAs: EXPERIMENT

AND MONTE CARLO SIMULATION

During the last years the progress has been achieved in experimental investigation,

simulation, and theoretical interpretation of noise properties of doped semiconductors

at moderate electric fields. Noise characteristics of silicon-doped n-type gallium

arsenide, free electron  density 0n = 3 1017 cm-3, at 80K lattice temperature have been

obtained experimentally (Aninkevièius et al. 1993, Bareikis et al. 1994, Katilius et al.

1999). The performed Monte Carlo calculations (Matulionis et al. 1997) have showed

that the obtained experimental results at moderate fields of few hundreds volts per cm

cannot be even qualitatively interpreted within a framework of the model neglecting

inter-electron collisions. Thus, microscopic simulation at moderate fields for a realistic

model of an electron gas in a doped semiconductor with necessary electron-lattice and

inter-electron scattering mechanisms taken into account was called for in order to fit

the available experimental data. On these lines, effects of inter-electron collisions on

observables have been resolved (Matulionis et al. 1997). Moreover, as will be

demonstrated in the following Section, interpretation in terms of the effective electron

temperature and its fluctuations - in terms of the theory presented in the preceding

Section - was achieved.

In this Section, the procedure of simulation of current fluctuations for a realistic

model of an electron gas in a doped semiconductor (Matulionis et al. 1997) is

described and the results of computation are compared to the experimental data

(Aninkevièius et al. 1993, Bareikis et al. 1994).

4.1. Properties of velocity-correlation functions. Monte Carlo technique

Let us introduce the time-dependent drift velocity of N free electrons weakly

interacting among themselves and with an unperturbed thermal bath, i.e., the velocity

of the mass centre of the electron system:
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v t
N

v td i
n

N

( ) ( )= ∑
1

           (4.1)

where v ti ( )  is the instantaneous velocity of the i-th electron. Under a steady-state (at

equilibrium as well), the drift velocity of the electron system fluctuates around its

average (over time, or over an ensemble of the systems) value

V v td d= ( ) .       (4.2)

The total energy and quasi-momentum of the electrons being conserved during an

inter-electron collision, the fluctuations of the drift velocity,

δv t v t Vd d d( ) ( ) ,= −            (4.3)

are caused only by electron interaction with the thermal bath (phonons and impurities

in the case of a semiconductor). On the other hand, the instantaneous velocity of the ith

electron v ti ( )  in respect to its long-time average Vd ,

δv t v t Vi i d( ) ( ) ,= −           (4.4)

is influenced by all scattering mechanisms in action. In this Subsection, as far as

electron velocity fluctuations are considered along a chosen direction (that in which a

constant electric field is applied), the vector indices are omitted.

The time-displaced drift-velocity to drift-velocity correlation function is

Φ( ) ( ) ( ) ,t N v t t v td d= +δ δ1 1   (4.5)

where the average is taken over It  with the time interval between two observations, t ,

being kept fixed. The function Φ( )t  can be presented as:
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Φ Φ Φ( ) ( ) ( ) ,t t tauto cross= + (4.6)

where

Φauto
i

i it
N

v t t v t( ) ( ) ( ) ,= +∑
1

1 1δ δ
    (4.7)

and

Φcross
i j

i jt
N

v t t v t( ) ( ) ( ) ,= +
≠
∑

1
1 1δ δ

    (4.8)

will be referred to as auto-correlation and cross-correlation function, respectively.

The main features of time-displaced correlation of the electron velocities in the

presence of inter-electron collisions can be illustrated (Katilius et al. 1996) by the

(rather artificial) case when the interaction of electrons with the thermal bath is weak

as compared to that between themselves, i.e., when the inter-electron relaxation time

eeτ  is shorter than that of the electron quasi-momentum relaxation time τ conditioned

by an interaction with the thermal bath: τ<<τee  . In this case the auto-correlation

function, starting from its equal-time ( 0=t ) value,

Φauto iv( ) ,0 2=    (4.9)

decreases with t mainly due to inter-electron collisions: any collision causes a loss of

one-electron velocity auto-correlation, and the shortest time constant, eeτ , dominates

the rate of decay of the auto-correlation function Φauto t( )  in a short time scale.

In equilibrium there is no equal-time cross-correlation: Φcross ( )0 0= . On the

other hand, any inter-electron collision, conserving energy and quasi-momentum,

cause the correlation of velocities of the two electrons involved, and, for small t, the

cross-correlation function Φcross t( )   grows proportionally to t. The opposite
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tendencies in the evolution of Φauto t( )  and Φcross t( )  counterbalance each other,

and the resultant total (drift-velocity to drift-velocity) correlation function Φ( )t

changes slowly, its decay being caused only by the interaction of the electrons with the

thermal bath. So, frequent inter-electron collisions tend to redistribute the correlation

between the diagonal and off-diagonal terms in favour of the cross-correlation, the total

correlation function for τ<<t   being kept approximately constant.

At eet τ>>   the auto-correlation function becomes small enough, and the cross-

correlation function Φcross t( )  follows closely the total correlation function Φ( )t ,

both decaying with the time constant τ . So, the cross-correlation function passes over

the maximum, its maximum value being under mTkB /0  at equilibrium (Katilius et al.

1996).

Let us simulate motion in a uniform electric field of N  electrons undergoing

different types of scattering events. All electrons move without scattering for the time

between two successive “events in the electron system”. By the event we mean either a

scattering of an electron by the thermal bath or a mutual collision between two

electrons. The time between two successive events in the electron system will be

referred to as the “time of free flight of the system”.

For independent scattering events the time of free flight of the system is defined by

the combined scattering rate (Matulionis et al. 1997):

λ λ λcomb N i i
i

N

ij
ee

j i

N

i

N

i jN
( , ,..., ) ( ) ( , ) ,v v v v v v1 2

1 11

11
1
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−= = +=

−

∑ ∑∑

(4.10)

where iλ  and λ ij
ee

  are the integral rates of scattering of the i-th electron by the

thermal bath and by the j-th electron, respectively. The factor 1)1( −−N  normalises the

inter-electron scattering rate, so that each electron under simulation is weighted by
Nn /0  where 0n  is the electron density. Equation (4.10) reduces to that written down

by Hasegawa et al. (1988) for 2=N .
The combined scattering rate combλ  depends on the electron velocity distribution.

The Monte Carlo procedure deals with the instantaneous velocity distribution rather
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than its time-average function. Thus the fluctuations of electron distribution are not

ignored. In order to cope with the time-dependent combined scattering rate the Rees

self-scattering procedure (see Jacoboni and Lugli (1989)) is applied: a fictitious

“scattering rate” is added to the instantaneous combined scattering rate to make the

resultant total scattering rate independent of time.

Now, the simulation of synchronous motion of N  electrons is straightforward.

The procedure starts from a chosen electron velocity distribution. A random number is

generated to simulate a realisation of the “time of free flight of the system” determined

by the total scattering rate. Since all electrons move without any scattering during the

time of free flight, the velocities of all electrons before the scattering event are

available, and this is sufficient to calculate the integral scattering rates of each possible

scattering event, to make up the combined scattering rate, and to determine the self-

scattering rate. Now, another random number is generated to select a type of the

scattering event in proportion to its integral scattering rate. Provided the choice falls

on the self-scattering, nothing happens in the system, and another free flight is

simulated. Provided the choice falls on the i-th electron to be scattered by one of the

lattice-related mechanisms (phonon, impurity) the consequences of the collision are

simulated in the standard way (Jacoboni and Lugli 1989). If the pair collision of the i-

th electron with the j-th electron is selected, then a random number is generated to

choose the scattering angle in the ),( ji vv  plane according to the differential inter-

electron scattering rate, and the final velocities of the two electrons involved are

determined respecting the energy and quasi-momentum conservation.

The final velocity of the electron, or those of the electrons of the pair are used to

renew the set of initial velocities for the next free flight. So, the velocities of all

electrons are known at any time, and the simulation continues as long as required.

The simulated realisation of the events in the electron system contains information

on fluctuations around the steady state. The velocity correlation functions, )(tΦ ,

)(tautoΦ  and )(tcrossΦ  [Eqs. (4.6)-(4.8)] are obtained as averages over the simulation

time 1t  for any fixed time difference t .

The proposed “combined scattering rate” technique avoids the short-time-step

procedure inherent to conventional Ensemble Monte Carlo methods (Jacoboni and

Lugli 1989, Lugli and Ferry 1983, Brunetti et al. 1985, Moško and Mošková 1991).

Since the time step in the Ensemble Monte Carlo technique should be chosen

essentially shorter than the mean time of free flight of the system, while each step is

accompanied by a selection of a type of scattering event (the latter procedure is the
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same in both techniques), the combined scattering rate technique seems to be

beneficial.

Evidently, Eq.(4.10) can be modified to consider inter-particle collisions of

different quasi-particles: electrons and holes, light and heavy holes, Γ  and X
electrons, etc.

4.2. Comparison to experimental data

It remained to perform calculations for a realistic model of an electron gas in a

doped semiconductor in the case where experimental data on  microwave noise were

available (Aninkevicius et al. 1993, Bareikis et al. 1994), namely, for silicon-doped n-

type GaAs, n  =3⋅1017 cm-3, at an 80K lattice temperature. Since inter-electron

collisions were expected to be important at not too high electric fields (as is well

known, the Coulomb scattering mechanisms gradually switches off with an increase of

electron energies), calculations were performed (Matulionis et al. 1997) within a

framework of a parabolic one-valley ( Γ -valley) model, thus ignoring inter-valley

transitions. Non-elastic acoustic and optical scattering by phonons (acoustic

deformation potential, polar optical) was taken into account, the phonons being

supposed to remain in thermal equilibrium. The ionised-impurity scattering and inter-

electron pair collisions were taken into account in the screened Coulomb approach.

The effect of electron heating on the screening was neglected.

The experimental data on microwave noise were available (Aninkevicius et al.

1993, Bareikis et al. 1994) for silicon-doped n -type GaAs demonstrating zero-field

mobility of electrons, µ  = 4000 cm2/Vs at 80K, essentially lower than that predicted

for uncompensated n -type GaAs (see Kuphal et al. (1978)) indicating acceptor

contribution. Compensation of donors in silicon-doped n -type GaAs can be important

(silicon is an amphoteric impurity in GaAs, and silicon atoms in Ga  sites act as donors

while those occupying As sites act as acceptors). The technique to evaluate the degree

of compensation in GaAs and other compound semiconductors is based on the low-

field mobility measurements (see Blakemore (1982), Anderson and Apsley (1986)).

The degree of compensation of the doped GaAs samples for which the experimental

data on noise were available (Aninkevièius et al. 1993, Bareikis et al. 1994) was

determined by Matulionis et al. (1997) from comparison of the measured dependence

of current on electric field with those calculated at different densities of ionised

impurities for the same experimentally determined free electron density, 0n  = 3⋅1017

cm-3. A reasonable fit to the experimental current-voltage characteristics showed by the
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samples in question was achieved for the ionised-impurity density IN  ≈ 7.5 ⋅ 1017 cm-3

(see Fig.1). Later, experimental data on noise were obtained also for other degrees of

compensation (Katilius et al. 1999).

The results on the spectral intensity of drift-velocity fluctuations are presented in

Fig.2. The spectral intensity of current fluctuations was measured by Aninkevièius et

al. (1993), Bareikis et al. (1994) at 10 GHz frequency. The frequency was high enough

to avoid 1/f  and generation-recombination noise, but it was low in comparison to the

inverse time constants of the kinetic processes related to electron scattering in the

conduction band. The experimental data on the spectral intensity of drift-velocity

fluctuations (Fig.2, open squares) were obtained from the current fluctuation data

through normalization at zero field by using mobility data and the Nyquist formula..

The closed circles in Fig.2 give the electric field dependence of the spectral intensity

resulting from the calculated total correlation function. For comparison, the results of

the simulation neglecting inter-electron collisions are shown (Fig.2, diamonds).
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Fig. 1.  Measured current-voltage characteristic of the GaAs sample (open squares,
Katilius et al. 1999) compared with those calculated, taking into account inter-
electron collisions, n0 = 3⋅1017 cm-3, for different ionized impurity densities
NI: 1 - 3⋅1017 cm-3, 2 - 6⋅1017 cm-3, 3 - 7.5⋅1017 cm-3, 4 - 9 3⋅1017 cm-3.
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One can see that the inter-electron collisions have little influence on the

fluctuation spectra at very low electric fields and at high electric fields (cf. diamonds

and closed circles in Fig.2). The most pronounced effect is obtained at intermediate

fields ranging from 5 V/cm to 500 V/cm. The inter-electron collisions cause an

essential increase (up to two decades)  in the field strength required for the excess hot-

electron fluctuations to manifest themselves. For example, one can see from Fig.2 that

the field value for 5% enhancement in the spectral intensity of current fluctuations

shifts from about 10 V/cm predicted neglecting inter-electron collisions to about 200

V/cm obtained from measurements as well as from Monte Carlo calculation taking into

account inter-electron collisions.
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Fig. 2.  Dependence  of  the  spectral  density of electron drift velocity fluctuations at 10
GHz for Si-doped n-type GaAs at 80 K (n0= 3·1017 cm-3, NI= 7.5·1017 cm-3). Monte Carlo
simulation: with phonon, impurity, and inter-electron scattering taken into account
(closed circles, Matulionis et al.1997), and without inter-electron scattering (diamonds).
Experimental data - open squares (Aninkevièius et al. 1993). Solid and dotted lines are
guides to the eye.
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The inter-electron collisions being taken into account, the calculated dependence

(Fig.2, closed circles) fits the experimental one (Fig.2, open squares), indicating an

important role of the inter-electron Coulomb scattering mechanisms in the formation

of the spectral intensity of current fluctuations at the intermediate electric fields.

The spectral intensity of velocity fluctuations remains nearly constant at fields up

to 200 V/cm (Fig.2, closed circles and open squares). This behaviour can be explained

by enhanced energy loss by electrons on optical phonons in the presence of inter-

electron scattering (Levinson and Mazhuolyte 1966): the inter-electron-collision-

dependent energy losses include spontaneous optical phonon emission by the electrons

having acquired enough energy in the result of collisions with other electrons. The role

of inter-electron scattering diminishes at higher fields: an increase of electron energy

causes the inter-electron scattering rate to decrease and the spontaneous optical phonon

emission to become the dominant scattering mechanism.

So, the proposed Monte Carlo procedure was demonstrated to be an efficient tool

for studying hot-electron noise in the presence of carrier-carrier scattering. The

fluctuation properties of non-equilibrium electron gas in a semiconductor were shown

to be sensitive to the presence of inter-electron collisions. Taking them into account is

crucial for an explanation of experimental data on microwave noise in doped gallium

arsenide at 80K at moderate electric fields (5 ... 500 V/cm).

5.  ELECTRONIC NOISE IN DOPED n-TYPE GaAs: ANALYTIC APPROACH

In this Section, experimental results on microwave noise in n-type GaAs ( 0n  = 3⋅

1017 cm-3, 80K) at electric fields up to few hundreds V/cm will be interpreted

combining analytic approach and Monte Carlo simulation. The analytic approach is

based on applicability, due to high frequency of inter-electron collisions, of the electron

temperature approximation described in Section 3. Monte Carlo simulation shows (see

Fig.1) a rather low sensitivity of the conductance to the electron heating, accompanied

by small deviations from the Ohm law. These circumstances were shown to favour a

nearly isotropic noise temperature and - as will be demonstrated in the subsequent

Section - an approximate validity of the Price fluctuation-diffusion relation.

In the preceding Section, it was demonstrated that noise properties of a doped

semiconductor can be remarkably influenced by inter-electron collisions. Using a

model which takes into account inter-electron collisions was shown to be indispensable

while seeking to fit the results of Monte Carlo calculations to the experimental data on
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microwave noise in typical silicon-doped n-type GaAs channels (donor density

exceeding 1017 cm-3) in the field range below 400 V/cm.

The obtained agreement of the experimental results and those of Monte Carlo

simulation stimulated an analytic investigation of the situation (Katilius et al. 1998,

1999). Indeed, the situation in the doped n-GaAs channels is suitable for an analytic

treatment. The energy distribution at low and intermediate electric fields was proved to

be quite close to a Maxwellian one. This allowed, for the first time, an analytic

treatment of the experimental results on noise in the non-equilibrium in the situation

where  inter-electron collisions make difference. On the lines described in Section 3,

the role of theoretically predicted inter-electron-collision-born correlation between

occupancies of electronic states in non-equilibrium was estimated quantitatively for

typical doped GaAs channels (see the subsequent Section).
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Fig. 3.  Current-voltage characteristic of the GaAs sample, n0 = 3⋅1017 cm-3,
NI = 7.5⋅1017 cm-3, calculated taking into account (solid circles, see Fig.1)
and neglecting (open circles, Katilius et al. 1999) inter-electron collisions.
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5.1. Main features of transport and noise characteristics of doped n-type GaAs

To guarantee the experimental basis for the analysis, the measurements of the

noise as well as of the current-voltage characteristic in n-type GaAs channels

containing different density of ionised impurities and essentially the same density of

free electrons (around 3⋅1017 cm-3) were performed by Katilius et al. (1999). The

density of electrons was high enough for a well-pronounced effect of inter-electron

collisions. On the other hand, the density was low enough for degeneracy effects in the

electron gas not to influence the results remarkably. Insignificant degeneracy effects on

noise in the case was demonstrated by direct Monte Carlo simulation.

Two features of the typical channel current-voltage characteristic will prove to be

quite important for what follows. The experimental results and those of Monte Carlo

simulation presented in Fig.1 demonstrate a low sensitivity of conductance to electric

field strength -- the deviations from the Ohm law are rather small in the considered

range of electric fields. Another important circumstance is a weak dependence of the

current-voltage characteristic on the frequency of inter-electron collisions

demonstrated by Fig.3, cf. solid circles and open circles in Fig.3.

Figure 4 presents (open squares) the field dependence, measured at 80K ambient

temperature, of the longitudinal noise temperature of the sample, ||nT , the

“longitudinal” referring to the quantity determined in the direction of the steady

current caused by the applied electric field. The same figure presents the longitudinal

noise temperature and the transverse one (determined in the direction perpendicular to

the steady current) as simulated by Monte Carlo technique neglecting and taking into

account inter-electron collisions. The most important features of the noise

characteristics of Fig.4 are:

(i) the experimental results on the noise temperature (contrary to those on the

current-voltage characteristic) cannot be explained reasonably without taking into

account inter-electron collisions;

(ii) in the entire field range where the inter-electron collisions are essential the

electron heating remains small enough for the experimental dependence )(|| ETn

to be almost parabolic, i.e., the hot electron problem to be treatable in the

framework of the “warm electron” approach (this is not the case when

fluctuations are simulated neglecting inter-electron collisions, see Fig.4);

(iii) the simulated transverse noise temperature almost coincides with the longitudinal

one; in other words, the noise temperature is found to be almost isotropic (the

same in the longitudinal and the transverse directions). The obtained near-
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isotropy of the noise temperature is in contrast to the pronounced anisotropy of the

noise in non-equilibrium electron gas observed/calculated in the majority of cases

investigated earlier (see Gantsevich et al. (1979), Bareikis et al. (1992), Katilius

and Miliushyte (1980), Barkauskas and Katilius (1979), Dedulevich et al. (1989)).

Below we use the analytic approach presented in Section 3 to reveal how these

features are interrelated. In particular, it will be shown that the near-isotropy of noise
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Fig. 4. Measured longitudinal noise temperature Tn|| (open squares, Katilius et al.
1999 and Liberis et al., private communication) compared with that calculated taking
into account (solid circles) and neglecting (open circles) inter-electron (e-e) collisions
(Katilius et al. 1999). Transverse noise temperature Tn⊥ calculated taking into account
(solid triangles) and neglecting (open triangles) inter-electron collisions is also
presented. Measurements were performed under DC bias (up to 260 V/cm) and under
pulsed bias (over 100 V/cm). Solid line is a parabolic approximation of the
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is related to the observed relatively weak dependence of the conductivity on electric

field.

5.2. Electron energy distribution in doped n-type GaAs. Validity of effective

electron temperature approximation. Relation to noise temperature

An understanding, on the microscopic level, of the inter-electron effects was

achieved in terms of the electron temperature and its fluctuations as described in

Section 3. At  high electron densities, the shape of electron energy distribution at

low/moderate fields is controlled by inter-electron collisions (except, may be, the high

energy tail). Free-electron density 0n  = 3⋅1017 cm-3  is high enough to expect, at not

too high electric fields, the electron energy distribution to be close to Maxwellian.

Direct Monte Carlo simulation (Matulionis et al. 1997) in the framework of the model

described in the previous Section confirmed this conjecture for fields up to 400-500
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Fig. 5.  Electron energy distribution function at different applied electric fields,
calculated by Monte Carlo procedure (Raguotis et al., private communication).
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V/cm – see Fig.5. Indeed, inter-electron collisions set a good one-temperature

distribution at 100 V/cm, a rather good one-temperature distribution is established at

higher fields, up to 400-500 V/cm, while a kink gradually develops at the optical

phonon energy (0.036 eV), being quite well detectable at 1000 V/cm. So, for fields up

to 400-500 V/cm, the effective electron temperature exists, its dependence on the

electric field strength being found  from the slope of curves of Fig.5.

As one may conclude from Fig.6, the effective electron temperature eT  coincides

fairly well with the transverse noise temperature ⊥nT  obtained simulating the

fluctuation process directly (Fig.6, diamonds and triangles). This is not unexpected:

according to Eq.(3.35), in the “electron temperature case” the transverse noise

temperature of an isotropic semiconductor at sufficiently low frequencies (of

microwave range) is equal to the effective electron temperature

en TT =⊥ , (5.1)

while the longitudinal noise temperature is expressible [Eq.(3.36)] in terms of the

conductivity tensor components, the electron temperature, and the lattice temperature.

Here we rewrite Eq.(3.36) in an equivalent form:
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According to Eqs. (5.1), (5.2), the longitudinal and the transverse noise

temperatures are interrelated through the conductivity components σ  and ||
~σ . As

noted in Subsection 3.6, this enables one to verify  independently the validity of the

electron temperature approximation in the situation of interest. Supposing that the

quantities ⊥nT , ||nT  and σ , ||
~σ  are measured and/or computed through the simulation

procedures, the validity of the relation between ⊥nT  and ||nT  can be checked up.

Remarkable deviations would definitely mean that the energy distribution is rather far

from a Maxwellian one.

The obvious confirmation of validity of the electron temperature approximation is

presented by the already mentioned fulfilment in practice of relation (5.1) (Fig.6).

Further confirmation would be offered by coincidence of data on the longitudinal noise

temperature ||nT  obtained in two different ways: (i) from the right-hand side of

Eq.(5.2) as calculated using the already available data on electron temperature eT

(Fig.6), on σ  and on ||
~σ  (Figs. 1, 3), and (ii) from the direct Monte Carlo simulation
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of the fluctuation process. One can see that these data (Fig.7, solid line and dots) are

pretty close to each other reaffirming the self-consistence of the electron temperature

approach at the moderate electric fields where the inter-electron collisions manifest

themselves.

5.3. Near-isotropy of noise temperature

The most specific property to be explained by the theory is a rather unexpected

nearly-isotropic behaviour of the noise temperature throughout the field range in

question, evidenced by Fig.4. To find a reason, another already mentioned feature of

the noise-voltage and the current-voltage characteristic was exploited. At fields up to

400--500 V/cm the electron temperature and the noise temperature of the sample

increases by less than 20 K, i.e., within 25%, while the conductivity changes even less.

As already noticed, the electron energy loss, more efficient than that in absence of the

inter-electron collisions, is known to result from the “combined” scattering (Levinson

and Mazhuolyte 1966): the inter-electron collisions open an additional electron energy

relaxation channel through emission of optical phonons (one of two colliding electrons

can gain enough energy to emit an optical phonon).

The field dependencies of the measured noise temperatures, as well as those

calculated taking into account the inter-electron collisions, are almost parabolic for the

investigated samples at the low and moderate fields. This enables one to expand

expression (5.2) for ||nT  and the corresponding expression for ||
~σ  in powers of electric

field strength E  to the second order, neglecting terms of the order higher than 2E . In

other words, the entire region where the inter-electron collisions make difference can

be treated in terms of “warm electrons”. Unlike this, if the inter-electron collisions

were neglected, the warm electron region would shrink dramatically -- down to about

10 V/cm (see Fig.4).

The expansion of ( )eTσ  in powers of the increase in electron temperature,

0TTT ee −=∆ , the latter being proportional to 2E , in the linear approximation in eT∆

led to the expression (3.20). As mentioned above, the electric sensitivity to electron

heating is rather low at the low/moderate fields -- see Figs. 1, 3. The coefficient of

sensitivity ( eT2dd ln/ln σ ) does not exceed 0.1 (see Fig.8, upper curve). Thus,

according to Eq.(3.20), the ratio of the differential conductivity components contains

the small term resulting into small values of the differential conductivity’s anisotropy

at the moderate electric fields (see Fig.8, lower curve):
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With this in mind, let us compare the longitudinal and the transverse noise

temperatures of the warm electrons. According to Eq.(3.39), in the warm electron

region the sensitivity coefficient squared decides the noise temperature anisotropy. As

a result, the noise temperature anisotropy is extremely low, lower than that of the

differential conductivity. Expression (3.39) tells that the noise temperature anisotropy

for the typical samples should not exceed 0.01 - 0.04. Figure 4 demonstrates that this

important prediction is fulfilled quite well.

5.4. Synopsis

Inter-electron collisions can indirectly but significantly influence the energy losses

of the electron system in GaAs channels subjected to electric field at liquid nitrogen

temperature. The resultant enhancement of the electron temperature is relatively small

in the range of fields where the inter-electron collisions are of importance. This leads
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to the changes in fluctuation and transport characteristics which are, with sufficient

accuracy, quadratic in the field strength at the fields of interest (“warm electrons”).

Furthermore, the results of Monte Carlo simulation compared with those of noise

measurements show that the electron energy distribution at fields in question is

Maxwellian with sufficient accuracy. These circumstances, being typical for the

partially compensated n-type GaAs channels containing a high density of electrons,

ensure applicability of the developed combined analytic and Monte Carlo approach to

fluctuation phenomena leading to the following conclusion: a characteristic feature of

the GaAs channels at moderate fields being the rather weak sensitivity of conductance

on electron heating, the anisotropy of the noise temperature, proportional to the

sensitivity coefficient squared, is extremely small at the low/moderate electric fields.

6. ELECTRON DIFFUSION IN DOPED n-TYPE GaAs

6.1. Field-dependent electron diffusion coefficients in doped GaAs

The investigation of the inter-electron effects is of a special interest for electron

diffusivity. As described in Section 2, the fluctuation--diffusion relation has been

proposed by Price (1965) to connect the tensor of spectral intensities of current

fluctuations in a uniform and stationary electron gas with that of the electron diffusion

coefficients, i.e., with the coefficients entering the expressions for the electric current

induced by a small electron density gradient. This relation has proved to be very useful

in providing information on hot-electron diffusivity from noise measurements

performed in spatially homogeneous electron gas in weakly doped semiconductors (see

Bareikis et al. 1992, 1994). However, as stated in Subsection 2.5, the kinetic theory of

fluctuations predicts that Price's relation in a non-equilibrium electron gas should be

violated provided inter-electron collisions were not negligible (Gantsevich et al.

1969b). On the other hand, direct measurements of diffusion coefficients from

spreading of a cloud of carriers in doped semiconductors have never been performed:

the application of this technique is hindered at a high background density of electrons

since the spreading is controlled by dielectric relaxation rather than diffusion. Efficient

techniques of Monte Carlo simulation of diffusion process in case of concentration-

dependent distribution function are absent (Reggiani et al. 1989, Thobel et al. 1997).

So, a determination of the field-dependent coefficient entering Fick's law for the

diffusion current for a long time remained an unsolved problem, and quantitative data

on hot-electron diffusion coefficients in doped semiconductors at high densities of

electrons were lacking. Only recently it was demonstrated (Katilius et al. 1998, 1999)
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that sometimes it is possible to determine electron diffusion coefficients from the noise

measurements even where inter-electron collisions are essential. The aim of this

Section is to present these results.

In the electron temperature case, side by side with the expressions for the

differential conductivity and the noise temperature, the expressions are available for

the electron diffusion coefficients ikD  entering Fick's law, i.e., the expression for the

diffusion current j eD n xi ik k= − ∂ ∂/ . The corresponding expressions have been

presented in Subsection 3.3 (see Eqs. (3.22), (3.23)). These expressions enable one to

calculate the field dependence of the electron diffusion coefficients from those of the

conductivity provided the electron temperature is known from the transverse noise
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Fig. 9. Field dependence of longitudinal and transverse Fick's diffusion coefficients, D||

and D⊥, as predicted by Eqs. (3.22) and (3.23) (solid circles and solid triangles). Solid
line presents diffusion coefficient D||  as predicted by Price's relation, D||=(δj2)ωτ

<<1V0/2e2n0, current fluctuations being directly simulated (inter-electron collisions
included). For comparison, longitudinal diffusion coefficient obtained from noise
simulation neglecting inter-electron collisions is also presented (open circles).
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temperature measurement or from Monte Carlo simulation. In absence of experimental

data on the transverse noise temperature, equation (5.2) can be used to extract the

electron temperature from the experimental data on the longitudinal noise temperature

and the current--voltage characteristics.

In particular, we notice that the quantity eT2dd ln/ln σ  determines to what extent

the anisotropy of the electron diffusivity is not described by the degree of anisotropy of

the differential conductivity, in other words -- to what extent the so-called “Robson

conjecture” (see Katilius and Miliushyte (1980)) is not valid. For the typical sample, as

already noticed, the coefficient of electric sensitivity to electron heating

( )eT2dd ln/ln σ  does not exceed 0.1 (see the upper curve of Fig.8). Such is the

predicted degree of violation of Robson's conjecture in this particular case.

Figure 9 presents the field dependence of the longitudinal and transverse diffusion

coefficients obtained from Eqs. (3.22), (3.23) using data of Figs. 3, 6, and 8. For

comparison, the longitudinal diffusion coefficient calculated without taking into

account the interelectron collisions is also presented in Fig.9.

6.2. Degree of violation of Price relation

We know that the inter-electron collisions in non-equilibrium state create

correlation between occupancies of electronic states (Section 2). This leads to violation

of the fluctuation--diffusion relation, known as Price's relation, between the current

fluctuations and the carrier diffusivity. The spectrum of the current intensity

fluctuations in the low-frequency limit, according to Eq.(2.10), is expressible in terms

of the electron diffusion coefficients ikD  and the above-mentioned contribution of the

additional (inter-electron-collision-born) correlation ik∆ . In the electron temperature

case, the transverse contribution due to the inter-electron-collision-born correlation

vanishes (see Eq.(3.26)): ∆ ⊥ = 0 ,  while the longitudinal contribution is expressible

(see Eq.(3.27)) in terms of the current-voltage characteristic and the field dependence

of the electron temperature:
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Now we see to what extent Price's relation -- the relation connecting, in absence of

inter-electron collisions, the spectral intensities of current fluctuations and the electron

diffusion coefficients -- is violated by frequent inter-electron collisions in the electron

temperature case. The Price relation survives in the directions perpendicular to the

steady current. The degree of violation of the relation between the longitudinal

diffusion coefficient and the longitudinal current fluctuation spectral intensity in the

case under consideration can be estimated using Eq.(6.1).

As already noticed, the warm electron region in the case under consideration

almost coincides with the range of fields where the inter-electron collisions make

difference. So, in the entire field range in question we can expand Eq.(6.1) in powers

of 0TTT ee −=∆ . It is easy to verify that, thanks to Eq.(3.20), valid up to linear in eT∆

terms, the right-hand side of Eq.(6.1) vanishes in the linear, with respect to eT∆ ,

approximation, the inter-electron-collision-born correlation term ||∆  as given by

Eq.(6.1) appearing only as a correction of the order of 2
eT∆  (i.e., 4E ) (see Subsection

3.4). At higher fields, the dimensionless contribution given by Eq.(6.1) changes its

sign, nevertheless its absolute value remains below 0.15 %  in the entire range of fields

of interest (Katilius et al. 1999). It was shown by Katilius et al. (1998, 1999) that a

rather weak contribution of the inter-electron-collision-born correlation into noise is

typical for partially compensated GaAs channels with electron mobility of about 4000

cm2/(V s) at 80K.

In other words, Price's relation between the spectral intensities of current

fluctuations and Fick's diffusion coefficients is found to hold quite well in the given

situation, despite of the fact that the inter-electron collisions are proved to be important

in shaping the electron energy distribution. At high fields, where the inter-electron

collisions become ineffective, Price's relation works by definition. We come to an

important conclusion that, with a sufficiently high accuracy, Price's relation in the

given situation is valid in the entire range of fields. Consequently, the electric field

dependence of the Fick's diffusion coefficients of the electron system in the considered

GaAs channels in a wide range of fields is attainable from noise

calculations/measurements. It is important to stress that the Price relation between the

spectral intensities of current fluctuations and Fick's diffusion coefficients is found to

hold quite well despite of the fact that the inter-electron collisions are important in

shaping the electron energy distribution and opening the effective channel for the

energy relaxation.
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The Price fluctuation-diffusion relation is valid with a rather good accuracy since

the contribution of the additional correlation created by the inter-electron collisions in

the warm electron region is proportional to the enhancement of the electron

temperature squared. The degree of violation of the Price relation inside and outside

the warm electron region is estimated not to exceed 0.01 for the investigated GaAs

channels. Due to the demonstrated validity of the Price relation, the electric field

dependence of the Fick diffusion coefficients is attainable from noise

calculations/measurements over a wide range of fields.

The validity of Price's relation with high accuracy even in the range of fields

where in other respects the inter-electron collisions make difference is the specific

feature of the GaAs channels containing a high density of electrons. The result is

interesting since it regenerates the possibility to obtain information about hot-electron

diffusion coefficients from noise measurements even in cases when the inter-electron

collisions influence them. This possibility is illustrated by the solid lines (Fig.9)

obtained from Price's relation, the lines being in agreement with the independently

calculated longitudinal diffusion coefficient data in the corresponding ranges of

electric fields (solid circles at the low/moderate fields and open circles at the high

fields). The possibility to exploit Price's relation can prove to be important since a

direct measurement or calculation of Fick's diffusion coefficients when inter-electron

collisions influence them, as was already mentioned, is by no means straightforward

(cf. Reggiani et al. (1989), Thobel et al. (1997)).

The extremely small inter-electron-collision-born correlation is specific to warm

electrons in the electron temperature case. Outside the warm electron region the higher

terms in the expansion become of importance, and, in general, the ratio |||| / 2D∆  may

not remain small. This does not happen in our case: the ratio σσ /~
||  entering Eq.(6.1)

remains close to unity until the inter-electron collisions cease to influence the noise,

and the ratio |||| / 2D∆  remains small in the entire field range. Supposing that the non-

linearity of the current-voltage characteristic were well-pronounced, the contribution of

the inter-electron-collision-born correlation would not be necessarily small in the

entire field range where the noise is affected by the inter-electron collisions.

On the other hand, even for warm electrons, the exceptional smallness of the

additional correlation contribution cannot be guaranteed beyond the limits of validity

of the electron temperature approximation, enee τ<<τ<<τ . In the following

Subsection we present the results obtained by Dedulevich et al. (1989) showing that in
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the intermediate cases (e.g., enee ττ ~ ) a substantial violation of Price's relation can

be conditioned by a non-linear dependence on the electron density of the electron

momentum/energy distribution. This possibility of violation of Price's relation is

excluded from the very beginning in the electron temperature case in which the shape

of the distribution function does not depend on the electron density.

7. FLUCTUATIONS IN WEAKLY HEATED ELECTRON GAS OF

INTERMEDIATE DENSITY

Detailed calculations of the diffusion tensor ikD  and the correlation tensor ik∆  in

the case of  “warm” electrons were performed by Dedulevich et al. (1989).

In the general case the correlation tensor ik∆  consists of two different parts:

ikikik BA +=∆        (7.1)

One of them, ikA , is born by the equal-time electronic-state-occupancy cross-

correlation generated by the inter-electron collisions. Up to this moment, we have paid

principal attention only to this part of the tensor ik∆ , since in the electron temperature

approximation (see inequality (3.1)) the electron distribution function is a linear

function of concentration, the part ikB  vanishes. But in the general case the part ikB

can be essential, also being conditioned by inter-electron collisions, but not through the

correlation created by them. Inter-electron collisions violate the Price relation not only

creating the correlation between the electrons but also changing the dependence of the

form of the stationary distribution function on the electron density. Vanishing in the

electron temperature case as well as in the drifted Maxwellian case, the term ikB

could play an essential role at intermediate carrier densities, as was shown by

Dedulevich et al. (1989), in the case when inter-electron scattering and the energy

relaxation via electron-phonon scattering is of the same efficiency, i.e., the conditions

τ τ τ εp ee<< ~ ,       (7.2)

are satisfied, the term ikB  in the warm-electron region is even more essential than the

pure extra-correlation term ikA .
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In accordance with the main idea of the warm-electron theory, the longitudinal

and transverse components of the diffusion and correlation tensors were expanded into

a Taylor series with respect to the strength of the electric field up to the quadratic

terms:

D D E Eeq D

⊥ ⊥
= +



, ,

( / ) ,1 0
2γ

 (7.3)

∆ ∆
⊥ ⊥

=
, ,

( / ) ,D E Eeq γ 0
2

          (7.4)

where eqD  is the equilibrium isotropic diffusion coefficient, and the dimensionless

coefficients Dγ  and ∆γ  characterise the non-equilibrium correction to the diffusion

and correlation tensors, correspondingly.

It was found that the tensor ik∆  in the weak-heating region in the case (7.2)

receives an isotropic contribution proportional to 2E  (i.e., 
γ γ γ∆ ∆ ∆= =⊥ ). It was

shown that in the weak-heating region in the case of quasi-elastic scattering it is

necessary to retain only the term ikB  in the tensor ik∆ , the term ikA  being

parametrically small. In the case of effective electron temperature where the inequality

(3.1) holds, the additional correlation term for warm electrons was shown to vanish in

Section 3. Consequently, under weak-heating conditions, violation of the Price relation

in the case of quasi-elastic scattering is possible only due to the dependence of the

shape of the stationary distribution function on the electron density at intermediate

electron densities, where the inter-electron relaxation time τee  and the energy

relaxation on the lattice time enτ  have the same order of magnitude.

For an actual estimate of the extent to which the Price relation can be violated in

the weak-heating region, we cite some numerical-calculation results of Dedulevich et

al. (1989). The coefficients 
γ

,⊥
D

 and γ γ∆ ∆= B  were calculated for quasi-elastic

interactions, when the equations for the symmetric parts of the distribution and

correlation functions contain the inter-electron-collision term and the Davydov-type

term of electron collisions with the heat bath (Davydov 1937). The asymmetric parts of

the collision terms were written in the momentum-relaxation time approximation
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τ ε ε( ) /∝ −1 2
. The Davydov-type operator is a differential operator. The inter-electron

collision operator was used in the so-called Landau form, which takes suitable account

of the scattering with small momentum change, which is most significant in the case of

weak heating. In case (7.2), only the symmetric part of this operator is essential, its

integral part being a Volterra operator. Consequently, the equations can be reduced to

a system of differential equations, and these were solved numerically by the Runge-

Kutta method.

For this model, the coefficients 
γ D

, γ ⊥
D

 and γ B
∆

 were shown to depend on the

only parameter W  characterising the relative intensity of the inter-electron scattering

compared with the thermal-bath mechanisms of energy relaxation. In the limit

0→W , the coefficients 
γ D

 and γ ⊥
D

 go over into the values obtained earlier by

neglecting inter-electron collisions (Gurevich and Katilius 1965), while as ∞→W

the values approach those obtained in the electron-temperature approximation. The

coefficient γ B
∆

, as it should be, vanishes in both limiting cases. It has a maximum

when the rate at which inter-electron collisions redistribute energy within the electron

system is of the same order as the rate at which the electron system transfers energy to

the thermal bath: it was shown that the time eeτ  is equal to enτ  for 6≈W , and the

maximum of γ B
∆

 corresponds approximately to the same value of W . The maximal

value of the coefficient γ B
∆

 does not exceed 0.05, so a violation of the Price relation

occurs, but is not strongly pronounced. The warm-electron coefficients γ ⊥
D

 and 
γ D

also were shown to be sensitive to the presence of inter-electron collisions.

As mentioned in the previous Sections, in the case of electron scattering by optical

phonons at low lattice temperatures the inter-electron collisions provide a new energy-

relaxation channel (“composite” scattering sets in). As a result, inter-electron

collisions effectively influence both the energy relaxation itself and the form of the

steady-state distribution function. In this situation, the coefficients γ
,⊥

D

 and γ B
∆

 were

expected to be more sensitive to the presence of inter-electron collisions, and the
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coefficient γ A
∆

 should not vanish since the collision operator is not quasi-elastic in the

presence of scattering by optical phonons.

The computation of these coefficients was performed by Dedulevich et al. (1989)

for a compensated semiconductor with parameters corresponding to the heavy-hole

band in p-Ge at 0T  = 80K. It was demonstrated that hole-hole collisions at

intermediate densities (p ~ 1014 - 1016 cm-3) influence the diffusion coefficients

substantially. In the region of intermediate densities the coefficient γ A
∆

 is still rather

small compared with γ B
∆

, apparently an indirect indication that the inequality

τ τε >> p  (but not ε >> ∆ε ) still holds. The ratio of the coefficient γ B
∆

 and the

non-equilibrium correction to the diffusion coefficient γ ⊥
D

 was found to be substantial

(exceeding the value 2.5 ) at ~p  1014 -1015 cm-3. This leads to the hope that there is a

possibility of observing experimentally violations of the Price relation in

semiconductors at intermediate densities under conditions of weak as well as

intermediate heating.

8. FREQUENT INTER-ELECTRON COLLISIONS:

ELECTRONIC NOISE IN DRIFTED MAXWELLIAN APPROXIMATION

Analytic expressions are also available in the case where inter-electron collisions

are so frequent that they control the electron distribution both in energy and in

momentum:

τ τ τ εee p<< , (8.1)

where τ  and enτ  are the characteristic electron momentum and energy relaxation

times due to electron collisions with the lattice, and τee  is the characteristic time for

energy and quasi-momentum transfer within the system of electrons.

It is known that in some semiconductors, especially in lead chalcogenides, the

screening, owing to lattice polarisation, of the static Coulomb potential of ionised

impurities is more effective than the same type of screening of the inter-electron

Coulomb interaction (Ravich et al. 1971). Therefore, in uncompensated lead-
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chalcogenide samples at high carrier densities and low temperatures one can expect

inequality (8.1) to be realised, i.e., the inter-electron interaction to be effective enough

to control the electron distribution both in energy and in momentum. Under these

conditions, the non-equilibrium noise was investigated by Barkauskas and Katilius

(1979).

When inequality (8.1) is fulfilled, inter-electron collisions shape the distribution

function, making it close to the drifted Maxvellian distribution

( )[ ]F Tp p
M p V∝ − − ⋅exp ε

 . (8.2)

The stationary values of the temperature eT  and of the drift velocity V  of the electron

gas are obtainable from the energy and momentum balance equations that follow from

the Boltzmann equation. The diffusion-coefficient tensor in the case of distribution

(8.2) can be easily shown to be proportional to the differential-conductivity tensor. This

means that, under conditions (8.1), the spectral intensity of the current fluctuations is

not proportional to the AC small-signal conductivity (and thus the noise temperature is

anisotropic) unless the correlation tensor αβ∆  vanishes. In fact, the influence of the

additional correlation created by inter-electron collisions on the current fluctuations in

the case (8.1) turned out to be substantial (Barkauskas and Katilius 1979). Under the

condition enττ ~   the additional correlation affects not only the longitudinal but also

the transverse current fluctuations. The influence of the additional correlation as well

as the anisotropy of the noise temperature takes place in a wide range of frequencies up

to ω τ~ ee
−1

 .

If the energy of the electron system relaxes more slowly than the momentum:

τ τ τ εee p<< << ,
      (8.3)

the additional correlation affects only the longitudinal current fluctuations, and only at

frequencies ω τ ε≤ −1

. In the case of nearly elastic scattering by the lattice ( ∆ε << ε ),

the longitudinal spectral intensity of the current fluctuations and the longitudinal noise

temperature can be expressed in terms of the electron and lattice temperatures, the

static differential conductivities, and the electron temperature relaxation time, just as
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in the case of effective electron temperature (3.1), i.e., Eqs. (3.30) and (3.33) also hold

in the case (8.3). However, the contribution of the additional correlation between the

occupation numbers of the single-electron states due to the inter-electron collisions is

different in cases (3.1) and (8.3). In the latter case,

∆ ( )
( ~)

~( )( )
ω

σ σ

σ ω τ
=

−

− +

T

e n T T T

2 2

2
0 0

2 22 1           (8.4)

while in case (3.1) Eq.(3.27) holds. One can easily see from Eq.(8.4) that for “warm”

electrons the correlation contribution in the drifted Maxwelian case does not vanish,

contrary to the electron temperature case (3.1) (see Subsection 3.4).

In the drifted Maxwelian case the relative contribution of the additional

correlation, i.e., the ratio

∆
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depends only on the degree of heating of the electron system and on the non-linearity

of the current-voltage characteristic (in case (3.1) it depended, through ∂σ ∂/ T , also

on the details of scattering mechanisms - see Eq.(3.27)).

Contrary to Eq.(3.27), the sign of 
∆ ( )ω ≤ 0

 as given by Eq.(8.4) is fixed

independently of the details of the scattering mechanisms,

∆ ( )ω ≤ 0
     (8.6)

provided the scattering on the thermal bath is nearly elastic. We conclude that in the

case of frequent inter-electron collisions, Eq.(8.1), and quasi-elastic scattering by the

lattice the additional correlation does not reveal itself in the transverse current

fluctuations and enhances the longitudinal current fluctuations. The inequality
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T T T
n n( ) ( )ω ω≥ =⊥             (8.7)

holds being ensured in this case exclusively by the additional correlation created by

inter-electron collisions.

To conclude the Subsection we note that, in the case of the drifted Maxwellian

distribution (8.2) ensured by the inequalities 
τ τ τ εee p<< ,

, the spectral intensity of

the current fluctuations ( )δ δα β ωj j  contains two characteristic terms: a term

proportional to a.c. small-signal conductivity Re ( )σ ωαβ  (in the low-frequency limit,

also to the symmetrized diffusion tensor βααβ + DD ), and a term proportional to the

correlation tensor )(ω∆αβ . Contrary to this, in the electron temperature case (3.1) the

spectral intensity of the current fluctuations ( )δ δα β ωτε
j j <<1  consisted of three

characteristic terms: that proportional to σαβ , that “transforming” σαβ  into αβD ,

and the correlation tensor αβ∆ .

Therefore the experimental separation of an interesting physical effect - the

contribution made to the current fluctuations by the additional correlation due to

collisions between the electrons - may turn out to be relatively simple in the case of

frequent collisions between the electrons. If it is established independently that the case

τ τ τ εee p<< ,
 is realised in experiment, then to investigate the additional correlation

it is sufficient to compare ( )δ ωj 2

 with Re ( )σ ω  (i.e., it is not mandatory, as in

other cases, to have independently measured ( )δ ωj 2

 and D ). This makes an

experimental investigation of the current fluctuations in the case 
τ τ τ εee p<< ,

 quite

enticing.

9. CONCLUSIONS

Our task was to demonstrate a remarkable progress achieved during the last years

in studies of microwave noise properties of doped semiconductors, or, in more
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theoretical terms, of the fluctuation phenomena in the systems which are non-linear

with respect to the electric field strength and the free-electron density. The systems are

quite interesting from physical – theoretical and experimental – point of view. They

are of great importance for micro- and nano-electronics as well. The progress resulted

from the experimental, Monte Carlo and analytic activities which led to a coherent

understanding of the noise phenomena in doped GaAs. The understanding is expected

to accelerate a progress in the wider field. One of possible future directions of research

is experimental investigation and theoretical interpretation of electronic noise and

electron diffusion in other doped semiconductors (Si, InP, GaN, etc.). The approaches

developed during the last years and outlined in this review open possibilities to treat

fluctuations and electronic noise at a microscopic level also in highly confined electron

gas. Next in turn can be investigation of electronic noise in up-to-date semiconductor

structures and systems with quantum wells and wires, containing two- and one-

dimensional electron gas of high density.
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Perdavimai ir fliuktuacijos netiesinëse disipatyviose sistemose. Tarpdaleliniø

kolizijø rolë

(apžvalginis straipsnis)

R. Katilius, A. Matulionis, R. Raguotis, I. Matulionienë

Šio straipsnio tikslas – apžvelgti šiuolaikinius teorinius ir eksperimentinius

mikrobanginiø elektrinës kilmës triukðmø ir fliuktuacijø puslaidininkiuose

tyrinëjimus. Suderinus analitinius ir Monte Karlo metodus, taip pat þ inomus

eksperimentinius rezultatus apie triukðmus, tapo ámanoma gauti elektronø difuzijos

koeficientus tokiems elektriniams laukams, kuriuose yra reikðmingas elektronø

tarpusavio kolizijø áskaitymas, be to Price’o sàryðis nebûtinai tenkinamas. Straipsnyje

pateikiama svarbiausia informacija, áskaitant naujausius rezultatus, apie metodus ir

pasiekimus ðioje ðiuolaikinëje srityje - srityje, kurioje bûtent netiesinë analitinë ir

skaitinë analizë padeda darniai suprasti ir interpretuoti eksperimentinius rezultatus.
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