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Abstract

A model of an action of the amperometric biosensors based on carbon paste
electrodes encrusted with single microreactor is analyzed. The model is based
on non stationary diffusion equations containing non-linear term related to the
enzymatic reaction. The biosensors current, which is a function of the
concentration gradient of  the reaction product on the electrodes, is used for
analyzing of dynamics of the reaction. An influence of a size of microreactor, a
geometrical form of microreactor and a position of microreactor on the
biosensors action is investigated.
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INTRODUCTION

Recently the amperometric biosensors based on carbon paste electrodes encrusted

with single microreactor (MR) have been constructed for the determination of glucose

and a digital model of the biosensors action has been designed. The model is based on

non stationary diffusion equations containing a non-linear term related to the enzymatic

reaction. In the simplest case this term is expressed by Michaelis-Menten equation:

du
dt

a u

b u
=

+
(1)



where a represents maximal enzymatic rate, b - Michaelis constant and u - substrate

concentration.

The task of this research is an investigation of an influence of geometry of

microreactor on the biosensors action.

MODEL DEFINITION AND REALIZATION

The biosensors action includes heterogeneous enzymatic process (reaction) and

diffusion. The model has been described by a system of non-linear differential equations

of reaction-diffusion type. Due to symmetry, the model in spherical coordinates can be

expressed in two space dimensions
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where u - substrate concentration, v - concentration of the reaction product, t - time,
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The boundary conditions (t>0)
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Here R0 represents a size (radius) of MR solid, R - a size (radius) of a buffer solution that

was about 100 times larger then radius of MR, a is the maximal enzymatic rate, d -

diffusion rate and u0 - initial substrate concentration.

So the model (2)-(5) represents a reaction which performs in a relatively large

capacity. The capacity has been filled by some substrate and a reason of the reaction is

a small microreactor was immersed into the capacity and placed on a base of capacity.

The finite difference technique [3] has been used for discretisation of the model (2)-

(5). We introduced the non-uniform discrete grid to avoid an overloading of calculations

due to the condition R0 << R. An increasing in geometrical progression step of the grid

was used in  r direction though a constant step was used in υ and t directions.

A system of linear equations of finite difference implicit schemes has been written

as a result of appliance of the difference approximation. For decreasing an order of the

system of linear equations the variable direction method [3] has been used. Taking

action the system of equations was reformulated into an iteration process.

The biosensors current is measured to understand dynamics of reaction-diffusion in

real experiment. The biosensors current has been expressed as
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where n = 2 - a number of electrons, F ≈ 9.65⋅104 C/mol - Faraday’s constant.

The calculated biosensor current was compared with the experimental data.

The model (2)-(5) has been used in numeric experiments at the following values of

the parameters:
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The model has been realized in C/C++ programming language, compiled by IBM

VisualAge C++ for OS/2 compiler and it was tested in environment of operating system

OS/2 Warp. The program runs about 20 min to simulate an reaction during 100 s on a PC

based on Intel Pentium 200 MHz with MMX microprocessor.

INFLUENCE OF A SIZE OF MICROREACTOR
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Fig. 1. Dependence of the current on a size of microreactor solid. The microreactor
was modelled as one half of a sphere of radius r, where r is from a set {0.25R0;

0.5R0; R0; 1.5R0; 2.0R0}, R0 and values of all the other parameters are defined above
(7).

A dependence of the MR action on a size of the MR solid was considered. The

model has been tested in case when all the geometric data (a radius of the MR R0 and a

radius of a capacity R) are scaled up or down to some value x and respectively the

diffusion rate d is multiplied by x2. In such case due to symbolic model we must get

values of the current which are multiplied by x3 to compare to the former values, i.e. if

I[Ro,R,d](t) is a function of an argument t and of parameters Ro, R, d, which defines the

current in time t and

′′ = ′ ′′ = ′ ′′ = ′R xR R xR d x d0 0
2, ,
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Calculations corroborated it - tested values did not exceed an error of calculations.

Dynamics of the current was considered in a parametrization of a radius of the MR

only, i.e. a dependence on a size of microreactor solid was considered when the value of

the diffusion rate d and values of all the other parameters were the same as defined

above (7). The MR was one half of a sphere as it is defined in the model definition (2)-(5).

An evolution of the current for the following values of the radius of MR {0.25R0; 0.5R0;

R0; 1.5R0; 2.0R0}, where R0 is the same as above (7), is presented in fig. 1.

As it is possible to notice values of the current (including the maximal current)

grows up if  a radius of the microreactor grows and this growth is not linear.2

INFLUENCE OF A FORM OF MICROREACTOR

Several geometrical figure of the MR solid have been used instead of one half of a

sphere to analyze a dependence of MR action on a form of the MR.

MR has been modelled as a half of a rotation ellipsoid at first. A half of the rotation

ellipsoid, which was used in the investigation, can be expressed in the orthogonal

coordinates as
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where a and c are semi-axises of the rotation ellipsoid. The current has been calculated at

several different semi-axis a and c of a rotation ellipsoid. Volumes of all the rotation

ellipsoids were identical to the volume of a sphere of radius Ro to have the same volume

of MR which was used in real experiments and in test calculations. So, volume of the MR

was not changed, just a geometrical form has been changed. The following variants were

analyzed:

a) a semi-axis c equal to one fourth of a semi-axis a;

b) a semi-axis c equal to one second of a semi-axis a;

c) a semi-axis c equal to a semi-axis a;



d) a semi-axis c equal to double a semi-axis a;

e) a semi-axis c equal to four times a semi-axis a.
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Fig. 2. Dynamics of the current when microreactor is one half of a rotation
ellipsoid. a and c are semi-axises of an rotation ellipsoid in x and z directions

respectively (see (8)). The volumes of all the rotation ellipsoids are identical to
the volume of  a sphere of radius Ro.

A result of calculations at these cases is presented in fig. 2. As it is possible to

notice a form of a MR is important enough for the current and it is especially important in

the beginning of the reaction. In the beginning of the reaction the current grows faster if

an area of a base of the MR solid is greater. Later this importance decreases. A size of an

area of a base of MR is important for maximal current and time of the maximal current.

The maximal current increases and time of the maximal current decreases if the are of the

base of the MR increases even if volume of MR does not change.
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Fig. 3. Dynamics of the current when microreactor is a right round cylinder. r is a
radius of a base of a cylinder and h is an altitude of the cylinder. The base of the
cylinder is on a plane z = 0 and an axis of the cylinder is on Z-axis (in orthogonal
coordinates). The volumes of all the cylinders are identical to the volume of one

half of a sphere of radius Ro (7).

A right round cylinder was the next geometrical figure used in modelling of MR. Let

us assume that r is a radius of a base of a cylinder and h is an altitude of the cylinder.

The base of the cylinder is on a plane z = 0 and an axis of the cylinder is on Z-axis.

Actions of microreactors in form of a cylinder at different radiuses r and altitudes h have

been simulated. Volumes of all the right round cylinders were the same as it was in real

experiment. The result of calculations is presented in fig. 3.

A microreactor was modelled as a right circular cone as well. Let us assume that r is

a radius of a base of a cone and h is an altitude of the cone. The base of the cone is on a

plane z = 0 and an axis of the cone is on Z-axis. Action of microreactors in a cone form at

different radiuses r and altitudes h was simulated. Volumes of microreactors at all the

values of r and h were the same as a volume of the real MR. The result of calculations is

presented in fig. 4.

A half of torus was used as the next geometrical figure of the MR. Let us assume that r is

a radius of a circle which is used in rotation to get the torus and R is a radius of that



rotation about an Z-axis, i.e. R is a distance between the Z-axis and a center of circle

which is rotated around the Z-axis. The center of the circle, which is rotated, is
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Fig. 4. Dynamics of the current when microreactor is a right circular cone. r is a
radius of a base and h is an altitude. A base of the cone is on a plane z = 0 (in

orthogonal coordinates). The volumes of all the cones are identical to the volume
of one half of sphere of radius Ro (7).

on a plane z = 0. Toruses at several different values of both radiuses r and R have been

used to see a dependence of the current on such geometrical form of MR. Volumes of all

the toruses were identical to the volume of a sphere of radius Ro (7). Microreactors in

form of one half of a torus defined by condition z ≥ 0 have been used in calculations. In

special case when R = 0, a MR is a half of a sphere. Dynamics of the current when MR

was modelled as one half of a torus is depicted in fig. 5.

We have ordered all the geometrical figures by three criterions: the maximal current,

the current integral at time [0, 100] (s) and time of the maximal current. The sequences of

geometrical figures (microreactors) are depicted in table 1. As it is possible to notice the

sequences of the geometrical figures ordered by the maximal current and by the current

integral are rather similar. The sequence ordered by time of the maximal current is similar

to an invert  sequence ordered by the maximal current, i.e. in many cases the larger

maximal current is reached in shorter time.
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Fig. 5. Dynamics of the current when microreactor is one half of a torus. r is a
radius of a circle which is rotated to get the torus and R is a radius of that rotation

around an Z-axis (in orthogonal coordinates). The center of the circle which is
rotated is on a plane z = 0. The volumes of all the toruses are identical to the

volume of a sphere of radius Ro (7). (torus.wmf)

Figures ordered by

maximal current

Figures ordered by

current integral

Figures ordered by time of

maximal current

ellipsoid (c = 2a) cylinder (h = 4r) cone (h = 0.25r)

cylinder (h = 2r) ellipsoid (c = 4a) ellipsoid (c = 0.25a)

ellipsoid (c = 4a) cylinder (h = 2r) cone (h = 0.5r)

cone (h = 4r) cone (h = 4r) torus (R = 4r)

cylinder (h = 4r) ellipsoid (c = 2a) cylinder (h = 0.25r)

cone (h = 2r) cylinder (h = r) torus (R = 2r)

cylinder (h = r) cone (h = 2r) ellipsoid (c = 0.5a)

ellipsoid (c = a) ellipsoid (c = a) torus (R = r)

cone (h = r) cone (h = r) cone (h = r)

cylinder (h = 0.5r) cylinder (h = 0.5r) cylinder (h = 0.5r)

torus (R = r) torus (R = r) ellipsoid (c = a)

ellipsoid (c = 0.5a) ellipsoid (c = 0.5a) cylinder (h = r)



cone (h = 0.5r) cone (h = 0.5r) cone (h = 2r)

cylinder (h = 0.25r) cylinder (h = 0.25r) ellipsoid (c = 2a)

torus (R = 2r) torus (R = 2r) cylinder (h = 2r)

ellipsoid (c = 0.25a) ellipsoid (c = 0.25a) cone (h = 4r)

torus (R = 4r) cone (h = 0.25r) ellipsoid (c = 4a)

cone (h = 0.25r) torus (R = 4r) cylinder(h = 4r)

Table 1. Sequences of geometrical figures (microreactors) sorted numerically in
ascending order by the maximal current, the current integral at up to 100 s and

time of maximal current.
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Fig. 6. Dependence of the maximal current on a ratio of a base area to a distance
between a center of weight of the microreactor and the base of the microreactor.

The open triangles shows values of the maximal current were calculated. The
solid line is a polynomial of order two fit to that values of the maximal current.
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Analysis of dynamics of the current in all the cases of geometry of microreactor

grounded an idea that the dynamics of the current depends mainly on an area of a base

of a microreactor and a distance between a center of weight of the microreactor and the

base of the microreactor. A dependence of the maximal current on a ratio of a base area

to a center of weight of the MR is shown in fig. 6 and a dependence of time of the



maximal current on the same ratio is presented in fig. 7. As it is possible to notice the

maximal current grows polynomially and time of the maximal current decays
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Fig. 7. Dependence of time of the maximal current on a ratio of a base area to a
distance between a center of weight of the microreactor and the base of the

microreactor. The open triangles shows values of time of the maximal current were
calculated. The solid line is an exponential decay with offset fit to that values of

the time of the maximal current.

exponentially if the ratio of a base area to a distance between a center of weight of the

microreactor and the base of the microreactor increases.

INFLUENCE OF A POSITION OF MICROREACTOR

In all the numeric experiments discussed above and in the real experiments the MR was

on a base of the capacity. We investigated the dynamics of the current when MR was

lifted up. Because the current arises when some concentration of the reaction product

appears on the base of the capacity, the current arises with delay if the MR solid is lifted

up. The time of delay depends on a altitude. It was a reason why we simulated the

reaction for a longer time than it was in previous numeric experiments. The MR in form of

sphere was used for analyzing. A radius of the MR to be lifted up was derived from R0,

where R0 is defined above (7), to have a volume of the MR the same as it was in test



experiments, when MR was modelled as one half of a sphere. Let us assume that h is a

altitude of a MR, more precisely h is a distance between a center
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Fig. 8. Dynamics of the current when microreactor is lifted up a base of a capacity.
A MR is a sphere of a radius r. A volume of the sphere is equal to a volume of

one half of a sphere of radius Ro (7). h is a distance between a center of MR and a
base of the capacity.

of MR and a base of the capacity. A result of numeric experiments at several values of

the altitude h is shown in fig. 8. As it is possible to notice the altitude of MR is very

important for dynamics of the current. The delay increases and the current grows much

more slower if altitude increases.
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