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Abstract

It is proved an uniform on compact sets approximation by mean of the
general Dirichlet series.

Let s = o 4 it be a complex variable, {\,,, m € N} be an increasing sequence
of real numbers such that lim A,, = 400, and let {a,,, m € N} be a sequence of

m— 00
complex numbers (N denotes the set of all natural numbers). The series

oQ

Z amem? (1)

m=1

is called a Dirichlet series with coefficients a,, and exponents A,,. It 1s well known
that the region of the convergence as well as of the absolute convergence of Dirichlet
series is a half-plane. Suppose that the series (1) converges absolutely, for o > o,
and denote its sum by f(s). Then we have that f(s) is a regular function on the
half-plane o > o,.

Suppose that the function f(s) is analytically continuable to the region o >
04 — 09, Where gy > 0. Denote by B a number (not always the same) bounded by

a constant. Let, for o > o, — 0y,
f(s) = Bl Jt] > to, (2)

with a certain constant @ > 0, and

T
/|f(a—|—it)|2dt:BT, T — 0. (3)

o

In the theory of Dirichlet series an approximation by mean of the function f(s)

by absolutely convergent Dirichlet series plays an important role. This is done,



see, for example, [1], for ordinary Dirichlet series for which A,, = logm. The aim
of this note is to obtain a result of a such kind for general Dirichlet series (1).
Let o1 > 0g. We define a function

ln(s) = iF(i) et o€ [—0o1,0].
01 01

Here, as usual, T'(s) denotes the Euler gamma-function. We will consider, for

o> o, — 0g, the following function

o1+100
1 dz
R =N IFCEECE
In view of the equality
IT(s)| = V2r [t|7=YV2e=m12 (1 4 Ble|=Y),  Jt] > to,

and of the condition (2) we have that the integral for f,(s) exists.

LEMMA. We have

oQ

fn(s) = Z am exp{ _ e(>\m—>\n)01}e—>\ms ’
m=1
the series being absolutely convergent for ¢ > o, — 0y.
Proof. Since o1 > o, we see that o+ o1 > 4. Hence the function f(s+ z) for

Re z = o1 can be presented by the absolutely convergent Dirichlet series

fls+2) = i ame " Amst2),
m=1
Let .
o14ioco
bo(m) = i / ln(s)e_Ams %,
and consider the series -
> ambn(m)e™rme. (4)
m=1

In view of the estimate

bo(m) = Be=*mo1 / |ln (o1 + it)|dt = Be™mo1

— 00



the series (4) absolutely converges for ¢ > o, — 0. Therefore we may change sum

and integral in the definition of f,(s). This gives

o1+100

= 1 dz >
_ —Am s —Anz _ —Am s
fals) = mZ::l G, € 9 / lh(2)e — = mZ::l ambn (m)e . (5)
For positive b and ¢ the following formula
c+ioo
1 / [(s)b™ " ds=e"
o ) VT TS
is true [2]. Consequently,
o1+i00
bo (1) = L / ip(i)e—(km—kn)s ds _
2m o1 o1 s
o1+i00
L F(i)e(Am—An)(—S/ol)al d(i) —
2me ) o1 o1

exp { — e(Am_A")Ul}.

This together with (5) proves the lemma.
Denote by D the half-plane o > o, — 0.

THEOREM. Let K be a compact subset of D. Then

T
- 1 . .
lim hmsup—/sup |f(5—|—z7') —fn(5+zr)|d7': 0.
T seK

n—o0 T00

Proof. We begin with the change of the contour of integration in the definition
of fn(s). Clearly, the integrand in the definition of f,,(s) has a simple pole at the
point z = 0. Let ¢ > 0 and o1 > 0 be such that ¢ belongs to [o, —0¢+¢, 1] when
s € K. We take

€
0o = 04 — 00+ —.

2

Then the residue theorem yields for ¢ € [0, — 0¢ + €, 01]

o5 —0+1i00
fn(s):% / f(s—l—z)ln(z)%—l— £(s). (6)



Let L be a simple closed contour lying in D and enclosing the set K, and let
denote the distance of L from the set K. Then by the Cauchy formula

. 1 z4+i17) — folz +i7)dz
s in) = o [ 4= hle i)

Z— S8

f(s+ir) —

bl

where s € K, we have

1
sup|f(5—|—i7')—fn(5—|—i7') S_(S/ fle+ir) = folz +ir ||dz|
seK

L

Therefore, for sufficiently large T', we obtain

/sup|f5—|—z7' fn(5—|—i7-)|d7-:

B|L| _
T6/|dz|/|f (Rez 4+ i) — fn(Rez +ir) |d7'—|— T~ (7)
27
Bt B Sup/|f(a+it)—f (o +it)|dt.
Ts T ser n

Here |L] is the lenght of the contour L. Now we choose the contour L so that, for
se L,

o> 0, — 0 —1—3—6 5> <.
= Uq 0 4a =
The formula (6) for such o yields
flo+it) — folo+it) = /|f0'2—|—zt—|—z7'||l 0'2—0'—|—zr|d7'

— 00

Hence, for the same o, we find that

%/|f(a+it)—fn(a—|—it)|dt:
0

[7|+2T (8)

B/|ln(0'2—0'—|—i7')|% / |f(0'2—|—it)|dtd7'.

=17l



Taking into account the estimate (3), we obtain that

|7|4+2T |7|+2T 1/2
/ | fo(on+it)| dt < / | f2(o2 + it)|2 dt (2T+2|T|)1/2 = B(2T+2|7|).
=I7| =I7|
Thus, (8) implies the estimate
. 27
Tsup/|f(0'—|—it) —fn(0'+it)|dt:
sgL 0
Bsup/|l 0'2—0'—|—zt)|<1—|—||) (9)
sEL g

B sup /|l 0'—|—zt|1—|—|t|)

[—o1,—¢/4]

However, the definition of I, (s) gives

lim sup /|l 0'—|—zt (1—|—|t|)

n—>oo —o1 ,—6/4
This, (7) and (8) completes the proof of the theorem.
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