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Abstract

A review of recent ideas in the �eld of generalized synchronization of chaos

is presented. This �eld is concerned with a generalization of the concept

of conventional (identical) chaotic synchronization to the case of one-

way coupled nonidentical chaotic systems. Generalized synchronization

is taken to occur if, ignoring transients, the response system becomes

uniquely determined by the current state of the driving system, i. e., all

trajectories in the phase space are attracted to a complex synchronization

manifold that may have a fractal structure. Di�erent tools for detecting

and analyzing the properties of this type of synchronization are discussed.

INTRODUCTION

The cooperative behavior of coupled dynamical systems is becoming to an

important �eld of nonlinear dynamics. Synchronization e�ects in systems with

periodic behavior are widely used in engineering, for example, for improvement of

the line width of a high-power generator with the help of a low-power generator

having a narrower spectral line.

In recent years, the synchronization of coupled chaotic systems has become

an area of active research. The motivation for these investigations derived from

possible applications of this phenomenon to secure communications [1], the long-

term prediction of chaotic systems [2], controlling chaos [3], the model veri�cation

of nonlinear dynamics [4], or the estimation of model parameters [5]. Also, un-

derstanding the synchronization process is important for e�cient control of the

spatiotemporal chaos that occurs in various complex systems such as laser arrays

[6] or cardiac systems [7].

A generic feature of nonlinear systems exhibiting chaotic motion is extreme

sensitivity to initial conditions. This feature, known as the \butter
y e�ect",

would seem to defy synchronization among dynamical variables in coupled chaotic



systems. Nonetheless, coupled systems with certain properties of symmetry may

exhibit synchronized chaotic motions. Most frequently a situation is studied where

the complete system consists of coupled identical subsystems. Many di�erent exam-

ples of this type have been introduced [2, 8, 9]. In these cases, the synchronization is

easy to detect. It appears as an actual equality of the corresponding variables of the

coupled systems as they evolve in time. Geometrically, this implies a collapse of the

overall evolution onto the identity hyperplane in the full phase space. As suggested

in [10], we refer to this type of synchronization as an identical synchronization (IS).

A more complicated situation arises when coupled non-identical chaotic systems

are investigated. For essentially di�erent chaotic systems, the phase space does

not contain any trivial invariant manifolds from which one can expect a collapse of

the overall evolution. The central questions in this case are (i) how to generalize a

mathematical de�nition of chaotic synchronization for such systems and (ii) how

to detect it in a real experimental situation. Recently, two approaches have been

suggested in order to answer these questions. One of them [11] uses the concept

of an analytical signal and introduces an instantaneous phase and amplitude for

the chaotic process. The synchronization appears as locking of the phases of

the coupled systems, while the amplitudes remain uncorrelated. This type of

synchronization is identi�ed as a phase synchronization. Another approach [12] is

based on the concept of the functional relationship between the variables of the

coupled subsystems. It becomes particularly attractive in connection with a recent

publication of Rulkov et al. [13]. They restricted their consideration to the case of

forced synchronization. This means that the full system consists of an autonomous

driving subsystem that is one-way linked to a response subsystem. Generalized

synchronization (GS) is taken to occur if, ignoring transients, the response Y (t)

is uniquely determined by the current drive state X(t). That is, Y (t) = �(X(t)),

where � is a mapping that takes the trajectories X(t) of the attractor in the driving

space to the trajectories Y (t) in the response space. For non-identical driving and

response systems, the map di�ers from identity, which complicates the detection of

GS. To recognize GS in a real experimental situation, Rulkov et al. [13] suggested

a practical algorithm based on the assumption that � is a smooth (di�erentiable)

map. The algorithm was tested on arti�cially constructed examples with an a

priori known map �. Subsequent progress of GS theory was achieved in recent

publications [10, 14, 15,16, 17, 18]. Depending on the properties of the map �, two

di�erent types of GS were discovered [16], namely, strong synchronization (SS) and

weak synchronization (WS), which are characterized by a smooth and a nonsmooth
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(fractal) map �, respectively.

The main goal of this chapter is to review the recent ideas of GS theory.

Particularly, we focus on di�erent numerical and experimental tools for detecting

GS and analyzing its properties. In Sec. 1, we brie
y describe the main ideas

de�ning the concept of GS. In Sec. 2, we introduce some numerical characteristics

to estimate the properties of the synchronization manifold. With the help of

various examples, we show that GS may appear in two di�erent states, referred to

as WS and SS. In Sec. 3, we show that at the threshold of WS the system exhibits

a new type of on-o� intermittency. Unlike the conventional on-o� intermittency,

where the system dynamics is determined by the escape of trajectories from an

unstable smooth hyperplane, this intermittency is characterized by the escape of

trajectories from an unstable fractal manifold. Sec. 4 is devoted to the detection

of GS from time series analysis. A special algorithm for estimating conditional

Lyapunov exponents from two scalar data sets, one taken from the driving system

and the other taken from the response system, is described. Sec. 5 contains the

conclusions of our review.

1. GENERALIZED SYNCHRONIZATION OF CHAOS

Let us consider one-way coupled chaotic systems of the following general form

(master-slave con�gurations or systems with a skew product structure):

_X = F (X); (1)

_Y = G(Y;X): (2)

Here X � fx1; x2; : : : ; xdg is a d-dimensional state vector of the driving system

and Y � fy1; y2; : : : ; yrg is an r-dimensional state vector of the response system.

F and G de�ne the vector �elds of the driving and response systems.

One can show [10,14] that there exists some mapping � (not necessarily smooth

[16]) between X and Y if, under the action of driving perturbations, the response

system \forgets" its initial conditions, i. e., when the response system becomes a

stable system [19]. This suggests an auxiliary system approach [14] as a tool for

detecting GS in an experiment. According to this approach, it is supposed that

we are able to construct an auxiliary response system Y 0 that is identical to Y and

to link it to the driving system X in the same way that Y is linked to X1:

_Y 0 = G(Y 0; X): (3)

1The related problem of synchronizing identical systems that are driven by random noise has

been considered in [20]
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Due to the identity of the original [Eq. (2)] and the auxiliary [Eq. (3)] response

systems, they may exhibit IS. GS between X and Y occurs if there is IS between

Y and Y 0. To show [16] that IS between Y and Y 0 results in the relationship

Y = �(X), let us denote the solution of Eqs. (1), (2) by X(t) = 	x(X0; t) and

Y (t) = ~	y(X0; Y0; t), where X = X0 and Y = Y0 are the initial conditions at t = 0.

If the driving dynamics is invertible,X0 = 	x(X(t);�t), the response solution can

be rewritten as Y (t) = ~	y(	x(X(t);�t); Y0; t) � 	y(X(t); Y0; t). IS between Y

and Y 0 implies limt!1 kY �Y 0k = limt!1 k	y(X(t); Y0; t)�	y(X(t); Y 00 ; t)k = 0

for arbitrary initial conditions Y0 and Y 00 taken in some region of Y space. From

this it follows that 	y is asymptotically independent of Y0. As t!1, 	y is also

independent of the explicit time t. Indeed, let ~Y 00 = 	y(X(~t); Y 00 ; ~t) be the state

of the system Y 0 at an intermediate time ~t < t. Then the state of the system Y 0

at time t can be expressed as Y 0(t) = 	y(X(t); ~Y 00 ; t� ~t) and the synchronization

condition becomes limt!1 k	y(X(t); Y0; t)�	y(X(t); ~Y 00 ; t�~t)k = 0 for any ~t < t.

It follows that as t ! 1, 	y is independent of both Y0 and the explicit time t.

Thus, in the limit t!1, we obtain a relationship between X and Y in the form

Y = limt!1	y(X(t); Y0; t) � �(X(t)).

GS guarantees that the asymptotic dynamics of the response system is in-

dependent of its initial conditions and is completely determined by the driving

system. Geometrically, this implies a collapse of the overall evolution onto a stable

synchronization manifold M = f(X;Y ) : �(X) = Y g in the full phase space of

the two systems X � Y . It is easy to show [14] that the linear stability of the

identity manifold Y 0 = Y in the extended phase space X � Y � Y 0 is equivalent

to the linear stability of the manifold M = f(X;Y ) : �(X) = Y g in the original

X�Y phase space. The linear equations that govern the evolution of the quantities

�Y = Y � �(X) and �Y 0 = Y � Y 0 are equivalent:

� _Y = DYG(Y;X(t))�Y; (4)

� _Y 0 = DYG(Y;X(t))�Y 0: (5)

Here DYG denotes the Jacobian matrix of the response system with respect to the

Y variable, where Y = Y (t) = �(X(t)) is de�ned by Eqs. (1), (2). Therefore, if the

manifold of synchronized motions inX�Y �Y 0 is linearly stable for �Y 0 = Y �Y 0,

than it is linearly stable for �Y = Y ��(X) and vice versa. Note that the linearized

equations for �Y 0 = Y �Y 0 are identical to the equation that de�nes the conditional

Lyapunov exponents (CLEs) for the response system �R1 � �R2 � : : : � �Rr [8]. Both

4



manifolds Y 0 = Y and Y = �(X) are stable when all CLEs are negative. Thus,

the condition of GS is �R1 < 0.

We have thus demonstrated that to study the transition to GS, the analysis of

the stability of the synchronization manifold in the space X �Y , which in general

may have a very complex shape Y = �(X), can be replaced by the analysis of the

stability of the simple identity manifold Y = Y 0 in Y � Y 0 space.

2. WEAK AND STRONG SYNCHRONIZATION

Properties of the synchronization manifold

Note that IS between Y and Y 0 does not guarantee the smoothness of � [16].

The synchronization manifold M = f(X;Y ) : �(X) = Y g can have a fractal

structure. Ding et al. [21] have illustrated that nonsmooth (fractal) maps do not

preserve the dimension of strange attractors. As a simple example of this type, let

us consider the Weierstrass function y = Fw(x) �
P
1

n=1 cos(n
�x)=n�. It speci�es

a continuous (C0) but non-di�erentiable map of points on the x-axis (with the

dimension equal to 1) to points on the Weierstrass curve x! [x; y = Fw(x)] with

a fractal dimension between 1 and 2 for typical values of � and � satisfying 1 <

� < �. Recently, Sauer and Yorke [22] gave a criterion for dimension preservation.

They provide a theorem which shows that continuously di�erentiable (C1) maps

preserve the dimension of strange attractors.

Thus, depending on the properties of the synchronization manifold, GS can

be subdivided into two types. For the continuous C0 but nonsmooth map �, the

global dimension of the strange attractor dG in the whole phase space X � Y is

larger than the dimension of the driving attractor dD in the X subspace, dG > dD.

We refer to this type of synchronization as WS. For smooth � with degree of

smoothness C1 or higher, we expect that the response system does not have e�ect

on the global dimension, i. e., dG = dD. This type of synchronization we call SS.

Obviously, IS is a particular case of SS.

The threshold of SS can be estimated from the Kaplan-Yorke conjecture [23],

in the same way that Badii et al. determined the condition at which a linear

low-pass �lter does not in
uence the dimension of �ltered chaotic signals [24].

Note that for systems with a skew product structure described by Eqs. (1), (2),

the CLEs represent a part of the whole Lyapunov spectrum �1; �2; : : : ; �r+d of

this system. The remainder of this spectrum consists of Lyapunov exponents

�D1 � �D2 � : : : � �Dd of the driving system (1). In other words, to obtain the whole

spectrum of Lyapunov exponents of system (1), (2) in the usual (descending) order,
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�1 � �2 � : : : � �r+d, the combined spectrum of the driving Lyapunov exponents

and the CLEs �D1 ; �
D
2 ; : : : ; �

D
d ; �

R
1 ; �

R
2 ; : : : ; �

R
r have to be resorted in order of their

numerical size. If the whole spectrum of the Lyapunov exponents is known,

then one can extract information about the properties of the synchronization

manifold. Using the Kaplan-Yorke conjecture [23], the dimensions dG and dD

can be estimated as follows:

dG� = lG +
1

j�lG+1j

lGX
l=1

�l; (6)

dD� = lD +
1

j�DlD+1j

lDX
l=1

�Dl ; (7)

where lG and lD are the largest integers for which the corresponding sums over l

are nonnegative. The lower index � indicates that these dimensions are calculated

from the Lyapunov exponents. The global Lyapunov dimension is independent of

the response system (dG� = dD� ) at the condition [16] �
R
1 < �DlD+1. If this condition

is ful�lled and relations (6) and (7) are valid, we have SS.

The smoothness of � can be also estimated by a more direct criterion, namely,

by determining the mean local \thickness" � of the synchronization manifold [16].

Let us consider a set of points [Xi]
N
i=1 � [X(ti)]

N
i=1 and [Yi]

N
i=1 � [Y (ti)]

N
i=1 in the

spaces of the coupled systems coming from �nite segments of trajectories sampled

at the moments ti = i�t. Pick an arbitrary point Xk and �nd its Nn > d r

neighbors Xj whose distance fromXk is less than �; kXj�Xkk < �, j = 1; : : : ; Nn.

Suppose that, for small �, the points Xj are related to their images Yj by a linear

map Yj � Yk = Ak(Xj �Xk), where Ak is a d� r matrix, whose elements can be

determined by a least-squares �t. Then the square of the local thickness of the

synchronization manifold at the point Xk can be estimated as �2k =
PNn

j=1[Yj �

Yk � Ak(Xj � Xk)]
2. The mean thickness � is obtained by averaging the local

values, � =

qPN

k=1 �
2
k=N .

Now we illustrate some properties of GS with speci�c examples. As usual

in such problems, we start with discrete time systems. At �rst we consider

coupled identical subsystems which can exhibit IS and show that even in this case

WS appears for coupling strength below the threshold of IS. The last example

illustrates GS in essentially di�erent coupled time-continuous systems.

Numerical examples
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Coupled Logistic Maps. Let us consider a simple example of two one-way

coupled identical one-dimensional logistic maps:

x(i + 1) = f(x(i)); (8)

y(i + 1) = f(y(i)) + kff(x(i)) � f(y(i))g (9)

with f(x) = 4ax(1 � x) and a = 1. Here Eqs.(8) and (9) describe the driving

and response systems, respectively, k is the coupling strength. At 0 < k < 1, the

coupling term in Eq.(9) preserves the global stability of the response system, since

0 < (1 � k)f(y(i)) + kf(x(i)) < 1 at any x(i) and y(i) lying in the interval [0; 1].

To observe GS, we consider an auxiliary response system

y0(i + 1) = f(y0(i)) + kff(x(i)) � f(y0(i))g (10)

identical with the original response system (9), but having a di�erent initial

condition than that of system (9). We emphasize that this system does not

in
uence the dynamics of the original response and driving subsystems described

by Eqs. (8), (9). It serves only to detect the properties of the system (8), (9).

At any coupling strength k, Eqs. (8), (9) have an invariant manifold y = x

and, hence, admit IS. The case of identical systems is interesting, since it provides

a simple criterion for SS. SS for such systems is equivalent to IS. Indeed, the

identity diagonal y = x is an invariant manifold of the system (8), (9). If it is a

stable manifold, the variables of the response and driving systems are related by

the identity map y(i) = x(i), which obviously is smooth. Thus, SS can be simply

detected as IS between the driving and response systems.

Fig. 1 shows the phase portraits of the system for the logistic map in x-y and

y-y0 coordinates at a = 1 and for various values of parameter k. With the increase

of k, synchronization occurs �rst between y and y0 and, later on, between x and

y. Thus, GS in the form of WS is observed even for identical systems, and

it precedes SS. The thresholds of WS and SS are determined by two di�erent

Lyapunov exponents, namely, the CLE

�R = ln(1� k) + lim
n!1

1

n

nX
i=1

ln jf 0(y(i))j (11)

de�ning the stability of the invariantmanifold y0 = y, and the transverse Lyapunov

exponent of the identity manifold y = x

�I = ln(1� k) + lim
n!1

1

n

nX
i=1

ln jf 0(x(i))j: (12)
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Fig. 1. x-y and y-y0 phase portraits of coupled logistic maps for various values

of the coupling strength k: (a) k=0.1, unsynchronized state; (b) k=0.4, WS;

(c) k=0.6, SS.

The dependence of these exponents on k is shown in Fig. 2(a). �R(k) becomes zero

at two characteristic values of the coupling strength kw and ks, corresponding to

the thresholds of WS and SS, respectively. Above the latter threshold k > ks, these

two exponents coincide, �I(k) = �R(k). For the logistic map, Eq. (12) transforms

to �I(k) = ln(1 � k) + �D , where �D = ln 2 is the Lyapunov exponent of the

driving system and the threshold of SS is equal to ks = 1� exp(��D) = 0:5.

In a real experiment, IS between the systems Y and Y 0 will be partially

disturbed by noise and the small mismatch between the parameters of these

systems. These factors will result in a �nite amplitude of the deviation Y 0 � Y .

Numerical analysis shows that the r.m.s. of this deviation sRR =
p
h(Y 0 � Y )2i

depends on the amplitude of the noise �n by a power law sRR / �
n. In the case

of Eqs. (8), (9) and (10), 
 � 0:12 for WS and 
 = 1 for SS [see the insert in

Fig.2(a)]. The same scaling laws are observed for sRR vs �a, where �a is the
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Fig. 2. (a) Conditional �R and identity �I Lyapunov exponents, (b) correlation
dimension dc of the attractor in the x-y plane, (c) thickness � and cross

correlator Kxy for coupled logistic maps as functions of coupling strength k.

�
R and �

I are calculated from Eqs. (11) and (12), respectively. dc and � are
determined from N=50000 data points (x(i); y(i); i = 1; : : : ;N). The insert in

(a) shows the deviation s vs the amplitude of noise �n: (1) unsynchronized

state at k = 0:3; (2) WS at k = 0:4; (3) SS at k = 0:6. At every iteration,
random numbers uniformly distributed in the interval [��n=2; �n=2] have been

added to the variables of Eqs. (8), (9) and (10).

deviation between the parameters of the systems y and y0 [a = 1 for Eqs. (8), (9)

and a = 1��a for Eq. (10)]. Thus, WS is much more sensitive (
 < 1) to noise

and parameter deviations than SS (
 = 1).

WS observed with the help of an auxiliary response system y0 may show no

evidence in x-y coordinates. At kw < k < ks, there exists a relationship y = �(x),

however, the map � is nonsmooth and has a fractal structure [Fig.1(b), left]. The

global correlation dimension [25] dGc of an attractor lying in the x-y plane does

not exhibit any characteristic changes at the threshold kw [Fig.2(b)]. An abrupt

dimension decrease is observed only at the threshold ks, where � is turned to

identity. At the threshold of WS, there are no characteristic changes in the cross-

correlator Kxy between x and y variables [Fig. 2(c)], although here this correlation

is rather large, Kxy(kw) � 0:71. WS similarly shows no evidence in the mean local

thickness � of the synchronization manifold [Fig.2(c)]. The thickness � decreases
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abruptly only at k = ks, like the dimension dGc . At k > ks, � becomes a smooth

map; the thickness � turns to zero and the global dimension dGc becomes equal to

the dimension dDc of the strange attractor of the driving system, dGc = dDc = 1.

Although this example is based on an noninvertable logistic map, similar e�ects

are observed in coupled invertable H�enon maps.

Coupled H�enon Maps. The second example represents two identical one-way

coupled invertable H�enon [26] maps

�
x1(i+ 1)

x2(i+ 1)

�
=

�
f [x1(i); x2(i)]

bx1(i)

�
(13)

�
y1(i + 1)

y2(i + 1)

�
=

�
(1� k)f [y1(i); y2(i)] + kf [x1(i); x2(i)]

by1(i)

�
(14)

where f [x1; x2] = 1 � ax21 + x2, a = 1:4, b = 0:3, and k is the control parameter

de�ning the coupling strength. At any k, this system (like the to a previous

example) has an invariant manifold Y = X and, hence, admits IS which is

equivalent to SS. IS appears when the identity manifold Y = X becomes stable.

The linear stability of this manifold is described by the variational equations

�
�y1(i + 1)

�y2(i + 1)

�
=

�
�2(1� k)x1(i) 1

b 0

��
�y1(i)

�y2(i)

�
(15)

de�ning the two transverse Lyapunov exponents �I1 and �I2. The dependence of

the maximal transverse Lyapunov exponent �I1 on k is shown in Fig. 3. It becomes

negative when k exceeds some threshold k > k3 � 0:34. Before reaching this

threshold, the system exhibits GS in the form of WS. This conclusion can be

made by analyzing the CLEs of the response system. They are determined from

the variational equations

�
�y01(i + 1)

�y02(i + 1)

�
=

�
�2(1� k)y1(i) 1

b 0

��
�y01(i)

�y02(i)

�
(16)

de�ning the dynamics of small deviations �Y 0 = Y � Y 0, where Y 0 is the variable

of the auxiliary response system constructed in accordance with Eq. (14). The

dependence of the maximal CLE �R1 on k is also presented in Fig. 3. In the general

case, the exponent �R1 di�ers from �I1 when the driving and response systems are

not synchronized in the sense of IS. They coincide only in the domain of the control

parameter k, where �I1(k) < 0. If we suppose that the identity plane Y = X is

the only invariant smooth manifold of the system, the conditions of WS can be

expressed as �R1 (k) < 0, �I1(k) > 0. The �rst condition guarantees the existence of
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Fig. 3. (a) Maximal conditional �R1 and identity �
I
1 Lyapunov exponents as

functions of the coupling strength k for one-way coupled H�enon maps. The

interval k1 < k < k2 corresponds to WS. At k > k3, the systems (13), (14)
exhibit identical behavior corresponding to SS.

a stable synchronization manifold and the second condition shows that the smooth

identity manifold Y = X is unstable.

Thus, WS is observed in the interval k 2 [k1; k2], k1 � 0:16, k2 � 0:20. Here,

the maximal CLE is negative, while the maximal transverse Lyapunov exponent

is positive. This means that the systems Y and Y 0 are synchronized in the sense

of IS and there is no IS between X and Y .

Coupled R�ossler and Lorenz systems. As a third example, we present GS in

essentially di�erent time-continuous systems:

d

dt

0
@ x1

x2
x3

1
A = �

0
@ �x2 � x3

x1 + 0:2x2
0:2 + x1x3x1 � 5:7x3

1
A ; (17)

d

dt

0
@ y1

y2
y3

1
A =

0
@ 10(�y1 + y2)

by1 � y2 � y1y3
y1y2 � 8=3y3

1
A + k

0
@ 0

x2
0

1
A (18)

. These equations describe the coupling of the R�ossler [27] [Eqs. (17), driving] and

the Lorenz [28] [Eqs. (18), response] systems. The multiplier� = 6 is introduced to

control the characteristic time scale of the driving system. Here the parameter b is

chosen to be b = 28. The perturbation kx2 is applied only to the second equation

of the Lorenz system and does not contain any feedback term. In addition to

Eqs. (17), (18) we consider an auxiliary response system which is equivalent to the

system of Eqs. (18) except that the variables yi are replaced with y0i.
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R
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G
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G
�

dimensions, (c) thickness �, and (d) deviation s for coupled R�ossler and Lorenz

systems as functions of the coupling strength k. dc and � are calculated
from N=50000 data points (X(i�t), Y (i�t); i = 1; : : : ;N) with �t=0.5. The

points in (a) and (b) show the maximal CLE and global Lyapynov dimension,

respectively, calculated from time series (see Sec. 4. The insert in (c) shows s
vs the deviation of the parameter �b: (1) unsynchronized state at k=5; (2)

WS at k = 10; (3) WS at k = 20; (4) SS at k = 50.
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Despite the lack of any symmetry in Eqs. (17), (18) admitting IS, this system

can exhibit GS. As in the previous examples, GS can easily be detected as IS

between Y and an auxiliary response system Y 0. The threshold of GS is determined

by �R1 (k) = 0 and is equal to kw � 6:66 [Fig.4(a)]. In this model, the onset of

GS is characterized by a considerable decrease of both the dimension [Fig.4(b)]

and the thickness of the map [Fig. 4(c)]. However, the mean local thickness of the

synchronization manifold remains rather large. This means that here we actually

have the transition to WS. In the case of a driving system presented by a three-

dimensional 
ow, the condition of SS de�ning the equality of the global and driving

Lyapunov dimensions dG� = dD� becomes �R1 (k) < �D3 . For the system of Eqs. (17),

we have �D1 � 0:41, �D2 = 0, �D3 � �37:66 and the driving Lyapunov dimension is

equal to dD� = 2+ �D1 =j�
D
3 j � 2:01. Because of the large negative value of �D3 , the

condition �R1 (k) < �D3 is not achieved even for very large k � 1000, and we have

WS for all k > kw. Although the rigorous criterion of WS dG� (k) > dD� is ful�lled for

all k > kw, the global dimension goes down to a value approximately equal to the

driving dimension at k>�40. Here, the global dimension is dG� (k) = 2+�D1 =j�
R
1 (k)j

and, since �D1 =j�
D
3 j � 1 and �D1 =j�

R
1 � 1, we have dG� (k) � dD� � 2. Therefore,

one can conclude that the synchronization manifold is almost smooth at k>�40.

This conclusion is con�rmed by the dependence of the mean local thickness � on

k; at k>�40, the thickness becomes very small. Thus, the region k>�40 can be

interpreted as a domain of not fully developed SS.

Fig. 4(d) shows the in
uence of a small mismatch between the parameters of

systems Y and Y 0 in the case of Eqs. (17), (18). The parameter b of the system Y 0 is

replaced by b+�b. For �nite �b, the two pronounced thresholds in the dependence

sRR =
p
h(Y 0 � Y )2i vs k related to the onset of WS and not fully developed SS

are observed. The last threshold is conditioned by the di�erent sensitivities of

the smooth and nonsmooth synchronization manifold to the parameter deviation;

sRR / �b
 with 
 � 0:2 for kw < k < 40 and 
 � 1 for k>�40. These di�erent

scaling laws (
 = 1 for the smooth manifold and 
 < 1 for the nonsmooth

manifold) can serve as a practical criterion for estimating the smoothness of the

synchronization manifold in experiments.

3. ON-OFF INTERMITTENCY

A recent publication of Platt, Spiegel, and Tresser [29] has inspired great in-

terest to a particular behavior of nonlinear systems known as on-o� intermittency.

This behavior derives its name from the characteristic two-state nature of the
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intermittent signal. The \o�" (laminar) state is nearly constant and can remain

so for very long periods of time. The \on" state is a burst, departing quickly from,

and returning quickly to, the o� state. Such behavior occurs in dynamical systems

with certain symmetry properties. The chaotic attractor of such systems lies on a

smooth invariant manifold (usually a hyperplane) having a lower dimension than

the dimension of the full phase space. This attractor may become a repeller at

the blow-out bifurcation [30]. The on-o� intermittency is observed just above

this bifurcation threshold. Initially, this intermittency was discovered numerically

in the system of coupled identical chaotic maps [31]. Later, it was investigated

in various mathematical models, such as a set of coupled ordinary di�erential

equations [29], random maps [32], and random map lattices [33], as well as various

physical systems, such as particle motion in a symmetrical potential [34], electronic

circuits [35], and high power ferromagnetic resonance [36].

Here, we show [18] that the class of nonlinear chaotic systems exhibiting on-o�

intermittency can be essentially extended. On-o� intermittency may appear in

systems that do not possess any trivial invariant manifolds. It may occur in any

dynamical system consisting of two one-way coupled chaotic subsystems at the

threshold of WS.

Let us illustrate this with the simple example of two one-way coupled logistic

maps [Eqs. (8), (9)] considered in Sec. 2. In the region of coupling strength kw <

k < ks, we have IS between the original and auxiliary response systems y(i) = y0(i)

and have no IS between the driving and original response systems y(i) 6= x(i). This

corresponds to WS between the driving x and original response y systems. Here,

the identity manifold y = x is unstable and the overall dynamics in the x-y plane

collapses to another invariant synchronization manifold M = f(x; y) : y = �(x)g

that has a fractal structure. This manifold is shown in Fig. 5(a) (left) just above

the threshold of WS. The IS between y and y0 [Fig.5(a), right] testi�es to the

stability of this manifold. Just below the threshold of WS (k < kw), the CLE

becomes positive, �R(k) > 0. This means that the fractal synchronization manifold

responsible for WS becomes unstable. Close to the threshold, we can expect that

the system spends a long time in the vicinity of the manifold and experiences short

bursts away from this manifold. Fig. 5(b) shows the x-y and y-y0 phase portraits

just below the threshold of WS. The expected intermittent behavior is not seen

in x-y coordinates. However, it can be detected with the help of an auxiliary

response system (10). A typical structure for intermittent behavior is seen in y-y0

coordinates. Fig. 6 illustrates the dynamics of y(i) and the di�erence y(i) � y0(i)
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Fig. 5. x-y and y-y0 phase portraits of the coupled logistic maps (a) just above

the threshold of WS at k = 0:35 and (b) just below the threshold of WS at

k=0.32.
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Fig. 6. (a) Dynamics of the original response system y(i) and (b) the di�erence

y(i)� y
0(i) just below the threshold of WS at k = 0:33.
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just below the threshold of WS. Intermittency is not seen in the dynamics of the

original response system y(i) [Fig.6(a)] but it is evident in the signal y(i) � y0(i)

[Fig.6(b)] formed from the di�erence of the output of the original and auxiliary

response systems. Recall that the auxiliary response system y0 does not in
uence

the dynamics of the original response y and driving x systems but serves only as

an indicator of intermittent behavior in the x-y plane, which is related to the loss

of stability of the fractal synchronization manifold.

Now let us compare this intermittent behavior with conventional on-o� in-

termittency. Instead of investigating the escape of trajectories from a fractal

synchronization manifold y = �(x) in the x-y plane, we can consider the escape

of trajectories from the identity manifold y = y0 in the y-y0 plane. In Sec. 1, we

showed for a general case that the linear Eqs. (4) and (5) governing the evolution

of the quantities �Y = Y ��(X) and �Y 0 = Y �Y 0 are equivalent. Since the main

properties of on-o� intermittency are determined by these linear equations, we can

analyze the system dynamics in y-y0 coordinates rather than in x-y coordinates.

We calculated the dependence of the mean laminar length � on the coupling

strength k (Fig. 7) and the distribution of the laminar lengths P (� ) close to the

threshold of WS (Fig. 8). The states jy(i)�y0(i)j < 0:1 were interpreted as laminar

phases and the states jy(i)�y0(i)j � 0:1 were considered as bursts. The dependence

of the inverse mean laminar phase length 1=� on the coupling strength k shows a

well-de�ned linear part corresponding to a power law with the exponent �1 (� /

(kw� k)�1), exactly as in conventional on-o� intermittency [32]. The distribution

of the laminar length P (� ) is also the same as in the case of conventional on-o�

intermittency. For moderate � , it is well approximated by a power law with the

exponent �3=2 (P (� ) / ��3=2), and for large � , it has an exponential fall-o�.

The identical properties of these two di�erent intermittent processes are related

to the fact that the problem of trajectory escape from a fractal synchronization

manifold y = �(x) can be replaced by the problem of trajectory escape from

a smooth manifold y = y0. The last problem is typical for conventional on-o�

intermittency. Let us consider the dynamical equation governing the di�erence

�y0(i) = y(i) � y0(i)

�y0(i + 1) = 4(1� k)(1� 2y(i) + �y0(i))�y0(i): (19)

The properties of the intermittent process are determined by small j�y0(i)j � 1,

and we can rewrite Eq. (19) as �y0(i + 1) = z(i)�y0(i), where z(i) = 4(1� k)(1 �

2y(i)) is a chaotic process determined by Eqs. (8), (9). This is the standard form
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WS at k = 0:33. A time series of 107 data points is used. The solid line
corresponds to a power law scaling with the exponent �3=2.
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of a linear map driven with a chaotic signal that is considered in the theory of

conventional on-o� intermittency in order to derive the above properties [32].

Note that this intermittency can be considered as chaos-to-hyperchaos inter-

mittency, since below the threshold of WS the second Lyapunov exponent of

the system (8), (9) becomes positive (one Lyapunov exponent corresponds to the

driving system (8); it is always positive, independent of the coupling strength k).

4. TIME SERIES ANALYSIS

In Secs. 1 and 2, we described several tools for detecting GS and analyzing

its properties. The most appropriate method for experimental applications is

that based on the auxiliary system approach. Unfortunately, this approach is of

limited utility. The method fails for systems whose dynamical equations are not

available. Even though the dynamical equations are known (e.g., in electronic

circuit experiments), the auxiliary response system can be designed only with

�nite accuracy; it cannot be an exact copy of the original response system.

An alternative approach to detecting GS in experiments is to estimate the

CLEs �Ri ; i = 1; : : : ; r from an observed time series [17]. Recall that the condition

of GS is �R1 < 0; therefore, to detect GS we need to estimate only the maximal

CLE. Thus, without recourse to an experimental auxiliary response system, we

can predict whether an identical copy of the response system connected to the

driving system will exhibit behavior identical to the original response system.

If we are interested in the properties of the synchronization manifold, we

may need to estimate some additional CLEs and perhaps some of the Lyapunov

exponents of the driving system �Di ; i = 1; : : : ; d, in order to compare the global

Lyapunov dimension dG� [Eq. (6)] with the driving dimension dD� [Eq. (7)]. As a

result of this comparison, we can distinguish between WS and SS. SS (dG� = dD� )

corresponds to �R1 < �DlD+1. Otherwise, we have WS, dG� > dD� . Alternatively,

we can evaluate the smoothness of the synchronization manifold by estimating

the mean local thickness � of the synchronization manifold. The algorithms for

estimating CLEs and � from a time series are similar. Below, we present only the

algorithm for estimating CLEs.

Note that only a �nite number of Lyapunov exponents can be reliably deter-

mined from data on the attractor [37]. An appropriate cut-o� value for the number

of exponents is related to the global Lyapunov dimension and is equal to lG + 1.

The only exponents that are included in Eq. (6) are fundamentally important to

the character of the attractor and their estimation is available from time series. In
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the case of WS, at least maximal CLE a�ects the global dimension, hence, it can

be estimated from a time series. The condition of SS �R1 < �DlD+1 corresponds to

the case where the global dimension dG does not depend on the CLEs. Thus, we

cannot expect a reliable estimation of CLEs from time series above the threshold of

SS. However, the CLEs can be determined just before this threshold, and it su�ces

to estimate the characteristic values of the control parameters corresponding to

the onset of SS.

Algorithm for estimating CLEs

In experiments, we generally, do not have the luxury of working with the actual

vectors of phase space variables. Normally, only the time series of a single variable

is available to characterize the behavior of each system. Suppose that an experi-

mental system under investigation can be simulated by Eqs. (1), (2). We imagine

that the equations are unknown, but two scalar time series xi and yi, i = 1; : : : ; N

corresponding to the driving and response subsystems, respectively, are available

for observation. We assume that the time interval � between measurements is

�xed so that xi = x(i� ) and yi = y(i� ). In what follows, � is identi�ed with the

delay time of phase space reconstruction in step (a) of our algorithm. In principle,

any choice of � is acceptable in the limit of an in�nite amount of data. For a small

amount of data, the choice of � can be based, for example, on the evaluation of

mutual information [38].

Due to the one-way coupling, the xi series does not contain any information

about the response system, while the yi series contains information about both

subsystems. Since the CLEs represent a part of the whole Lyapunov spectrum, one

can expect that they can be determined by standard algorithms [37,39, 40] from the

yi time series. However, the CLEs may be placed far from the maximal exponent

in the whole Lyapunov spectrum, while standard algorithms give reliable values

for only a few of the largest exponents [37, 39, 40]. Moreover, it is a nontrivial

problem to de�ne which exponents belong to the CLEs and which to the driving

system, even though the whole spectrum of the Lyapunov exponents is reliably

determined. These problems can be solved in the framework of an algorithm that

involves information fromboth scalar time series xi and yi. Here, we mainly use the

ideas of the algorithm proposed by Eckmann et al. [40] based on the construction

of local linear maps. The mappings with a higher order Taylor series [37] are

beyond our scope. We extend the Eckman-Kamphorst-Ruelle-Ciliberto (EKRC)

algorithm to the case of two time series and adopt it for the direct estimation
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of the CLEs. The reliability of estimating the maximal CLE by our algorithm is

comparable to that of estimating the conventional maximal Lyapunov exponent

by the EKRC algorithm.

To speed up the computation and to bring our consideration closer to a real

experimental situation, we represent the time series xi and yi by integer numbers

normed to the same maximal value M0 so that 0 � xi � M0 and 0 � yi � M0.

Typically, we take M0 = 10000, in accordance with a precision of 10�4. Like

the EKRC algorithm, our algorithm involves the following three steps: (a) recon-

structing the dynamics by the time-delay method [41] and �nding the neighbors of

the �ducial trajectory, (b) obtaining the tangent maps by a least-squares �t, and

(c) deducing the CLEs from the tangent maps. Now let us consider these steps in

detail.

(a) We choose di�erent embedding dimensions Ex and Ey for the driving and

response systems and de�ne (Ex +Ey)-dimensional vectors

Ri = fxi�Ex+1; : : : ; xi�2; xi; yi�Ey+1; : : : ; yi�2; yig (20)

for i = i0 � max(Ex; Ey); i0 + 1; : : : ; N , to construct the dynamics of the �ducial

trajectory in the whole X � Y phase space. In view of step (b), we have to

determine the neighbors of Ri, i. e., the points Rj of the orbit that are contained

in a ball of small radius �i centered at Ri,

kRj �Rik � �i: (21)

Here k � k implies the maximal projection of the vector rather than the Euclidean

norm. This allows a fast search for the Rj by �rst sorting the data [40]. Let us

denote by Ji the number of neighbors Rj of Ri within a distance �i, as determined

by Eq. (21). Clearly, Ji depends on �i. In (b) we discuss the choice of these

parameters for every i.

(b) Having embedded our dynamical system, we want to determine the tangent

map that describes how the time evolution sends small vectors around Ri =

fXi; Yig to small vectors around Yi+m. This problem can be considered in a phase

space of reduced dimension [40]. Following [37], we introduce local dimensions

Lx � Ex and Ly � Ey that re
ect the number of dimensions necessary to capture

the geometry of a small neighborhood of the attractor after it has been successfully

embedded (i. e., the time delay representation is di�eomorphic to the original

attractor). The dimensions Lx and Ly are used for constructing local maps and

correspond to the number of Lyapunov exponents of the driving system and the
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CLEs, respectively, produced by the algorithm. The transition from embedding

dimensions to local dimensions is performed as in [40]. We drop the intermediate

components in Eq. (20) and de�ne the Lx-dimensional Xi and Ly-dimensional Yi

vectors as

Xi = (xi�Ex+1; : : : ; xi�m; xi)
T ; (22)

Yi = (yi�Ey+1; : : : ; yi�m; yi)
T : (23)

The dimensions Lx � Ex and Ly � Ey are determined by the equalities Ex =

(Lx� 1)m+1 and Ey = (Ly � 1)m+ 1, which we assume to hold for some integer

m � 1. The case m = 1 corresponds to Lx = Ex, Ly = Ey. When m > 1, the

dimension of the tangent map is reduced with respect to the embedding dimension;

this can help to avoid spurious Lyapunov exponents [40].

The tangent map is de�ned by two matrices Ai and Bi, which are obtained by

looking for neighbors Rj of Ri and imposing

Ai(Xj �Xi) + Bi(Yj � Yi) � Yj+m � Yi+m: (24)

Ai is a rectangular Ly � Lx matrix and Bi is a square Ly � Ly matrix, which, in

view of Eqs. (22) and (23), have the form

Ai =

0
BBBBB@

0 0 � � � 0

0 0 � � � 0
...

...
...

...

0 0 � � � 0

ai1 ai2 � � � aiLy

1
CCCCCA
; Bi =

0
BBBBB@

0 1 0 � � � 0

0 0 1 � � � 0
...

...
...

...

0 0 0 � � � 1

bi1 bi2 bi3 � � � biLy

1
CCCCCA
:

Matrix Ai contains Lx unknown elements aik; k = 1; 2; : : :Lx, and matrix Bi

contains Ly unknowns bik; k = 1; 2; : : :; Ly. These Lx +Ly unknowns are obtained

by a least-squares �t

min
ai
k
;bi
k

1

Ji

JiX
j=1

kAi(Xj �Xi) + Bi(Yj � Yi) � (Yj+m � Yi+m)k
2
Euc;

where k�k2Euc denotes the square of the Euclidean norm of the vector. This problem

reduces to a set of Lx + Ly linear equations in Lx + Ly unknowns aik, b
i
k, which

we solve by the LU decomposition algorithm [42]. Obviously, this algorithm fails

if the number of neighbors Rj of the �ducial point Ri is less than the number of

unknowns, Ji < Lx +Ly. To avoid this problem, the radius �i has to be chosen to

be su�ciently large. For the speci�c examples discussed below, we have selected
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�i and Ji as follows. We count the number of neighbors Ji of Ri corresponding to

increasing values of �i from a preselected sequence of possible values and stop when

Ji �rst exceeds Jmin = 2(Lx+Ly). To speed up the calculations, we also stop the

search for the neighbors when for given �i the number of neighbors exceeds the

maximal value Jmax = 40. Thus, for every i, Ji is in the interval [Jmin; Jmax].

(c) Step (b) gives matrices Ai and Bi of the tangent map, which represent

the reconstructed Jacobians DxG and DyG of Eq. (2) with respect to X and Y

variables, respectively. The CLEs are determined by the product of the matrices

Bi0Bi0+mBi0+2m : : :. To extract the CLEs from this product, we use the QR

decomposition technique [40,42]. The method recursively de�nes an orthogonal

matrix Ql and an upper triangular matrix Rl, l = 0; 1; : : :L � 1, via Bi0+lmQl =

Ql+1Rl+1, where Q0 is the unit matrix. The CLEs are given by

�Rnm =
1

�L

L�1X
l=0

ln(Ql)nn;

where K < (N � i0)=m is the available number of matrices and (Ql)nn is the

diagonal element of the matrix Ql. Note that in the �nal step we do not require

knowledge of the matrixAi. However, the use of this matrix in step (b) is necessary

in order to correctly determine the tangent map (24) and, hence, the matrix Bi

de�ning the CLEs.

Let us now illustrate our algorithm with the two speci�c examples presented

in Sec. 2.

Examples

Coupled H�enon Maps. Let us come back to the model of identical one-way

coupled H�enon maps described by Eqs. (13), (14). To test the algorithm, two

scalar time series x1(i) and y1(i) were treated as experimental data. The results

presented in Table correspond to the �xed value k = 0:1 and di�erent values of

the local dimensions Lx and Ly. For comparison, the correct values of the CLEs

calculated directly from Eqs. (13), (14) and (16) at k = 0:1 are �R1 � 0:227 and

�R2 � �1:537. For any Lx � 2 and Ly � 2, the algorithm gives two CLEs close

to these correct values. If Ly is chosen correctly [i. e., equal to the dimension of

the response system (14) Ly = r = 2], we obtain the right number of CLEs whose

values weakly depend on Lx provided Lx � 2. For Ly > 2, the algorithm gives

spurious CLEs in addition to the valid CLEs.

One way of identifying spurious exponents is to analyze the in
uence of external

noise [37]. This is illustrated in Fig. 9. Here we have added Gaussian white noise to
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Ly Lx �R1 �R2 �R3 �R4
2 2 0.228 -1.408

2 3 0.224 -1.411

2 4 0.219 -1.402

3 2 0.462 0.203 -1.558

3 3 0.459 0.186 -1.547

3 4 0.489 0.178 -1.546

4 2 0.530 0.206 -0.962 -1.629

4 3 0.512 0.189 -0.863 -1.612

4 4 0.536 0.191 -0.786 -1.613

Tab. 1. CLEs for coupled H�enon maps at k = 0:1 computed from N = 50000

data points evaluated with the sampling time � = 1. We vary the local
dimensions Lx and Ly at �xed m = 1 so that they coincide with the embedding

dimensions, Ex = Lx, Ey = Ly. The correct values of the CLEs calculated

directly from Eqs. (13), (14) and (16) are �
R
1 � 0:227, �R2 � �1:537. For

Ly > 2, the algorithm gives Ly � 2 spurious CLEs in addition to the two valid

CLEs. The values corresponding to the valid CLEs are underlined.

the data points with the standard deviation �n. In Fig. 9(a) we used Lx = Ly = 2,

while in Fig. 9(b) we used Lx = Ly = 3, which gives one spurious CLE. The

spurious CLE in Fig. 9(b) decreases rapidly as the added noise is increased, going

from +0.7 down to -0.9.

Fig. 10 shows a correlation between the dependence of the CLEs on the cou-

pling strength k estimated from time series with that calculated directly from

Eqs. (13), (14) and (16). Good agreement is observed for k < k3, especially for the

maximal CLE. For k > k3, we have SS with the identical time series y1(i) = x1(i)

and the algorithm fails. This is in agreement with the general prediction that the

CLEs cannot be reliably estimated from time series in the domain of SS. However,

the algorithm gives the correct values of the maximal CLE in the immediate

vicinity of the threshold k<�k3.

Coupled R�ossler and Lorenz Systems. Let us now consider more complex

system described by Eqs. (17), (18). In testing the algorithm, the variables x1(t)

and y1(t) were treated as experimentally available outputs. The maximal CLE

and the global Lyapunov dimension obtained from time series analysis are shown

by dots in Figs. 4(a) and 4(b), respectively. The calculations were performed at

the following values of the parameters: N = 50000, � = 0:15 for k � 10 and

� = 0:03 for k > 10, Lx = Ly = 3, and m = 1. In Figs. 4(a) and 4(b), the
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Fig. 9. The e�ect of external noise on the determination of the CLEs for coupled

H�enon maps at the same values of parameters as in Table . �n is the standard
deviation of the noise added to the data. (a) The local dimensions are Lx =

Ly = 2. (b) Here Lx = Ly = 3. The spurious exponent wanders from about

+0.7 to nearly -0.9 as the noise level is increased. The exponents do not cross

each other, but switch roles as they become close. The correct values of the

CLEs are shown by dashed lines.

same characteristics determined directly from Eqs. (17), (18) are shown by solid

lines. Good agreement of the corresponding characteristics is observed in a large

interval of the coupling strength k. Thus, the results of the time series analysis

allow us to correctly predict both the threshold of GS and the smoothness of the

synchronization manifold.

5. CONCLUSIONS

The generalized synchronization of chaos is a natural generalization of the

concept of identical synchronization to the case of nonidentical chaotic systems.

This phenomenon is typical for one-way coupled chaotic systems. It appears, when

under the action of the driving system, the response system \forgets" its initial

conditions and becomes an asymptotically stable system, i. e., when any initial

conditions in the response lead to the same asymptotic dynamics. Physically, this

means that an ensemble of identical response systems driven with the same chaotic

signal should exhibit identical asymptotic behavior. This resembles the well-known
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Fig. 10. Dependence of the CLEs on the coupling strength for coupled H�enon

maps atm = 1, Lx = Ly = 2. The points correspond to the values of the CLEs
estimated from time series and the dashed lines show the correct values of the

CLEs calculated directly from Eqs. (13), (14) and (16).

physical phenomenon known as the bunching or grouping e�ect, which is widely

used in particle accelerators and other similar systems. Here an ensemble of

identical particles started from di�erent initial conditions is grouped to a common

trajectory. The di�erence is that in the bunching e�ect one usually takes a periodic

driving signal; in generalized synchronization, however, we consider chaotic driv-

ing. The parallel with the bunching phenomenon makes evident the idea of the

auxiliary system approach. To detect the bouncing phenomenon or generalized

synchronization, one requires an ensemble of identical response systems. This

ensemble should consist of at least of two identical systems, namely, the original

and the auxiliary response systems.

In the phase space interpretation, the asymptotical stability of the response

system leads to a stable synchronization manifoldM = f(X;Y ) : �(X) = Y g that

relates the variables of the driving and the response systems. Depending on the

coupling strength, the generalized synchronization appears as weak synchroniza-

tion or strong synchronization. Weak synchronization is characterized by a fractal

manifold M with a nonsmooth map � that increases the global dimension with

respect to the dimension of the driving system, dG > dD. Strong synchronization

25



is related to a smooth map � so that the response system does not in
uence

the global dimension, dG = dD. The threshold of generalized synchronization, in

addition to certain properties of the synchronization manifold, can be expressed

through the conditional Lyapunov exponents �Ri and the Lyapunov exponents

of the driving system �Di . The mean local thickness � of the synchronization

manifold can be used as an alternative characteristic to estimate the smoothness

of the manifold.

The onset of generalized synchronization is characterized by a new type of on-o�

intermittency. Unlike the conventional situation, this intermittency can occur in

nonsymmetrical systems that do not possess any trivial invariantmanifolds. It may

appear in any system consisting of two one-way coupled chaotic subsystems. The

intermittent behavior appears just below the threshold of weak synchronization

and is determined by the loss of stability of the invariant fractal synchronization

manifold. It is not noticeable in the phase space of the original response and

driving systems; however, it can be detected and analyzed with the help of an

auxiliary response system.

In experiment, two alternative tools can be used to detect and analyze the

generalized synchronization of chaos. One of these is based on an auxiliary re-

sponse system. Here, the experimental situation should admit the design of

a replica of the response system. Another approach is based on time series

analysis. Using two scalar time series, one taken from the driving system and

the other from the response system, one can estimate the conditional Lyapunov

exponents and other parameters that de�ne the existence and the properties of

generalized synchronization. The both approaches we have successfully tested for

electronic circuit experiments described in [43]. We have analyzed generalized

synchronization in two one-way coupled identical double-scroll chaos oscillators

and in a double-scroll chaos oscillator driven with electronic analog of a Mackey-

Glass system.
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