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EXTREME VALUE STOCHASTIC MODELS
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Kaunas University of Technology, Studenty 50, 3028 Kaunas, Lithuania

Abstract
The investigation of extreme values (maxima and minima) and their asymptotics
is presented. Attention is paid to the classical theory (independent observations of
identical distributions). The generalizations and applications of the theory are
discussed and problems are revealed.

1. INTRODUCTION

The problems related with extreme values from some collection of random
variables are met in various fields of science and applications. In probability theory,
there are not so many formulas both exact and convenient for calculation, if stochastic
model involves a great number of random factors. Therefore the approximation of
distributions by suitable functions is an urgent problem. This problem is characteristic
for stochastic extremes, as well and is solved by asymptotic theory of extremes. There
are important theoretical and applicational cases where extremes are formed using a
collection of random number of random variables. Such a situation, for instance, arises
in investigation of the record duration and record properties.

Extreme value problem (maxima and minima)
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from some collection of random variables X = (Xl,...,X,,) can serve as exact or at

least approximate model for great number of real objects. Notice, that nonlinear
semigroup operations v or A (there is no inverse element) are commutative and

n
associative. Since W, =- yl(— X j), attention will be paid to investigation of the
]E

structure Z, .

The age of classical extreme theory (the simple random samples) exceeds 75 years.
Development of the theory was influenced significantly by works of von Mises (1923-
1936), Frechet (1927), Fisher and Tippet (1928), Gumbel (since 1935), Gnedenko
(since 1941). Exaustive representation of this theory is given in monographs [1], 5]
and [6].

Requirements of classical theory (random variables X; are independent and their
distributions are identical) in applications are often not fulfiled. Therefore the
generalizations of the theory are needed. A great deal of the results, obtained in this



direction, are represented in the monographs mentioned above and also in the review

paper [2] and its plentiful reference list.
Though a new results are presented in this paper as well, the main aim of it is both

a brief review and applying possibilities of extreme theory.

2. EXACT EXTREME MODELS

Let X = (X . - ,,) be a simple random sample from the distribution F. A

volume 7 of the sample can be a random number as well (then we will denote it as N).
The distribution functions of the extremes Z, and W, are

P(z, <x)=F"(x), P(W, <x)=1-(1-F(x))". (1)
In case volume N is random number and does not depend on any of X ;, j > 1, we

get
P(z, <x)=F"(x), P(W, <x)=1-(1-F(x)". )

Here
g,(z)= szP(N = j), lzl<1
J

is a generating function of the random variable N.
The general distribution function is given by

F'(x), y2x,
F"(x)—(F(x)—F(y))",y <x.
Let we have one more simple sample ¥ = (YL,Y;,H.,Y,,) that does not depend on

X.1f P(Y, <y)=G(y) forall j21, then
n n n
P(j\=/l X, <z, J-\=/1Yf < y) =(F(x)G(x))",
P(j\:l Xj <X, j/=\l Y} <y) — F"(x)(l = (1 - G(y)) )
In case the variables X are independent with F,(x) = P(X < x), we get

P(z, <x)= HF(x) P(W, <x)=1- H(1 F,(x). (5)

In case of dependent variables X;, j>1, we have

P(z, <x)= HF(x) ©)

P(Z," <x,W, <y)={ 3)

“)

Here
F(x)= P(Xl <x), Fi(x)= (X <x’Xl EX oy e _1<x), j>1.
If, for instance, variables X;, j 21 make a stacionary Markov sequence, then
P(z, <x)=F(x)Fy(x), (7
here '



Fx)= P(Xl < x), F,(x) = P(X2 < Jcl)(l < x)‘
3. CLASSICAL ASYMPTOTICAL PROBLEM

Calculation by (1)~(7) formulas is rather complicated, if volume n is large.
Therefore in both theoretical and practical aspects it is urgent to find the limit (as
n—o) of distributions of these statistics.

The problem is as follows: what conditions must the distribution function F satisfy
for

b

n

P[Z" =5 <xj = H(x), 8)

as n—oo? Here the sign “=“ means weak convergence, and H(x) is non-singular
distribution function. Complete solution of this problem was published in the
fundamental work of Gnedenko [3]. Here the necessary and sufficient conditions of
convergence are formulated and algorithm for calculation of the normalizing constants
a, and b, >0 is given. The limit distribution function can only be of the following

type
H(x):Hc(x)=exp{—(1+cx)-%}, l+cx>0,xeR. 9)

Noticé, that there are a few functions F that does not belong to the attraction
domain of H.. For example,

1
F(x)=1-—,x2e .
Inx

But in the case of nonlinear normalization we get

l Z —X
P( nn,, <x):>e'e ,X€ER,

i.e. the limit distribution is H,(x) .
Due to the mentioned work of Gnedenko [3] there arose a new problem of
estimation of the rate of convergence of (8):

e non-uniform estimation: IP(Z,, <xb, + an) -H, (x)’ <A,(x),

e uniform estimation: IP(Z,, < xb, + a,,) ~H, (x)' <A, (x) .

Various forms of estimates of the rate of convergence are presented in the
monographs [1] and [5].

Gnedenko in 1984 published an extension of the classical scheme in case the
volume N = N, of the simple sample is random and does not depend on X;, j21 [4].
Here we give the formulation of this transference theorem: let (8) holds and
lim P(-j—\:-f- < x) = A(x).

n—o



Then

lim P( Z”'l; = I x) = y(x) = IH‘ (x)aA(2).

n—wo
n

Notice that one can find such variables X; and N, for which direct calculation of the
distribution function P(Z N, <Xb, + a,,) with respect to the rate of convergence gives

more precise results than the transference theorem. This will take place if

1
F(x)=-1——;:;-,xeR,

e 1 1)"‘.
P(N,,—)-n(l—n yJEL

Non-uniform estimate of the rate of convergence
|P(zy, <xb, +a,) - (| <Ay, (),
was obtained in 1987 [8].
4. EXTENSION OF THE CLASSICAL ASIMPTOTICAL PROBLEM

Neglecting the limitations of the classical scheme, one can get different generali-
zations:
e diversely distributed variables,
e nonlinear normalization,
e random vectors,
e stochastic processes.

Let us discuss briefly an asymptotical problem of a diversely distributed random
variables.

Suppose, that for any x

lim maxP(Xl >xb, +a,,,j=l,_n)=0.
n—»e

Then the equality

lim Y P(X, 2 xb, +a,) = u(x)
1

n—»w j'—'
comprise the necessary and sufficient condition for

lim P(Z,, <xb, + an) =e™W,
—>e0

n

The proof of this theorem is presented in [7]. Non-uniform estimate of convergence
rate is given in paper [9]. In the case of diversly distributed random variables the

8



transference theorem is proved in [10]. The asymptotics of the general distributions of
normalized extremes of random variables is detailly investigated in [12] and [13].
Analysis of general distributions of extremes of random vectors
{Xj = (Xl’j,...,ij)jz 1} is presented in [14] and [15].

5. APPLICATORY PROBLEMS

The methods and results of extreme value theory are applied in various branches of
science, technology, economics, etc. The greatest part of applicatory problems are

related with a technique of the “weakest link”.
Suppose that X; is the force, breaking off the j-th link. Then the force breaking off

n
the entire chain of » linksis W, = A X ; . Considering another example, suppose that
Jj=

we estimate the durability of the system composed of n elements. If one element of

the system is operating while the others are in “hot” regime, then the durability of a
n

such system Z, = A X;.
j=

Similar problems are characteristic for various statistical problems on reliability of
complicated systems, queueing theory problems, as well as problems of meteorology,
ecology, oceanology, finance, insurance, and even of the probabilistic number theory.

All about this one can read in [3].

' Some concrete models

1. Strength of a tape. Let the tape of length / is divided into » parts and X; is the
strength of the tape. What does the classic extreme theory require and render?
Requirements: :

® F}le}z:"':E :F’ Ik=

k=1n,;

S|~

2

° X =min(x,l,...,x,"),
e X, 7= independent, k = fr—t,
. F,(x)=F(xb,+a,).

Then

or



F,(x):l—exp{—e%g}. (10)

Here a,b>0, ¢,d>0 are numbers.

2. Electricity insulating covers. Consider cylindrical sample parts of wire of length /
and let 4 be a thickness of insulating cover (# << ). If X; is a voltage across the
insulating cover of j-th part, then the voltage across the insulator of entire electric wire
is described by the following structure:

W, = min(X,,..., X,).
If X; are normal and 7 is large, then W, is described well by distribution (10).
3. Maximal velocity of the wind. Suppose, that

X0 = {x,0), X, ()}

is a velocity vector of wind in the horizontal plane. If X,(#) ir X,(#) are independent
and normal, then the distribution of the structure

Zy = max(X()|,1 e T)

is well approximated by H,(x) given by (9) in case T is large.

6. PROBLEMS TO BE SOLVED

We shall indicate a few problems of the classical scheme and extensions of it.
1) Theorems of large deviation: asymptotical analysis of the structure of the ratio

P(Zn 2 xb, +a,,)
1- H(x) i

as n— and x—»co,
2) Asymptotical analysis of general distribution of normalized extremes from

different samples.

3) Asymptotical analysis of distributions of products of normalized extremes.

4) Analysis of the rate of convergence in the transference theorem, in case
variables X; have different distributions.

5) Transference theorem and rate of convergence for densities.

All these problems can further be solved for extensions of classical scheme: in the
case of dependent variables, variables with different distributions, etc.
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