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Abstract

We consider the difference schemes applied to a derivative nonlinear system of
evolution equations. For the boundary-value problem with initial conditions
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we use the Crank-Nicolson discretization. A is complex and B — real diagonal
matrixes; u, f and g are complex vector-functions. The analysis shows that
proposed schemes are uniquely solvable, convergent and stable in a grid norm
W# if all (diagonal) elements in Re(A) are positive. This is true without any
restriction on the ratio of time and space grid steps.

INTRODUCTION

In recent years there has been a growing interest in nonlinear evolution equa-
tions. Such well-known equations (as well as their systems) as nonlinear Schrédinger
equation (NLS), nonlinear reaction-diffusion equation (NLRD) and the nonlinear
Kuramoto-Tsuzuki equation (NLKT) appear in many models of mathematical phy-
sics. For example, one often finds NLS in nonlinear optics [1,2], plasma physics [3].
NLRD systems are used in investigating a wide class of nonlinear processes (4, 6].
NLKT describes the behavior of two-component systems in a neighborhood of a
bifurcation point [4,5]. In some models there is necessary to study the effects born
by higher order perturbations and the derivative nonlinear (DN) equations appear.

We deal with the difference schemes applied to a derivative nonlinear system of
evolution equations. For the boundary-value problem with initial conditions
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we use the Crank-Nicolson discretization. Here v = (uj,us,...,U,) is a complex
vector-function, 2 = (0,1) and @ = (0, 7] x Q. Diagonal matrices A and B contain
complex and real coefficients, respectively.

We consider the “truncation” of corresponding Cauchy problem to a bounded
domain. Such approach is often used solving the problem numerically.

DIFFERENCE SCHEME

Denote the diagonal elements of matrices A and B by a;; and b;;, respectively.
By introducing new functions y; = u; exp(b;;z/2a;;) one may neglect the first order
partial derivatives Ou;/0z in the linear part of system (1). Also note that since the
matrix A is diagonal, there is no essential difference between the study of system
(1) and the study of one equation. For simplicity we assume that the nonlinear
functions f(z,u) and g(z,u) do not depend on z. Therefore we further consider one
equation

2
Tt ) ), (ha)eQ (1

(4) is a DN Schrodinger equation if Re(a) = 0. In the case Im(a) = 0 (4)
represents a DN reaction-diffusion equation and, finally, when both Re(a), Im(a) #
0, it stands for a DN Kuramoto-Tsuzuki type equation.

We assume that:
a) the partial derivatives of f and g with respect to u are continuous, and

of(v)| |dg(x)

ou

e < o(Jul),

IF (@), lg(u)l,

bl

where ¢ is a continuous nondecreasing function,

b) f(0) = g(0) =0,

c) Re(a) > 6 > 0.

Conditions a) and b) are satisfied for the models [1-6]. The condition ¢) means
the positivity of the heat conduction coefficient.

Using the notation of [7], we introduce the uniform grids w, and €, with steps
7 and h for the variables ¢ and z, respectively. We relate the problem (4),(2), (3)
with the following Crank-Nicolson type symmetric difference scheme:

v =00 +f (V) +9(0) by, (t,2) € wr X D, (5)
v(t,0) = v(t,1) =0, t € oy, (6)
v(0,z) =u@(z), ze, (7

where 9§ = v(t + 7,z), U= (0+v)/2, vo = (v(t,x+h)—v(t,z—h))/2h, v; =
(0 —v)/ T, vzz = (v(t,x + h) — 20(t,z) + v(t,z — h))/ h%

The scheme (5)—(7) is implicit and nonlinear. To calculate a solution on the
upper layer ¢ = t;,1 one can apply the iterative method:

r 2 2 2 g !
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v**1(0) = v**1(1) = 0,
W =0,

The next iteration v°*! can be found by the matrix sweep method, for example.

Using the grid analogues of a new type a priori estimates we justify (5)—(7)
difference scheme. It appears to be convergent and stable without any restrictions
on the ratio of time and space grid steps. Note only, that proving the boundedness
of numerical problem solution, the usual estimate for transition to the upper layer
doesn’t work here, as the the mathematical induction, based on this estimate,
fails (see further). The main difficulty concerns the treatment of the DN terms
in the equation. For justification of difference schemes without gradient-dependent
nonlinearity see [8]. To overcome this, we modified the above method, estimating a
sum of vanishing geometric progression (see proof of Lema 1). For details, consider
the auxiliary linear difference scheme

Uy — Q Vze=T, (t,2) € wr x Q, (8)
v(t,0) =v(t,1) =0, tE€w, 9)
v(0,2) =v@(z), =zey, (10)

with the right-hand side »(t) € V?/é(ﬂh), tEwr, and an initial data v@(z) € V?/'g(ﬂ;,).
Lemma 1.  Suppose the hypothesis c) is satisfied, r(t) € Wi((W), t € w, and

vO(z) € W 5(Q). Then with all t; € @,, j - the layer number, for the solution of
the problem (8)—(10) the followmy estimates hold:

10(t5) sty < 110(0) oty + z 7 (t2)Lzany (1)
[|vz (2 ”Lg(ﬂ"') < ””z(o)llz,z(m) t o= \J 20”7" to)l|Z2(an» (12)

vz ()|l La(on) < Jlvz=(0 N zacn) + \/2—\J Z llr=(ts )“Lz(n’r)’ (13)

where || || are grid analogues of the corresponding continuous spaces norms (see [7]).
Proof. We apply the Fourier separation of variables method. As a basis, consider

the functions

pe(z) = V2sin(knz), k=1,2,...,N—1, h:%,—.
It is known [9, p. 285] that {4 ()} is an orthonormal and complete function system
in Ly(€2); the systems of difference derivatives

s (2) = V2 cos(knlz — b/2)),  k=1,2,...,N—1,

and

ukiz(m) = AIc/-[’k($)) Ak = %Sln (E‘gﬁ> 3 k= 1’2) . ')N i 1’
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appear to be orthogonal in Ly(2f) and Ly(f2s), respectively.
For grid functions introduce the inner product

(¥, v)a, =h 3 u(z)v*(z),
€0,
where v* denotes the complex conjugate of v.
We look for the solution of problem (8)-(10) of the form

N-1
u(t,z) = Y u(t)p(@), (14)

k=1
where v(t) = (v(t, z), px(t))q, are the Fourier coefficients. By Eq. (8) we have the

relations
0 = agVk + TOT ks (15)

where 7 = (7, tk)an, Bk = (1 + %‘) - , Qg = (1 - 1‘%’“‘) Bx. By the condition c)
it follows that
'aklalﬁklsl7 k=1,2,...,N—1. (16)
From (14), (15), using the Parseval identity, estimate (16), and Minkowski inequality
we obtain
[9llza@n) < IVllza@n) + 7lirllzaan)-

This completes the proof of estimate (11).

We now pass to the estimate of the first order difference derivatives vz. Since
{px ()} is an orthogonal system, by (15) it follows that

N-1
vz (E5) | Loy = 3 el (8)F =
\J e

N-1 . ;
\J > Ak o vi(0) + 7Bk (f'7r(0) + 0 i (t1) + -0
k=1

Apply Minkowski and Cauchy inequalities. We get

N-1j-1
2s
vz (t)ll oty < vz (0)lzy@py + \j‘f 3 S I ()P T |Be|? Z o™, (17)
k=1 s=0
A simple estimate of the sum of a geometrical progression shows that
&7 )\k |,5k|
< —
Tk |Bil? Z| T— ol = 25

Now estimate (12) can be obtained from (17). In a similar way we can deduce (13).

Lemma is proved.
Remark 1. Note that appearance of derivative type nonlinearities in (4) requires
a lower norm on the right-hand side r in the estimates (12) and (13). This enable
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us further to treat the problem in a way similar to the usual nonlinear evolution
equation (see [8]). Also, taking j =1 in (12), one could the estimate for transition

i to the upper layer
”175||L2(n,‘;) < Jlvs "Lz(n,t) +evTIr (t) o),

which is not sufficient to apply mathematical induction principle.

Now we state the results of our analysis:

Theorem 1. (Convergence) Suppose the hypotheses a)—c) are held, and the
solution of the problem (4),(2),(3) is smooth enough. Then there exist constants
To, ho > 0 such that, for 7 < 7o, h < ho, there exists a unique solution of the problem
(6)=(7), converging to the solution of the problem (4),(2),(3) and the following
estimate holds:

e —vlwyay <c(r?+4%), tew.

By the imbedding theorem W} — C' the convergence in C' follows.
If f(u) and g(u) are polynomials then one can prove the convergence of the
difference method in W:

e —vllwze, < c (1'2 + h) , t € W,

In this case the scheme is convergent in C?, too.

Theorem 2. (Stability) Let v, and v, be the solutions of the problem (5)-(7)
with initial data u§°’ and ugo). Suppose the hypotheses of Theorem 1 are satisfied.
Then there exist constants 7o, ho > 0 such that, for 7 < 1o, h < hg, the following
estimate holds:

lv1(8) = va() lwgcan) < llv1(0) — v2(0) lwz s 1€ wr.

Remark 3. If f(u) and g(u) are polynomials then the difference scheme (5)—(7)
is stable in W2.
Remark 4. In a similar way one can prove the convergence and stability of the
difference schemes of the form
v = av + F(o, 9) + G(v, 9) D, (v, 0), (t,z) € wr X O,
4(t,0) =vt,1) =0, t € @r,
v(0,z) =u®(x), 1z €0,

where F, G, D, approximate f, g, g;—, respectively, v®) = o9+ (1-0)v, 1 <o <1
CONCLUSIONS AND COMMENTS

We have justified Crank-Nicolson type finite difference schemes for evolution
equation systems. There is no any restriction on the ratio of time and space grid steps
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7 and h. Note that for Re(a) = 0 (as in (4)), i.e. derivative nonlinear Schrédinger
equations these schemes remain questionable. Parameter Re(a) = 6 > 0 can be
viewed as artificial (parabolic) viscosity in this case.

(6)—(7) scheme was practically examined on a computer for the problem

Ou .o 20U O|ul?

57 = (6+ z)&; + idjul*u + ou] s ﬁu—gx—, (t,z) € Q. (18)
u(t,0) = u(t,1) =0, te[0,7], (19)
u(0,z) =u®(z), zeq. (20)

No negative signs were observed, even if § = 0 provided L, norm of u(? is sufficiently
small. Note that for § = 0 (18)-(20) problem has an energy conservation law
in Ly norm. A few conservative difference schemes were built in this case. We
investigate them together with well-posedness of (18) - (20) boundary problem under
assumption that L, norm of (20) initial data is small enough. In the case of DN
Schrédinger equation (6 = 0) for some initial functions the blow-up of solution was
observed, i. e. introducing the small parabolic viscosity 6 > 0 is one of possible ways
to regularize mathematical model.
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