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MATHEMATICAL MODELLING OF MILITARY OPERATIONS
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The aim of this paper is to show how the theory of systems of differential
equations may be applied both to describe the battle actions and to control the
trajectory of projectiles. We will restrict our attention to deterministic cases.
Those cases are not well adapted to the real situation and must be treated as the
first approach.

1. BATTLE BETWEEN THE REGULAR ARMY AND THE PARTISANS

The modeling of such problems takes origin in the works of
F.Lanchester. During the 1* World War he had created models describing the
air battle. Later on they have been adapted for different types of military
operations. We will restrict our attention to the modelling of armed conflict
between the regular army and the partisan detachment. The specific character of
this kind of battle is conditioned by the notorious fact that partisans dislocation is
unknown for the enemy.

This battle is approximated by the following system of differential
equations:

% = —ax(t) y(t) - b x(t) + P(?),
@)
iyd(tﬁ =—cx(t) -dy@) + O(2).

Here x(7) and y(¢) denote the quantities of adversaries, ¢ stands for time.
We will restrict our attention to main factors which condition the loss of

warriors.
1. Assume that the loss of the soldiers of the regular army is proportional

to the number of ones of the enemy, that is

ye) = -cx, @

where ¢ is the constant characterizing the efficiency of actions of a soldier

(c=rp,), r.is power of fire, p, is the probability of hitting the target. Let us

make an assumption that the military unit of 100 soldiers defends the position
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of 1000 m long. The area under fire by one soldier is about 20 m*> and the
probability of hitting the man is p = p,~0.05 (the area of warrior is
approximately 1.75 x0.6 =1.0 m?) . The power shots in one soldier is about

200 - 300 shots per day. Thuswe get c~ 1.22.
The loss of partisans in the battle may be expressed in the following way:

x(®) = ax(®)y@). 3)

Here
= Ty Ay 4
anZZ, )

where r, stands for power of fire of a soldier of the regular army, 4, = R is an
area defended by partisans, 4, is the fire efficiency of a soldier of the regular
army, that is the area fired by one soldier (20 m®) . If partisans defend a town
of area A, =4.10°m?, then a~1.25.10°.

The partisans defend the territory being invisible, thus the forces of the
regular army cannot estimate the efficiency of their own actions.

2. The loss caused by shell, bombardment, epidemic also is taken into
consideration:

x(t) = -bx(@), ) = -d1). )
3. We may consider the support coming from the rear:
() = P(t) and y(t) => 0O(@). (6)

Henceforth we make a restriction regarding the loss due to the struggle actions,
only. Thus the system of equations becomes

i’;ﬁtfl = —ax(?) y(1), Q)

9%(;2 =—cx(1).

This simplification is based upon the fact that in the case of the partisan war the
loss caused by shell is insignificant. Dividing the second equation of (7) by the
first one we get
et 8
; v : (8)
Integrating this equation we get:
ay’ (t) = 2ex(t) + M,
M =ay? -2cx, .
For the graphical interpretation of the results obtained, see Figure 1.
The integral lines of this equation are parabolas. Regular army wins in

the case the inequality
’2cx
Yo > : (10)
a
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holds. In our case (¢ = 1,22, a=1,25-10"), the regular forces win if they
have y, >100000 soldiers, the initial number of partisans being x, =10000 .

y(t)4

3

M>0

M=0

M<0

Fig. 1

" x(t)

In case M>0, the regular
forces win,
M=0 is the equilibrium

2cx
a

M<0 the partisans win.

It would be interesting to discuss the time relationship, e.g. for how long

the town can be defended if the number of partisans is & 10000. The results of
numerical solution of the system of equations (7) are graphically represented in
figures2-5.
In Fig. 2 we see that the unit of the regular army loses half of the soldiers in
twelve hours, therefore the regular army must find additional force or step back.
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Fig. 3 shows that the partisans lose only one third of their combatants.
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If the superiority of the regular units is significant (130000 soldiers), then
the combat for the partisans will be a loss (see Fig. 4,5).
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Conclusions.

1. To defend the town successfully for partisans it is enough to have the
forces exceeding one-tenth of amount of adversaries.

2. The number of atackers decrease exponentially.

3. The factor of density of warrious is of great importance and it must be
included into the coefficient 4,

2. SHOOTING AT THE TARGET IN THE THREE-DIMENSIONAL
SPACE. RANDOM INITIAL CONDITION

The trajectory of the shell may be represented by the following system of
differential equations:

[ d%x() _, dx()
m T k 7 + F cos(g),
) y® __ dy@®) .
m p ok k . + F'sin(¢), (11)
o d2t) _ da(t) .
dt’ dt
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Here ¢ denote time, k is the coefficient of aerodynamic resistance, m is the
mass of the shell, g — is acceleration due to the force of gravity, x(¢) and y(r)
denote the horizontal coordinates of the moving body at time moment £z(f) -
vertical coordinate, F— force, ¢ - the angle between the direction of the moving
body and the x - axis, v, - initial velocity of the shell.

Denote the coordinates of the target as x,, y,, z,. We suppose that the
magnitude of v, does not vary and is constant on multiple shots. Denote

v, = 1/x:,, +y2 +z., . The projection of the velocity vector to xy-plane is

e f 2 2
Vaq,— x,p +y-vp v

We suppose that the direction of the initial velocity vector coincides with
the direction of the gun tube. When aiming, the position of the gun tube is
determined by two angles o, and «,, i.e. a, is the angle between the velocity
vector and xy-plane and «, is the angle between the projection of the velocity
vector to xy-plane and x -axis. Evidently, both angles can be determined.

Let us take the following initial conditions :

r 7
3 ’ ¢ = 5 0 F e 15)
Initial values of coordinates and speed: x(0)=0;, »(0)=0; z(0)=0 12)

D(x)(0) = v, cosaycosa,, D(¥)0) = v, cose, sina,; D(z)(0) = v, sing; .

Parameters;g = 98; & =0005 v, =200, m=1 a=

The initial values of the velocity vector are supposed to be random. We used
~ MAPLE software package to solve the system (11) in this case:

x() = 40000cos &; cosar, (1- ™12 ) + (750¢ - 150000(1 — e 12 ))(/5 +1);
y(f) = 40000 cosq, sin e, (1 - e™"12%) + (750¢ — 150000(1 - e~ ))«/E\/_S——Jg; (13)
z(f) = 40000sin &, (1- e12%) — 19607 + 392000(1 — ™12 .

In case ay, =7n/3 , ap = m/4, the time moment when the shell falls on the
ground (that is, z(tde,) =0)is

lier= 34.36436805

and the coordinates (x4, = x(tde,), Vet = y(tde‘)) of the point where the shell falls
on the ground are:

Xy = 9004.6042,
Viq = T152.7575.
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For each pair of N (N=30) different random initial values of angles determining
the orientation of the gun in space, we find:

1) the time moment of landing of the shell, that is the moment for z(#) = 0;

2) the coordinates of the point of landing, that is x,, (¢ of falling), y,, (Zof

falling).
Next we calculate the mean values of the coordinates of the point of landing:

Xmean = 9013-187732,
Ymean = 71151.707533

and their standart deviations :

X stand_dev= 53.26759814,
Y stand dev=35.26392292.

Figure 6 represents the places of landing of N shells with the random
initial conditions. The big cross indicates the place of landing of the shell with
the deterministic initial condition. The horizontal and the vertical lines of the
cross are the standart deviations of the coordinates Fig. 7-8 give the block-

diagram of x,,,, and ¥,....-

. The places of landing of N=30 shells
with the random initial conditions

7220+
+
>
72004
L
+
7180+ +
+
+ +
7160+ o +
X NI
71404 . "
o +
71204 #;
L L 2
&
L * +
71004
+ +
+*
70804

86



Xmean Ymean

0.014} L
0.012
0.008}
0.01
0.008
0.004
0.008}
0.004]
0.002
0.002.
OJ
680 8800 6980 8000 2080 8100 07080 7100 7120 7140 7160 7180 7200 7220
Fig. 7 Fig. 8

All of N trajectories of the shell’s flight are represented in Fig. 9:

Eikonal of trajectories

Fig.9
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Conclusions. The trajectories of the flight of the shell calculated with the random
initial conditions describe the real trajectory within the necessary precision.
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