Nonlinear Analysis: Modelling and Con&ol, Vilnius, IMI, 1998, No 2

DYNAMICS OF THE PROCESSES IN METAL MACHINING
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In the practice of processing of metals by cutting it is necessary to overcome the
vibration of the cutting tool, the processed detail and units of the machine tool. These
vibrations in many cases are an obstacle to increase the productivity and quality of
treatment of details on metal-cutting machine tools. Vibration at cutting of metals is a
very diverse phenomenon due to both it’s nature and the form of oscillatory motion.

The most general classification of vibrations at cutting is a division them into
forced vibration and autovibrations. The most difficult to remove and poorly
investigated are the autovibrations, i.e. vibrations arising at the absence of external
periodic forces. The autovibrations, stipulated by the process of cutting on metal-
cutting machine are of two types: the low-frequency autovibrations and high-frequency
autovibrations. When the low-frequency autovibration there appear, the cutting
process ought to be terminated and the cause of the vibrations eliminated. Otherwise,
there is a danger of a break of both machine and tool. In the case of high-frequency
vibration the machine operates apparently quiently, but the processed surface feature
small-sized roughness. The frequency of autovibrations can reach 5000 Hz and more.

1. DYNAMICS OF CUTTING PROCESS

1.1. Statement of the problem. The stability of process of removal of a
shavings in a wide range of technological modes is one of the main requirements for
metal-cutting machine tool. In order to build a theory of autovibration at cutting, it is
necessary to consider the laws of deformation of metal under the process. Peculiarity
of process of cutting related to plasticity properties of metal causes delay in change of
field of stresses and, consequently, delay of forces, acting on lathe tool with respect to
coordinates of the latter. The autovibration at cutting of metal is generated by the
delay forces that shake the system. The conditions of stability of such system can be
established by usual methods of analysis of linearised equations, describing vibration.

1.2. Delay of forces at cutting of metals. The reason of delay of forces at
cutting of metal is the peculiar process of deformation of metal. For this purpose we
shall consider conditions of formation of shavings. At removal of shavings C (Fig.1)
from either steel or cast iron an advancing crack afg at the edge a of lathe tool is
observed. At cutting of elastic metals having properties of plasticity, hardening and
fragility, the periodic occurrence of a crack afg is inevitable. To begin with, we
assume that deformation of the layer abdf (Fig.2) is in the initial stage and there is no
crack yet.
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Fig. 1. Fig. 2.

Assume that the inclined surfaces ab and fd, bounding the layer, coincide with
the surfaces of the heaviest tangential stress. Then it is possible to consider a layer
abdf as if it were in balance under the action of the following stresses: normal &3, o,
and tangential 7;, T, acting on the layer along the surfaces ab and fd, as well as the
normal stress o3 and stress of shift 73, acting on the surface af separating a deformable
layer from the processed metal. It is obvious, that deformations of crushing and shift of
layer abdf in directions o), 02, 71, and 7, are accompanied with deformation of shift in
y-plane. Assuming that the edge of lathe a moves in y-plane, i.e. the thickness of layer
A exposed to deformations of shift is close to zero, it is obvious, that even a small
movement of lathe in y-plane induce significant relative shift. Therefore tangential
stress 73 in the points of a quickly reaches both yield and strength limit. Hence in
these points a crack will appear. At further movement of lathe the displacement of
points in agf-plane increase under the compression of layer abdyf, therefore causing a
spread of the crack up to point f The high concentration of stress in top of crack
prootes increase of rate of its formation. Thus deforming element will be cut off to the
length af and stress o3 will vanish, as length af will reach some critical size. As a
consequence of change of equilibrium condition of element abdf, the resistance of the
element to displacement with respect to fd decreases so, that compressive deformation
of the element pressed before stops and total replacement of shavings will be carried
out at the expense of this shift at'simultaneous local crushing in corner fag (Fig.1). An
advancing crack turns to plane afg. At further deformation due to approach of an
edge a of lathe to vertice f of the cavity, the latter shrinks down up to the close contact
of the edge with the points £ The process of reduction of cavity is accompanied by
both increase of resistance and resumption of deformation of crushing of cutting layer,
that is the beginning of formation of the next element.

The described discontinuous process of formation of the shavings has a rather
high frequency and is accompanied by corresponding oscilation of cutting force. The
edge of lathe a does not operate continously removing the main shavings, but only
incise layer of the material.

Thus, at small vibrations of the system in direction of x the oscilation of
thickness of the shavings and force P is periodically detained and it occurs
intermittently. Time of delay of cutting force P, as well as the force itself, depends on
x. If to disturb the system in the direction of x, then due to delay the lathe will pass
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some way /, in direction of y. Denote as hy, the time delay, which is necessary to run
the delay distance /,. The delay equation relating force P and coordinate has a form

~AP (1) =B4x (t - hy) (1.1)

where AP(#) — function of #, Ax(t — hy) — function of (7 —hy).

Further consideration of process of deformation of metal at cutting results in
conclusion [8], that at small fluctuations of system, delay of friction force O with
respect to force P should take place. At the surface of contact of shavings C with the
lathe in zone D (Fig.1) there is the second plastic deformation. The zone D is formed
under the action of friction force 0, which tends to move metal on the sliding surface
in the direction opposite to the movement. At presence of outrun cavity the normal
and tangential stresses, that are equal to zero on surface fg, grow on region ge. As
force P receives increment AP, the normal stress o, on surface ge increases.
Obviously, tangential stress 7, on this surface will increase only after the metal at
lathe will receive some additional shift.

Therefore, each element of shavings being moved along the surface of lathe
causes the variable elementary friction force that reaches its maximal value only after
the element passes the way /, . As the cutting force receives increment AP, increment
AQ of friction force Q reaches the size AQ =/fAP only through some time A, which
is necessary to move shavings along the way lp, Similarly to equation (1.1), equation
of delay of friction force has a form

A4Q (1) =fAP (t - hy). (12)

The linear analysis of difference-differential equations (1.3) —(1.4) is provided in
[8]. Our objective is the complete linear and nonlinear analysis of system (1.1) - (1.2)
. applying methods of theory of bifurcation, advanced in [9].

Dynamic equations in the case of small oscilations we put into the following
form:

5&(:)+—D£Z+w§x(z)=%ii)
153
(wzz.&) 13)
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[ y _c_y] (1.4)
¥ _my

where D(x) and D(y) ~ dissipative forces, m. and m, - masses, ¢; and ¢, —
coefficients of elasticity. Time of delay 4, depends on v + Ay, time of delay hp

dependson v +Ap/§  +A¥, ie. h, and hy are variable.
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2. DYNAMICS OF DRILLING PROCESS

2.1. Introduction. Autovibration arising in the process of drilling on drilling
machine, result in a series of harmful phenomena: decrease of accuracy and quality of
processing, decline of productivity of the machine tool, its anticipatory wear, decrease
of resistance of the tool, and break of drill or boring bar at deep drilling.

2.2. Origin of excitation and equations of motion. The principle scheme of
drilling machine is represented on Fig 3. There are two distinct oscillatory systems in a
drilling machine: firstly, a spindle with gears of the drive of rotation (oscillator ¢),

secondly, the whole spindle unit (oscillator s).
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Fig. 3.

Assuming that drill is absolutely stiff, we shall show the origin of excitation that
takes place at drilling. In process of drilling, change of feed s and velocity of feed g,
results in change of magnitude of torque M,, while the change of angular velocity of
drill ¢ changes axial cutting force P,.. The possible reason of inhibition of vibration are
the delay forces whose delay is equal to the duration of rotation of the drill by m-th
part of the full angle, if there is m cutting edges on the drill. In the case of deep drilling,
one can not consider a drill to be absolutely stiff, therefore the delay, that is equal to
time of run of an elastic wave along the whole length of a drill, plays the main role in
inhibition of vibration.

We shall consider the detail as unmovable, the motor rotating at constant angular
speed £2 and the drill in direction of feed to be absolutely stiff.

In the case of nonvibrating mode of drilling, both axial component of cutting
force P, and torque M, are the functions of two independent variables, only, i.e.
cutting velocity v, = Q, (here r is a radius of drill) and velocity of feed s, . In this case
velocity of feed s, is related to v, and s, by the following equation:
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In the case of vibrating mode of drilling, the increment of feed velocity can vary
independently to both the increment of cutting velocity v = r¢l.., and feed s

therefore the following hold:

P, =P.(s, +As, §,+38, vy +v),
Mg = M,(s, +As, §, +38, vy +V). @

Here As - increment of thickness of shavings, ¢ (%,#),., - increment of angular
velocity of rotation of drill end. The thickness of shavings, cut by each edge at a given
moment of time, depends on trace on surface, formed by previous edge h seconds
earlier (fig.4), therefore

AS =m [s(t) - s(t-h)], where h =27r/m(v, +v) I,,; : 2.2)

Fig.4. Change of thickness of drill shavings during 1/m of a turn of the drill.

In the case of vibrating mode of drilling, the increments of cutting forces in the
- neighbourhood of s,, 5, v, are equal

dP, =k As+ks+k v(l, 1),

(2.3)
dM, =n As+ns+n v(l, t),
where
oP, oP, oP,
we(), w=(5), 6-(3),
1 o . 2 o5 & 3 av »
oM, M, M,
M ) e h ®
v, me(); (),
The equation of oscillation of oscillator s at drilling have a form
M§+cs+Nis=-dP,, (2.9)
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where M, is the mass of the whole spindle unit of the machine tool, concentrated at
x=1, ¢, A, — coefficients of resistivity and elasticity forces.
In the direction of turning the drill is considered as an elastic core, stiffly

attached to a chuck of a spindle.

Let ¢(x,7) be an increment of an angle of a turn of cross section of the drill
located on distance x from the attachment point. This imply the following equation of
rotational vibration of a drill;

PR
oo’

2 2
a(p—aé-g D=

EXr™ it

where a= Q D= L , M — coefficient of internal friction, G — magnitude of shift, p —
p p

density of the material.

We build the boundary condition at x = 0 assuming that the drill is attached to
the oscillator o stiffly. The oscillator ¢ is characterized by the moment of inertia with
respect to the rotation axis 0o’ and coefficients ¢,, A,. The condition has a form:

0 ) o 09 ‘
ng—(G(P+T\3t') L,o '[ Py Tt 3 +)\,2(p) lx—o (26)

where 7 — polar moment of cross section of the drill. The second boundary condition
at x = 1 is obtained from equality of moments on the end of drill at cutting:

I;(G<p+naa(f)l =-dM, X))

Differentiating the equations (2.5), (2.6), (2.7) with respect to f and substituting

x=1

G :
¢ = — we come to equation for v:
’

&y Py v
7 % s o)
with the boundary conditions:
& & 13 c &
%(GE 7]&&) = =(w ?*-ZZE-FVJ o (2.9)

1o +8, — s+——[s(t) st ]1)+—3v(lt)J 0 (2.10)
ol of
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I( ov  ov? d( ds )
r(Gamet) le-dt m{s(e) = s(¢ = B)+my — +myy |, @)

where 0;, and o — eigenfrequencies of the oscillators s and @(0,t);
8, =(q+4k)/A,, h=2nr/v, The linear analysis of model (2.8)-(2.11) is
conducted in [6].
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