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INTRODUCTION

A wide class of dynamical systems can be described by the first-order delay differ-
ential equation (DDE) [1-4]:

dx/dt = N[x(t), x(t - 7)]. (1)

Here N is the nonlinear function and zis the time delay.

In contrary to the ordinary differential equations (ODEs), where a certain but finite
number of initial conditions x,(0) should be given, the evolution of the dynamical vari-
able x(?) in the DDEs is determined by the initial function ¢(7):

¥

x(t)= @(t) for te[-7,0],

that is the problem to be defined needs initial data over an interval of length = Since
the continuous function ¢(f) contains an infinite number of data points, the systems
_ given by Eq.(1) are referred to as the infinite-dimensional ones [1,4].

There are many practical examples of dynamical systems with delay in electronics,
optics, laser physics, physiology, population biology, economics. Many of the refer-
ences can be found in [5].

An interesting feature of the DDEs is that depending on the time delay 7 they may
exhibit periodic, chaotic and even very complex hyperchaotic behaviour characterized
by multiple positive Lyapunov exponents [1,2].

In recent years synchronization of chaotic systems [6,7] has attracted much atten-
tion. This phenomenon is supposed to have intriguing applications in secure communi-
cations [8,9]. However, simple chaotic systems with only one positive Lyapunov €Xpo-
nent do not ensure a sufficient level of security. In this regard hyperchaotic systems are
more advantageous ones [10-13] and the delay dynamical systems seem to be good
candidates.

MACKEY-GLASS SYSTEM

In some cases Eq.(1) can be given in the following form:
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dxfdt = —x(t)+ N[x(t - 7)]. 2)

An example is the Mackey-Glass (MG) system [1-4,14]:

ax(t-r)
1+x°(t-7)

dx/dt = -x(1)+ 3)

introduced as a model of blood production. The common parameters are a = 2, ¢ = 10,
and 7 varied [1,2,4]. A linear and a numerical analysis of Eq.(3) shows, that there is a
stable fixed point attractor for 7<0.47, a stable limit cycle for 0.47 < 7 < 1.33, a period
doubling sequence for 1.33 < 7 < 1.68, and chaotic attractors for z > 1.68. Hypercha-
otic behaviour characterized by more than two positive Lyapunov exponents is ob-
served when 7 approaches 4. A hyperchaotic solution of Eq.(3) is illustrated in Fig.1
and Fig.2.

1.5

1.0

0.5

t

0

Fig. 1. Hyperchaotic time series x(#) from Eq.(3). a =2, ¢ =10, 7=6.

Fig. 2. Phase portrait x(7) versus x(t -T) from Eq.(3). a=2,¢=10, 7=6, T= 7.

An electronic oscillator (Fig. 3) which simulates the MG model has been proposed
[15], developed and investigated experimentally [16]. It contains a tunable delay line
DEL, a nonlinear device ND and an RC filter. The circuit provides a convenient tool
for modelling and studying chaotic phenomena in dynamical systems with time delays.
The MG model along with its electronic analogue [16] have been intensively exploited
as the test systems for various techniques developed to stabilize unstable fixed points
[17-19], unstable periodic orbits [17,20], and to control chaotic states [21] in delay
dynamical systems.

LDEL)—>ND—-RC s

Fig. 3. Block diagram of an electronic analogue of the Mackey-Glass system.
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SYNCHRONIZATION OF THE MACKEY-GLASS SYSTEM

One of the possible ways to synchronize two hyperchaotic oscillators is to apply a
linear term in the form of the difference between of the state variable of the drive sys-
tem and the state variable of the response one, k(x; — x2) [9,12,13]:

ax,(t-7)
1+x5(t~7)

dx, [dt = -x, (1) + +kfx, (1) = x, (1], @

where x,(?) is the variable from Eq.(3) with a subscript “1” used to distinguish the drive
system from the response system indicated with a subscript “2”.

Actually, this method employs the idea known in the control theory as “closed-loop
state feedback”. It was used to control the unstable fixed points and unstable periodic
orbits in the MG system [17-20], where the target fixed point x, or the target limit cy-
cle x,(7) were taken instead of the variable x,(7).

The corresponding experimental setup to synchronize two chaotic oscillators is
shown in Fig. 4 and the experimental results [22] are illustrated in Fig. 5.
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Fig. 4. Block diagram for synchronization of two active MG oscillators.

Xy

Fig. 5. Phase portraits of unsynchronized, &£ = 0 (left) and synchronized, k > k.. (right)
MG systems, x; vs. x; from Eqs.(3,4) at 7= 6 [22].

The stability properties of the synchronization and the critical value of the coupling
coefficient k., can be obtained from the transversal Lyapunov exponents introduced in
[7]. As it is seen from Fig. 6 the largest Lyapunov exponent turns to be negative at £ =
k.. = 0.65, thus ensuring robust synchronization of the MG system for a given set of
parameters.
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Fig. 6. Three largest transversal Lyapunov exponents 4,23 as the functions of the
' coupling coefficient £ from Egs.(3,4). 7=6.

SYNCHRONIZING OTHER DELAY DYNAMICAL SYSTEMS

The synchronization method considered in the previous section for the MG system
can be applied to other delay systems of this type as well. However, in every specific
case the synchronization stability should be checked either numerically by means of the
Lyapunov exponents or experimentally for a given system.

Another way to achieve synchronous behaviour of chaotic systems is to plug some
of the variables from the drive system into the response system, say into the nonlinear
terms of the latter [6-9]. This method can be easily applied [23] to delay systems de-
scribed by Eq.(2). In fact, since Eq.(2) is the first-order DDE the method appears to be
extremely simple in comparison with the case of the third-order ODEs [8].

A diagram of possible experimental implementation is shown in Fig. 7.
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Fig. 7. Block diagram for driving passive delay resonator: (a) active oscillator, (b)
passive resonator.

In contrast to the active oscillator (Fig. 7a) the circuit in Fig. 7b is a passive one
similarly to the fourth-order nonlinear resonator considered in [24]. The corresponding
differential equation (for x; = 0) is

dx, [dt = —x,(t).

It has a single stable stationary solution x,= 0.
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Driving this circuit with the external signal x,(f) from the active oscillator yields an
equation:

dx, [dt = =x,(t)+ N[x,(t - 7)]. (%)

Introducing the error variable e = x;-x; [8] a simple equation governing the error
dynamics is obtained: de/d 1= —e, which is globally asymptotically stable at the origin
(e = 0). Consequently, synchronous response of the passive resonator is guaranteed
(x2 > xy). _

This method of synchronization can be readily applied to secure communication.
Suppose, that an information signal i(f) is injected into the transmitter [25] and is
masked with the chaotic signal x;() at the output s(f) = i(f) + x1(?) [8,25]. Then the s(®)
is transmitted into the channel. The receiver is easily synchronized to the transmitter no
matter that the “intrinsic” signal x;(f) in the nonlinear terms is substituted with more
complex signal s(¢) [25]:

dx, [dt = —x,(t)+ N[s(t - 7)], (52)
dx, [dt = —x,(t)+ N[s(t - 7)). (5b)

The synchronization error e(f) vanishes also in this case since it is described by the
same equation de/d t= —e. Once the receiver and the transmitter are synchronized (x; =
x1) extracting of the message is a straightforward procedure. The receiver output is
*(#) = s(1) = xx(2) = i(¥) + x2(?) - x2(f) = i(¥), i.e. the information signal i(?) is easily re-
covered.

A diagram of the experimental implementation of secure communication with the
delay dynamical systems is presented in Fig. 8.

()L DEL ND (- RC |[¢3»
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Fig. 8. Block diagram for secure communication: (a) transmitter, (b) receiver.

We note, however, that the level of i(f) should be sufficiently lower than the level
of x(#). There are two reasons for such a requirement. The first one is that the i(?)
should not influence chaotic behaviour of the system too much. The second one is that
the i(7) itself should be efficiently masked with the x1(?) in the transmitted signal s(?).
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GENERAL CASE

In general case given by Eq.(1) more sophisticated synchronization methods should
be used since simple replacing of x»(?) in the response system with x,() does not en-
sure robust synchronization. A simple way is just to add a linear control term b (¥) -

x()]:
d, Jdt = N[x, (), %, (£ ~7)]+ b, () = x,(0)]. (©)

This method is similar in a sense to the double synchronization technique employed
to synchronize third-order chaotic systems [9].

The error dynamics is governed by de/dt = —be. Consequently, synchronous re-
sponse is achieved at any b > 0. In contrast to the common synchronization method via
K[x1(£) — xa(f)] described for the MG system there is no critical value for the coefficient
b in Eq.(6). However, the rate of convergence does depend on the value of b.
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