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CORRELATION IN THE HEART RATE DATA
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Abstract

Variety of methods of nonlinear dynamics have been used for possibility of an
analysis of time series in experimental physiology. Dynamical nature of ex-
perimental data was checked using specific methods. Statistical properties of
the heart rate have been investigated. Correlation between of cardiovascular
function and statistical properties of both, heart rate and stroke volume, have been
analyzed. Possibility to use s data from correlations in heart rate for monitoring
of cardiovascular function was discussed.

INTRODUCTION

#

Application of the chaos theory for quantitative characterization of systems with
complicated behavior has aroused considerable interest of physiologists in nonlinear
dynamics methods. Clinicians’ interest in nonlinear dynamic was caused by recent
investigations which reveal chaotic components in heart rate data previously de-
~ scribed as periodic ones, sinus rhythm. Power spectrum of the electrocardiogram
data shows a broad band structure typical for stochastic and chaotic processes [1, 2.
Therefore theory of the deterministic chaos looks very attractive searching for the
new characteristics to describe cardiac abnormalities. However, specific features of
the biological signals such as high internal noise and short stationary times cause
serious difficulties. Standard algorithms require special modifications for biological
data to comply with the requirements of physiologists for high sensitivity to the
abnormalities in system functioning and reliability of the obtained results. There-
fore in practical physiology chaotic parameters serve mainly as system complexity
indicators, but not as a quantitative parameters. On the other hand, typical chaotic
parameters such as dimensions or Lyapunov exponents are averages over long period
of time and can only serve as a quantitative characteristic of the general state of
biological system. Analysis of local in time structures is essential for the diagnostic
procedures. Therefore methods sensitive to the local dynamical structure of the
system should be used for analysis of heart rate, changing with development of
cardiac pathology, in addition to the sophisticated chaotic parameters. In this study
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we tried to overview results of our recent years investigation in which we tried to
compare diagnostic features of different nonlinear dynamics and statistical methods
used for practical physiology.

EKSPERIMENTAL DATA AND REQUIREMENTS FOR ANALYSIS

We have registered simultaneously two parameters of heart activity, namely inter-
beat intervals (RR) and stroke volume (SV) quantities per heart beat. Simultaneous
recording allows to obtain more comprehensive picture of heart functioning, because
RR intervals are reflecting the level of autonomic control, while SV data gives an
additional information about cardiac contractility function. Data were obtained
from four different patient groups, two groups of normal adult subjects (well trained
sportsmen and healthy subjects with normal autonomic control), and two groups of
coronary artery disease (CAD) patients (CAD pts and CAD pts after myocardial
infarction).

Specifics of the biological systems require modifications of standard nonlinear
dynamics algorithms. The main problems of the nonlinear analysis when applying
it to biological signals can be summarized as follows: a) high level of random noise
in the biological data. The applied nonlinear dynamics methods should be robust
to the noise influence; b) short experimental data sets due to the low frequencies of
the biological signals. Short realizations cause large error bars in the estimation of
the chaos parameters; c) nonstationarity of the biological systems. Cardiac activity
is influenced by a various external factors with different characteristic times; d)
spatially extended character of the system.

NONLINEAR DYNAMICS OR RANDOM NOISE?

For the noisy and short time series, standard of algorithms chaotic dynamics can
give spurious results, i.e. they can indicate the presence of the nonlinear dynamics
in completely random systems. Recently, the surrogate data techniques have been
developed to distinguish the chaotic systems from the linearly correlated noise (3].
In this technique as the first step an ensemble of the so called “surrogate” data sets
is created from the original data. The “surrogate” data are completely stochastic,
but they contain exactly the same linear correlations as that in the original time
series. The practical way to do this is to take the Fourier transform of the original
data, randomize the phases while keeping the magnitudes intact, and then invert
the Fourier transform. The resulting time series have the same power spectrum as
the initial data set was, but they are random in all other respects. Then one can
compute any chaos parameter, for example, correlation dimension, using the same
algorithm for both original and surrogate data sets. If the difference between the real
and the surrogate dimension is significantly larger than the standard deviation of
the surrogate dimensions calculated from different sets, then it is a strong indication
of the nonlinear structure in the investigated time series.
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Described surrogate data technique [3] have been used to check our data (Fig. 1a)
for nonlinearity. An ensemble of so called “surrogate” data sets (Fig.1b) having
the same power spectrum but random in all other respects have been created.
Correlation dimension was calculated for both original and surrogate data using
the same algorithm, namely Grassberger-Proccacia algorithm suggested in [4]. The
dependence of the correlation exponent n on embedding dimension M is shown
in Fig. 1c for original signal and mean value of ten surrogate signals. The mean
deviation of the surrogate data is 5%. Dependence v(M) for the original data is
closer to the saturating behavior typical for chaotic data, while surrogate signals
ensemble demonstrate more stochastic behavior. We suppose that this result is
sufficient for nonlinear structure evidence in HR data.
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Fig.1. a) HR data for healthy adult subjects, b) “Surrogate” data obtained from the HR
data, ¢) v(M) for real (light column) and “surrogate” (dark column) data.

RESULTS

Correlation dimension and exponent of the long-range correlations have been
chosen and checked as quantitative system characteristics. For the first step correla-
tion dimension was calculated using suggested [4] Grassberger-Proccacia algorithm:

s —af]) e 0

CM(e) =Ny 0 (c -
]

Here |xf‘4 —zM “ defines the distance between points in the M-dimensional space
and O is the Heaviside function. Correlation dimension is to be estimated as a
saturating value of the exponent for large enough M. In our experiments, as is
typical of biological systems, the nonsaturating behaviour of v(M) was observed.
We suppose that this behaviour is related with the unavoidable presence of the
random noise in heart rate data.

Therefore for calcullations of correlation dimension was used suggested in [5]
modified Grassberger-Proccacia algorithm to eliminate random noise influence. The
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Fig.2. Long range correlations for the HR in healthy adult subjects: a) normal, b) well
trained sportsman, c) ischemic heart disease.

main idea of the algorithm for determining the correlation dimension from the noisy
data suggested in [5] is to find the linear part of the plot ¥ vs M in the range of large
values of M. This line is extended until it intersects the line (M) = M. The needed
correlation dimension of the underlying attractor is determined by the intersection
point. This method is valid, however, if the slope of the function (M) = M is
small enough. The delay 7 is a free parameter in this method. The Takens theorem
suggests that theoretically the choice of this parameter is not important. In practice,
however, it is crucial to choose a good value of 7 due to the noise and the short time
series. It is shown that the most effective sampling frequency for biological signals
is in the range of 100-500 Hz [1, 2].

Long-range correlations were calculated by means of fluctuation function F(n)
introduced in [6]. Function F(n) = ((z, — Z.—n)?) by the definition quantifies
magnitude of the fluctuations over different time scales. They has shown significant
differences over physiologically relevant time scales (200-3000 heart beats) in dif-
ferent investigated groups. In the case of CAD patients linear part in the log-log
plot corresponding to the scale invariant power law behavior has the same exponent
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in the range from the very small to the large time scales. In other cases change of
behavior at about 100 heart beats is clearly seen. Scaling exponent estimated from
the linear fit in the range of 2000-3000 heart beats varies from 0 for well trained
subjects to 0.2 for CAD patients (7, 8].

Both above parameters characterize average system state during long period of
time. Interesting for physiologists information about the local dynamical structure
is lost in this analysis. Analysis of the return maps represents a possibility to
obtain an informative picture of cardiac activity detected by short-range correlations
in RR and SV data. For CAD patient with normal sinus rhythm return maps
typically have random distribution of points, which is dependent on HR variability
level and a period of the dominating HR waves. Reduction of HR variability and
occurrence of some dysrhythmias, namely atrial fibrillation, premature beats, sino-
atrial or atrioventricular blocks, lead to the simplification of system behavior, namely
occurrence of some periodical structure in the return map (7). An analysis of short-
range correlation of successive RR intervals and stroke volume (SV) values was
performed using Poincare maps in CAD patients having normal sinus rhythm or
sinus thythm with some dysrhythmias: premature beats (PB’s), sino-atrial (SA) or
atrioventricular (AV) blocks, episodes of parasystolia (Fig. 3).
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Fig. 3. Return maps of successive RR intervals and stroke volume records for: 1) IHD
patient with normal sinus rhythm (a,b), 2) combined sinus rhythm, atrioventricular
blocks and premature beats record (c,d), 3) sinus rhythm with ventricular PB’s
(parasystolia) with episodes of allorhythmias (e,f).

In the case of CAD patient with normal sinus rhythm, demonstrating prevalence
of parasympathetic control (respiratory arrhythmia), Poincare mapings are ellipse-
form cloud of points (Fig. 3a,b), which depends on the HR variability level and the
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period of the dominating HR waves. Reduction of HR variability is followed by the
changes in the shape of diagrams tending to the pattern of point.

In the case of HR disturbances particular specific patterns of mapings were
obtained. Record of sinus rhythm with AV blocks and separate ventricular PB’s
(Fig. 3b) demonstrates quadrangular distribution, related to PB’s, postextrasystolic
cycles, and the cycles with AV blocks concentrating on the upper part of the
Fig. 3b, while point at center, corresponds to reduced HR variability. Poincare
mapping while ventricular PB’s (parasystolia) with episodes of allorhythmias is
present (Fig. 3c), has three separate elliptic clouds, related to normal sinus rhythm,
preextrasystolic and post-extrasystolic intervals. Stroke volume values distribution
(Fig. 3d) demonstrate three levels of hemodynamics, corresponding to sinus rhythm,
preextrasystolic and postextrasystolic intervals.

We have expectations that return maps might be useful for quick detection of
cardiac pathological events in permanent visual monitoring of patient’s functional
status.

Return maps can be considered as a method to present single variate experimen-
tal data in the more informative form. The essential component of the nonlinear
dynamics methods is reconstruction of the high dimensional phase space. For the
analysis of the such complicated system as heart this reconstruction can be crucial
even looking for short time correlations. Reconstruction of the high dimensional
phase space. is incorporated in the method of constructing recurrence plots [9].
Recurrence plots allow data analysis in high dimensions preserving information
about local dynamics in system behavior. Comparison of the recurrence plots
obtained for the same HR data but different phase space dimensionality is shown in
Fig. 4.

Fig.4. Recurrence plot for RR. intervals data in reconstructed phase space
a) embedding dimension M =1, b) M = 5.

Local periodical structure of the data hidden in one dimensional recurrence plot
is more clear in higher dimensional plot. Observed periodical structure is caused
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by dominant biological processes of the living organism. Changes in the structure
of recurrence plots indicate changes in the state of system under investigation and
have diagnostic features useful for physiology. As an example of such diagnostics
can serve study of the heart activity during the all night sleep.
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Fig.5. Recurrence plot for M = 5 case of night sleep test data fragment with transition
between two different sleep stages. White regions corresponds to the correlated sygnal.

It is well known that during sleep heart activity changes accordingly with stages
of sleep. These changes are different for normal and pathological cases. Therefore
dependencies of the dominant periodical structures in HR data during night sleep
obtained from recurrence plots (Fig. 5) have clear diagnostic features.

CONCLUSIONS

Our investigations of heart rate data has shown, that correlation analysis based
on nonlinear dynamics methods can be applied for cardiac pathology diagnostics.
Our results also show that standard nonlinear dynamics methods without specific
modifications can give spuriuos results. Therefore very careful analysis of particular
biological data preceding investigation must be made. ‘

Obtained results from calculation of quantitative nonlinear dynamics character-
istics show their usefullness for description of state of biological system in general.
As an example of long-range correlations of successive RR intervals might be used as
quantitative characteristic for detection of cardiac pathology. Scaling exponent for
fluctuation function F'(n) was obtained markedly different for normal and patho-
logical situations, i.e. could show an increase in it’s absolute value in relation to
development of cardiac pathology.

From the other hand, features of local dynamics, which are very informative for
physiologists, can be successfully visualized by simple return mapings. Recurrence
plots represent another useful tool for diagnostics of changes in autonomic HR
control due to cardiac pathology obtained from dominant periodical structures in HR
data. They might be seen as very simple and convenient measures for preliminary
indication of the cardiac abnormalities.
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