
https://doi.org/10.15388/namc.2020.25.15730
Nonlinear Analysis: Modelling and Control, Vol. 25, No. 1, 69–83

eISSN: 2335-8963
ISSN: 1392-5113

Stability analysis of partial differential variational
inequalities in Banach spaces

Faming Guoa,1, Wei Lib,2, Yi-bin Xiaoc,3,4, Stanisław Migórskid,5

aSchool of Mathematics and Statistics,
Hechi University, Yizhou Guangxi, 546300, China
bGeomathematics Key Laboratory of Sichuan Province,
Chengdu University of Technology,
Chengdu, 610059, China
cSchool of Mathematical Sciences,
University of Electronic Science and Technology of China,
Chengdu, Sichuan, 611731, China
xiaoyb9999@hotmail.com
dChair of Optimization and Control,
Faculty of Mathematics and Computer Science,
Jagiellonian University in Krakow,
ul. Lojasiewicza 6, 30348 Krakow, Poland

Received: October 27, 2018 / Revised: May 17, 2019 / Published online: January 10, 2020

Abstract. In this paper, we study a class of partial differential variational inequalities. A general
stability result for the partial differential variational inequality is provided in the case the perturbed
parameters are involved in both the nonlinear mapping and the set of constraints. The main tools
are theory of semigroups, theory of monotone operators, and variational inequality techniques.
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1 Introduction and preliminaries

Let X and Y be two real reflexive and separable Banach spaces, X∗ be the dual space
ofX , andK ⊂ X be a nonempty, compact, and convex set. We denote by 〈·, ·〉 the duality
pair between X∗ and X . In this paper, we aim to study the following partial differential
variational inequality (PDVI) in infinite dimensional space. Find functions x : [0, T ]→ Y
and u : [0, T ]→ X such that

ẋ(t) = Ax(t) +Bu(t) for a.e. t ∈ [0, T ],

u(t) ∈ SOL
(
K,G

(
t, x(t)

)
+ F (·)

)
for a.e. t ∈ [0, T ],

x(0) = x0.

(1)

Here A : D(A) ⊂ Y → Y is the infinitesimal generator of a C0-semigroup T (t),
B : X → Y is a linear and bounded operator, ẋ(t) = dx(t)/dt stands for the derivative
of a function x with respect to time variable t, x0 ∈ D(A) is a given element. Moreover,
SOL(K, G(t, x(t)) + F (·)) denotes the solution set of the following time-dependent
variational inequality governed by a nonlinear mapping F : X → X∗, a time-dependent
mapping G : [0, T ] × Y → X∗, and a constraint set K. Find u : [0, T ] → K such that,
for a.e. t ∈ [0, T ], it holds〈

G
(
t, x(t)

)
+ F (u(t)

)
, v − u(t)

〉
> 0 for all v ∈ K.

Due to many applications in several disciplines such as economics, engineering oper-
ation research, and mechanics, variational inequalities and related optimal control prob-
lems have been widely studied, and many important results have been recently obtained
in [11, 19, 28–32, 35–37]. In the study of control problems governed by variational in-
equalities, there is a special kind of problems, which consist of a differential equation and
a variational inequality. Since more and more problems existing in economical dynamics,
dynamic traffic networks and control systems can be converted to an evolution system
with a control set being a solution set of a variational inequality; see, for example [27].
Such kind of control problems have received much attention in recent years. In 2008,
Pang and Stewart [24] first introduced a control problem in finite dimensional space
consisting with an ordinary differential equation and a variational inequality. We refer
to such systems as a differential variational inequality (DVI). In their study, they proved
the existence of Carathéodory weak solution to the DVI and established the convergence
of the Euler time-stepping procedure for the initial value problem for the DVI. In addition
to solvability and convergence of solutions to the DVI, another important research issue is
the stability analysis; see, for example, [7] and the references therein. In [25], the authors
studied the dependence of a solution to DVIs on the initial conditions. Wang et al. in [33]
studied the upper semicontinuity and continuity properties for the set of Carathéodory
weak solution mapping for a differential mixed variational inequality when both the
mapping and the constraint set are perturbed by different parameters in finite dimensional
spaces. Gwinner in [7] studied the stability of the solution set to linear differential varia-
tional inequalities and gave a result on the upper convergence with respect to perturbations
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in the data, including perturbations in the associated linear maps and the constraint set in
Hilbert spaces. Various theoretical results, numerical algorithms, and applications of the
DVIs in finite dimensional spaces have been explored in [2, 8, 9, 12–15, 23, 34].

Furthermore, in many distributed parameter optimal control problems with differen-
tial equation as in (1) (see [4, 5]), more precise models are obtained when the ordinary
differential equation is replaced by a partial differential equation, where the operator A
represents a partial differential operator with respect to spatial variables. Thus, following
Liu et al. [17], such problems are called a partial differential variational inequality (PDVI).
For various kinds of PDVIs, Liu and his co-authors have made many contributions as indi-
cated below. In [17], Liu et al. as pioneers first explored a class of evolutionary equations
driven by variational inequalities in Banach spaces, and proved the nonemptiness and
compactness of the solution set. After that, Liu et al. in [16] established the existence
of solution for a class of partial differential variational inequalities involving nonlocal
boundary conditions in infinite Banach spaces by using fixed point theorem for condens-
ing set-valued operators, theory of measure of noncompactness, and the Filippov implicit
function lemma. More recently, Liu et al. in [18] studied a class of partial differential
hemivariational inequalities which consists of a nonlinear evolution equation and a hemi-
variational inequality of elliptic type. In fact, the PDVIs are very useful in optimization,
and mechanical and electrical engineering, see [21, 22, 39]. As far as we know, until now
there are very few research results on the stability analysis for the PDVIs. Motivated by
the aforementioned works, in this paper, we are devoted to stability analysis for the PDVI
(1) in infinite dimensional spaces when both the mapping F and the constraint set K are
perturbed by two different parameters.

In the rest of this section, we introduce the perturbed problem for the PDVI (1), which
is needed to carry out the stability analysis. We conclude this section with basic definitions
and lemmata, which will be used in the following sections.

Let (X1, d1) and (X2, d2) be metric spaces. In what follows, we assume that the
constraint set K ⊂ X in (1) is perturbed through a parameter p, which varies over
(X1, d1), and the mapping F : X → X∗ in (1) is perturbed by a parameter λ, which
varies over (X2, d2). The corresponding perturbed problem for the (1), which is referred
to as the perturbed partial differential variational inequality (PPDVI), can be specified as
the following parametric partial differential variational inequality:

ẋ(t) = Ax(t) +Bu(t) for a.e. t ∈ [0, T ],

u(t) ∈ SOL
(
K(p), G

(
t, x(t)

)
+ F (·, λ)

)
for a.e. t ∈ [0, T ],

x(0) = x0.

(2)

Given a Banach spaceE, we denote byC([0, T ];E) the space of continuous functions
on [0, T ] with values in E. We adopt the following definition.

Definition 1. A pair of functions (x, u) is called to be a mild solution to PDVI (1) if
x ∈ C([0, T ];Y ) and u : [0, T ]→ K is measurable with

u(t) ∈ SOL
(
K,G

(
t, x(t)

)
+ F (·)

)
for a.e. t ∈ [0, T ],
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and

x(t) = T (t)x0 +

t∫
0

T (t− s)Bu(s) ds for all t ∈ [0, T ].

In what follows, to simplify notation, we denote the set of mild solutions to the
PPDVI (2) and the set of u in the mild solution by S(p, λ) and SDu(p, λ), respectively.
In this paper, when both the mapping F and the constraint set K are perturbed by two
different parameters p and λ, respectively, we prove the continuity of the solution set
(p, λ) 7→ S(p, λ), which is based on its closedness and the upper semicontinuity property.

The following definitions and results will be useful in the next sections. We refer
to [6, 10, 20, 26, 38] and the references therein for details.

Definition 2. Let Y and Z be topological spaces, and let F : Y → 2Z be a set-valued
mapping with nonempty values. The mapping F is said to be

(i) closed if its graph GrF = {(y, z) ∈ Y × Z | z ∈ F (y)} is a closed subset of
Y × Z.

(ii) upper semicontinuous at y0 ∈ Y if, for any neighborhood N(F (y0)) of F (y0),
there exists a neighborhood N(y0) of y0 such that F (y) ⊂ N(F (y0)) for all
y ∈ N(y0).

(iii) lower semicontinuous at y0 ∈ Y if, for any z0 ∈ F (y0) and any neighborhood
N(z0) of z0, there exists a neighborhood N(y0) of y0 such that F (y)

⋂
N(z0) 6=

∅ for all y ∈ N(y0).

It is evident that a mapping F : Y → 2Z is lower semicontinuous at y0 ∈ Y if and
only if, for any sequence yn → y0 and z0 ∈ F (y0), there exists a sequence {zn} ⊂ Z
with zn ∈ F (yn) such that zn → z0.

Definition 3. Let X and Y be topological spaces. A set-valued mapping F from X
to 2Y is said to be uniformly compact near a point x ∈ X if and only if there exists
a neighborhood U of x such that the closure of the set

⋃
{F (x) | x ∈ U} is compact.

Definition 4. Let K be a subset of a real Banach space X . Let X∗ be the dual to X and
〈·, ·〉 denote the duality pairing between X∗ and X . We say that F : K → X∗ is

(i) monotone on K if〈
F (v)− F (u), v − u

〉
> 0 for all u, v ∈ K.

(ii) strongly monotone on K with constant mF > 0 if〈
F (v)− F (u), v − u

〉
> mF ‖v − u‖2 for all u, v ∈ K.

Given metric spaces X and Y , we introduce the notation

Pf (Y ) = {D ⊂ Y | D is nonempty, closed},
PK(Y ) = {D ⊂ Y | D is nonempty, compact}.
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Lemma 1. Let X and Y be metric spaces. Then the following statements hold:

(i) If a set-valued mapping F : X → Pf (Y ) is upper semicontinuous, then F is
closed.

(ii) If a set-valued mapping F : X → Pf (Y ) is closed and locally compact, then F
is upper semicontinuous.

(iii) The set-valued mapping F : X → PK(Y ) is upper semicontinuous if and only if,
for every x ∈ X and every sequence {(xn, yn)} ⊂ X × Y , yn ∈ F (xn) with
xn → x in X , there exists a converging subsequence of {yn} whose limit belongs
to F (x).

Definition 5. Let U, V be two nonempty and bounded subsets of a metric space X . The
Hausdorff metric between U and V , denoted byH(U, V ), is defined by

H(U, V ) = max
{
sup
a∈U

d(a, V ), sup
b∈V

d(b, U)
}
,

where d(a, V ) is the distance from a pint a to a set V .

2 Main results

In this section, we shall focus our attention on the stability of solution set for the PDVI (1)
with respect to two parameters p and λ by considering its perturbed problem PPDVI (2).
To this end, we first recall the following result on existence of mild solutions, whose proof
can be found in [16–18].

Theorem 1. Let X and Y be real, reflexive, and separable Banach spaces, and K ⊂ X
be a nonempty, compact, and convex set. Let A : D(A) ⊂ Y → Y be the infinitesimal
generator of C0-semigroup T (t) in Y , andB : X → Y be a bounded and linear operator.
If the function [0, T ] × Y 3 (t, x) 7→ G(t, x) ∈ X∗ is continuous and the operator
F : K → X∗ is monotone and continuous on K, then the PDVI (1) has at least one mild
solution in the sense of Definition 1.

Remark 1. We note that if (x, u) is a mild solution to PDVI, then the mild variational
trajectory u is not only a measurable function, but it belongs to L2(0, T ;Y ) due to the
compactness of the set K.

Now, we shall discuss the upper semicontinuity and continuity of the set of mild
solutions to PDVI with respect to two parameters, where the first parameter p is assumed
to be a perturbation of the constraint set K, and the second parameter λ is considered to
appear in the nonlinear operator F . First, we provided a result on the closedness of the
solution map to PDVI with respect to parameters (p, λ).

Theorem 2. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real, reflexive, and separable Banach spaces,
and (X1, d1) and (X2, d2) be metric spaces. Let K : X1 → 2X be a continuous (with
respect to the Hausdorff metric) set-valued mapping with nonempty, compact, and convex
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values. Suppose that G : (0, T ) × Y → X∗ and F : X × X2 → X∗ are continuous
functions such that u 7→ F (u, λ) is monotone for all λ ∈ X2. Then the set-valued
mapping (p, λ) 7→ S(p, λ) is closed.

Proof. Let (p, λ) ∈ X1 × X2 be fixed. Recall that the set K(p) is nonempty, compact,
and convex in X , and the function u 7→ F (u, λ) is monotone and continuous. It follows
from Theorem 1 that the set S(p, λ) is nonempty.

We will show that the set-valued mapping (p, λ) 7→ S(p, λ) is closed. Let sequences
{(pn, λn)} ∈ X1 × X2 and {(xn, un)} ⊂ C([0, T ];Y ) × L2(0, T ;X) be such that
(xn, un) ∈ S(pn, λn) with (pn, λn) → (p∗, λ∗) in X1 × X2, xn → x in C([0, T ];Y ),
and un → u in L2(0, T ;X). Hence, one has

xn(t) = T (t)x0 +

t∫
0

T (t− s)Bun(s) ds for all t ∈ [0, T ], (3)

un(t) ∈ K(pn),〈
G
(
t, xn(t)

)
+ F

(
un(t), λn

)
, w − un(t)

〉
> 0 for all w ∈ K(pn),

a.e. t ∈ [0, T ].

From the convergence un → u in L2(0, T ;X), without any loss of generality, we may
assume that un(t) → u(t) in X for a.e. t ∈ [0, T ], and there exists a function h ∈
L2
+(0, T ) such that ‖un(t)‖X 6 h(t) for a.e. t ∈ [0, T ]. Using (3), by the Lebesgue

dominated convergence theorem (see [6, Thm. 2.2.9]), we infer that

xn(t) = T (t)x0 +

t∫
0

T (t− s)Bun(s) ds→ T (t)x0 +

t∫
0

T (t− s)Bu(s) ds

in X for all t ∈ [0, T ]. Moreover, the convergence xn → x in C([0, T ];Y ) implies

x(t) = T (t)x0 +

t∫
0

T (t− s)Bu(s) ds (4)

for all t ∈ [0, T ]. On the other hand, since un(t) → u(t) in X for a.e. t ∈ [0, T ], and
K is continuous in the sense of Hausdorff with compact and convex values, we have
u(t) ∈ K(p∗) for a.e. t ∈ [0, T ]; see Lemma 1. Furthermore, for any v ∈ K(p∗), the
continuity ofK ensures that there exits a sequence {vn} ⊂ X with vn ∈ K(pn) such that
vn → v in X as n→∞; see [1, Thm. 2.7]. The latter entails

0 6 lim
n→∞

〈
G
(
t, xn(t)

)
+ F

(
un(t), λn

)
, vn − un(t)

〉
=
〈
G
(
t, x(t)

)
+ F

(
u(t), λ∗

)
, v − u(t)

〉
for all v ∈ K(p∗) and a.e. t ∈ [0, T ]. Combining this inequality with (4) implies (x, u) ∈
S(p∗, λ∗), i.e., S is closed. This completes the proof.
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Subsequently, we provide the following result on the upper semicontinuity of the set-
valued operator S with respect to parameters.

Theorem 3. Let the hypotheses of Theorem 2 hold. In addition, we suppose that G :
(0, T ) × Y → X∗ is Lipschitz continuous with respect to the second variable, and
SDu(p, λ) is uniformly compact at (p∗, λ∗). Then (p, λ) 7→ S(p, λ) is upper semicontin-
uous at (p∗, λ∗) ∈ X1 ×X2.

Proof. LetP×V be a neighborhood of (p∗, λ∗) inX1×X2. From the proof of Theorem 2,
it follows that S(p, λ) 6= ∅ for all (p, λ) ∈ P × V . We proceed by contradiction and
assume that the set-valued mapping S is not upper semicontinuous at (p∗, λ∗) ∈ X1×X2.
Hence, there exist two sequences {(pn, λn)} ⊂ X1 ×X2, {(xn, un)} ∈ C([0, T ];Y ) ×
L2(0, T ;X) and an open set O in C([0, T ];Y )× L2(0, T ;X) with

(pn, λn)→ (p∗, λ∗) as n→∞,
(xn, un) ∈ S(pn, λn) for each n ∈ N,

S(p∗, λ∗) ⊂ O

such that (xn, un) /∈ O for each n ∈ N. Since (xn, un) ∈ S(pn, λn), we have

un(t) ∈ K(pn),〈
G
(
t, xn(t)

)
+ F

(
un(t), λn

)
, v − un(t)

〉
> 0 for all v ∈ K(pn),

a.e. t ∈ [0, T ]

(5)

and

xn(t) = T (t)x0 +

t∫
0

T (t− s)Bun(s) ds for all t ∈ [0, T ]. (6)

Invoking the assumption that SDu(p, λ) is uniformly compact at (p∗, λ∗) ∈ X1×X2, we
can see that there exists a subsequence of {un}, still denoted in the same way, such that
un → u∗ in L2(0, T ;X) for some u∗ ∈ L2(0, T ;X). Passing to a further subsequence,
if necessary, we may assume that un(t) → u∗(t) for a.e. t ∈ [0, T ] and there exists
a function h ∈ L2

+(0, T ) such that ‖un(t)‖X 6 h(t) for a.e. t ∈ [0, T ]. From the latter
and the Lebesgue dominated convergence theorem, from (6) we infer that

xn(t) = T (t)x0

+

t∫
0

T (t− s)Bun(s) ds→ T (t)x0 +

t∫
0

T (t− s)Bu(s) ds (7)

in X for all t ∈ [0, T ]. Furthermore, using the hypothesis that K is continuous with
compact and convex values, by using the same argument as in proof of Theorem 2, we
obtain u∗(t) ∈ K(p∗) for a.e. t ∈ [0, T ]. Since

x∗(t) = T (t)x0 +

t∫
0

T (t− s)Bu∗(s) ds
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is continuous on [0, T ], xn ∈ C([0, T ];Y ), from (7), we deduce that xn → x∗ on
C([0, T ];Y ).

Next, we show that u∗(t) ∈ SOL(K(p∗), G(t, x∗(t)) + F (·, λ∗)) for a.e. t ∈ [0, T ].
Thanks to u∗(t) ∈ K(p∗) for a.e. t ∈ [0, T ], we only to prove that〈

G
(
t, x∗(t)

)
+ F

(
u∗(t), λ∗)

)
, v − u∗(t)

〉
> 0 (8)

for any v ∈ K(p∗) and a.e. t ∈ [0, T ]. By applying the continuity ofK, we know that, for
any v ∈ K(p∗), there exists a sequence {vn} ⊂ X with vn ∈ K(pn) such that vn → v
in X . Next, by (5) and the continuity of G and F , we get (8). Moreover, from Theorem 2
we know that the set S(p∗, λ∗) is closed, thus we obtain that (x∗, u∗) ∈ S(p∗, λ∗) ⊂ O.
On the other hand, by assumptions, we know (xn, un) /∈ O for all n ∈ N, which is
a contradiction. This completes the proof of the theorem.

Now, we provide the main result of the paper.

Theorem 4. Let (X, ‖·‖X) and (Y, ‖·‖Y ) be real, reflexive, and separable Banach spaces,
(X1, d1) and (X2, d2) be metric spaces, and (p∗, λ∗) ∈ X1 ×X2. Assume that, for each
x ∈ X , the function t 7→ G(t, x) is continuous, and for all t ∈ [0, T ], the function
x 7→ G(t, x) is Lipschitz continuous, and the following conditions hold:

(i) there exists a neighborhood P × V ⊂ X1 ×X2 of (p∗, λ∗) such that SDu(p, λ)
is uniformly compact at (p∗, λ∗);

(ii) F : X ×X2 → X∗ is continuous, and for each λ ∈ V , the function u 7→ F (u, λ)
is uniformly strongly monotone;

(iii) K : X1 → 2X is a continuous set-valued mapping with nonempty, compact, and
convex values.

Then the mapping (p, λ) 7→ S(p, λ) is continuous at (p∗, λ∗).

Proof. First, we shall prove that S(p, λ) is a singleton for every (p, λ) ∈ P × V . To this
end, let (x1, u1), (x2, u2) ∈ S(p, λ). Then, for i = 1, 2, we have

ui(t) ∈ K(p),〈
G
(
t, xi(t)

)
+ F

(
ui(t), λ

)
, v − ui(t)

〉
> 0 for all v ∈ K(p),

a.e. t ∈ [0, T ]

(9)

and

xi(t) = T (t)x0 +

t∫
0

T (t− s)Bui(s) ds for all t ∈ [0, T ]. (10)

Taking v = u2(t) in (9) for i = 1 and v = u1(t) for i = 2, we obtain〈
G
(
t, x2(t)

)
−G

(
t, x1(t)

)
+ F

(
u2(t), λ

)
− F

(
u1(t), λ

)
, u1(t)− u2(t)

〉
> 0,
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and hence, 〈
F
(
u1(t), λ

)
− F

(
u2(t), λ

)
, u1(t)− u2(t)

〉
6
〈
G
(
t, x2(t)

)
−G

(
t, x1(t)

)
, u1(t)− u2(t)

〉
for a.e. t ∈ [0, T ]. Since G is Lipschitz continuous with respect to the second argument
and F is uniformly strongly monotone in the first variable, we get

mF

∥∥u1(t)− u2(t)∥∥2X 6 LG
∥∥u1(t)− u2(t)∥∥X∥∥x1(t)− x2(t)∥∥Y a.e. t ∈ [0, T ],

where mF > 0 and LG > 0. This implies that∥∥u1(t)− u2(t)∥∥X 6
LG
mF

∥∥x1(t)− x2(t)∥∥Y a.e. t ∈ [0, T ]. (11)

On the other hand, from (10) for i = 1, 2, we have

x1(t)− x2(t) =
t∫

0

T (t− s)
(
Bu1(s)−Bu2(s)

)
ds for all t ∈ [0, T ].

Hence ∥∥x1(t)− x2(t)∥∥Y 6

t∫
0

∥∥T (t− s)∥∥∥∥Bu1(s)−Bu2(s)∥∥Y ds. (12)

Since T (t) be a C0-semigroup, from [26, Thm. 2.2] we know that there exist constants
ω > 0 and M > 1 such that ‖T (t)‖ 6 Meωt for any 0 6 t < ∞. Then it follows
from (11) and (12) that, for all t ∈ [0, T ],

∥∥x1(t)− x2(t)∥∥Y 6MA

t∫
0

∥∥Bu1(s)−Bu2(s)∥∥Y ds

6
MALG‖B‖

mF

t∫
0

∥∥x1(s)− x2(s)∥∥Y ds,

where MA = supt∈[0,T ] ‖T (t)‖ < ∞. It is readily seen from the Gronwall inequality
that

x1(t) = x2(t) for all t ∈ [0, T ].

So, we have x1 = x2, and by (11), we infer that u1 = u2. This completes the uniqueness
part of the theorem.

Next, we verify that the set-valued mapping (p, λ) 7→S(p, λ) is continuous at (p∗, λ∗)∈
X1 ×X2. Let {(pn, λn)} ⊂ P × V be such that (pn, λn)→ (p∗, λ∗) in X1 ×X2. From
hypothesis (iii) there exists a sequence {(xn, un)} in C([0, T ];Y ) × L2(0, T ;X) such
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that (xn, un) ∈ S(pn, λn). This means that

un(t) ∈ K(pn),〈
G
(
t, xn(t)

)
+ F

(
un(t), λn

)
, v − un(t)

〉
> 0 for all v ∈ K(pn),

a.e. t ∈ [0, T ],

and

xn(t) = T (t)x0 +

t∫
0

T (t− s)Bun(s) ds for all t ∈ [0, T ].

By assumption (i), SDu(p, λ) is uniformly compact at (p∗, λ∗), so we may assume that
{un} have a convergent subsequence, denoted in the same way, such that un → u∗ in
L2(0, T ;X) for some u∗ ∈ L2([0, T ];X). Similarly as in the proof of Theorem 3, we
also get xn → x∗ ∈ C([0, T ];Y ), where

x∗(t) = T (t)x0 +

t∫
0

T (t− s)Bu∗(s) ds for all t ∈ [0, T ].

Furthermore, Theorem 2 ensures that S(p, λ) is closed at (p∗, λ∗), so we conclude that
(x∗, u∗) ∈ S(p∗, λ∗). Summing up, we have that S(p, λ) is a singleton for every (p, λ) ∈
P × V , and

S(pn, λn) = (xn, un)→ (x∗, u∗) = S(p∗, λ∗).
This completes the proof of the theorem.

3 An application

As mentioned in Section 1, differential variational inequalities and partial differential vari-
ational inequalities have many important applications in economical dynamics, dynamic
traffic networks, and control systems. A typical application in economical dynamics is
the following dynamic Nash equilibrium problem with shared constraints, which has been
given by Chen and Wang in the [3]. Considering the completeness of our paper, we restate
it here with a concise version and refer the readers to the reference [3] for details.

Let el ∈ Rnl , ul ∈ Rml denote the lth player’s state and strategy variables, respec-
tively, e = (el)

N
l=1 ∈ Rn, u = (ul)

N
l=1 ∈ Rm with n =

∑N
l=1 nl, m =

∑N
l=1ml denote

the state and strategy variables of all players, and [0, T ] be the time interval considered.
For the lth player, we consider the strategy setK = {u ∈ Rm: fl(ul) 6 0, g(u) 6 0}

defined by functions fl(·) : Rnl → Rsv , g(u) = g(ul, ul) ∈ R`, the cost functional
θl : Rn+m → R, the state dynamic Θl : R1+nl+ml → Rnl , and the initial state by
el,0 ∈ Rnv . Then, the dynamic Nash equilibrium problem with shared constraints can
be formulated as: find a state-control pair (ẽ, ũ) such that, for each l = 1, . . . , N , (ẽl, ũl)
is a solution to the following optimal control problem:

min
{
θl(el, ẽ−l, ul, ũ−l): ėl(t) = Θl(t, el, ul), el(0) = el,0,

fl
(
ul(t)

)
6 0, g

(
ul(t), u−l(t)

)
6 0
}
, (13)
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where e−l = (el′)l′ 6=l ∈ Rn−nl and u−l = (ul′)l′ 6=l ∈ Rm−ml . Constantly, for simplicity
of writing, we use notations e = (el, e−l) and u = (ul, u−l).

With some assumptions on the cost functional θl, the state dynamic Θl and the func-
tions fl, g for the strategy set, the dynamic Nash equilibrium problem (13) can be trans-
formed into the PDVI(1) with x(t) = (el(t), νl(t))

n
l=1, u(t) = (ul(t), 0)

n
l=1, A, B being

two sparse matrices, and G(t, x(t)) + F (u(t)) = −(∇ul
Hl(t, νl, e, u))

n
l=1, where νl is

the adjoint variable of the ODE constraint in player l’s control problem, andHl(t, νl, e, u)
is the Hamiltonian of player l.

It is well known that the dynamic Nash equilibrium problem could be influenced by
many kinds of factors coming from different practical problems. Among these, it is very
important to study the behavior of solution set of optimal state-control pairs of DVI/PDVI
when the admission constraint set and the functions involved are perturbed. Because it
gives the information about the tolerances, which are permitted in the specification of the
mathematical models, suggests ways to solve parametric problem, and also can be useful
in the computational analysis of the problem. Therefore our results obtained in this paper
provide a valid method to study the dynamic Nash equilibrium problem.

We end this section with a specific example in which all conditions in Theorem 4 are
satisfied. And thus, Theorem 4 can be applied to obtain the continuity of the solution set
with respect to the parameters.

Example 1. Let X = Y = R, X1 = X2 = R, (t, x) ∈ [0, T ] × R, (u, λ) ∈ R × R,
G(t, x) = t + x, F (u, λ) = λu, K(p) = [1, p + 5] with p ∈ R, (p∗, λ∗) = (4, 4), and
A(x) = ax, B(u) = bu with a, b ∈ R. The PPDVI problem (2) can be specified as
follows:

ẋ(t) = ax(t) + bu(t) for a.e. t ∈ [0;T ];

u(t) ∈ SOL
(
K(p), t+ x(t) + λ(·)

)
for a.e. t ∈ [0;T ];

x(0) = x∗.

(14)

Then the solution mapping of PPDVI (14): (p, λ) 7→ S(p, λ) is continuous at (4, 4).

Proof. We use Theorem 4 to prove the conclusion of Example 1 by checking all condi-
tions in Theorem 4.

First, let P × V = [1, 8] × [2, 6] be the neighborhood of (p∗, λ∗) = (4, 4). It is
obvious that the function G(t, x) = t + x is continuous with respect to t for any x ∈ R
and Lipschitz continuous with respect to x for any t ∈ [0, T ], the function F (u, λ) = λu
is continuous and uniformly strongly monotone with respect to u for any λ ∈ [2, 6], and
the set valued function K(p) = [1, p + 5] is continuous with nonempty, compact and
convex values on [1, 8]. Therefore, conditions (ii) and (iii) in Theorem 4 hold. We only
need to check condition (i) to complete our proof.

Let (pn, λn) ∈ [1, 8] × [2, 6] be a sequence, which converges to (4, 4). By Theo-
rem 1, it follows that there exists a mild solution (xn, un) ∈ S(pn, λn) for the problem
PPDVI(pn, λn). This means that, for all t ∈ [0, T ] \ I with m(I) = 0, un(t) ∈ K(pn)
and (

t+ xn(t) + λnun(t)
)(
y − un(t)

)
> 0 ∀y ∈ K(pn). (15)
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For s, s+ δ ∈ [0, T ] \ I , letting t = s, y = un(s+ δ) and t = s+ δ, y = un(s) in (15),
respectively, and adding the obtained inequalities yield(

un(s+ δ)− un(s), xn(s)− xn(s+ δ)− δ
)
> λn

(
un(s+ δ)− un(s)

)2
,

which implies that, for s, s+ δ ∈ [0, T ] \ I ,

δ +
∣∣xn(s+ δ)− xn(s)

∣∣ > λn
∣∣un(s+ δ)− un(s)

∣∣. (16)

On the other hand, since (xn, un) ∈ S(pn, λn), it follows that

xn(t) = T (t)x∗ +

t∫
0

T (t− s)Bun(s)ds, t ∈ [0, T ],

where T (t) = etA represents the C0−semigroup. And thus,

xn(t+ δ)− xn(t)

= T (t+ δ)x∗ − T (t)x∗ +
t+δ∫
0

T (t+ δ − τ)Bun(τ) dτ

−
t∫

0

T (t− τ)Bun(τ) dτ

= T (t+ δ)x∗ − T (t)x∗ +
δ∫

0

T (t+ δ − τ)Bun(τ) dτ

+

t∫
0

T (t− τ)Bun(τ + δ) dτ −
t∫

0

T (t− τ)Bun(τ) dτ,

which implies that∣∣xn(t+ δ)− xn(t)
∣∣

6
∣∣T (t+ δ)x∗ − T (t)x∗

∣∣+ ∣∣∣∣∣
δ∫

0

T (t+ δ − τ)Bun(τ) dτ

∣∣∣∣∣
+

t∫
0

∣∣T (t− τ)(Bun(τ + δ)−Bun(τ)
)∣∣dτ. (17)

It follows from (16) and (17) that there exist constants C1, C2, C3, C4 > 0 such that

∣∣xn(t+ δ)− xn(t)
∣∣ 6 C1δ + C2δ + C3δ + C4

t∫
0

∣∣xn(τ + δ)− xn(τ)
∣∣ dτ.
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Applying the Gronwall inequality, we get from the above inequality that there exists a
constant C5 > 0 such that ∣∣xn(t+ δ)− xn(t)

∣∣ 6 C5δ, (18)

which indicates that {xn} is an equicontinuous family of functions and has a uniform
bound. By Arzelà–Ascoli theorem, there exists a subsequence of {xn}, denoted again
by {xn}, such that it converges to a function x0 on [0, T ]. For any ε > 0, taking δ =
4(ε)1/2/(1 + C5)T

1/2, it follows from (16) and (18) that

t∫
0

∣∣un(s+ δ)− un(s)
∣∣2ds 6 1

4

t∫
0

(
δ +

∣∣xn(s+ δ)− xn(s)
∣∣)2ds

6
1

4

t∫
0

(δ + C5δ)
2ds = ε.

Now, by Kolmogorov–Riesz–Fréchet theorem, there exists a convergent subsequence of
{un}, denoted again by un, such that un → u0 ∈ L2([0, T ];R), which implies by
Theorem 2 that the solution mapping S(p, λ) is closed at (4, 4), and thus condition (i)
in Theorem 4 holds.
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