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Abstract. In this paper, we establish the results of nonexistence and existence of blow-up radial
solutions for a k-Hessian equation with a nonlinear operator. Under some suitable growth conditions
for nonlinearity, the result of nonexistence of blow-up solutions is established, a sufficient and
necessary condition on existence of blow-up solutions is given, and some further results are
obtained.
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1 Introduction

Let D2u be a square matrix of second-order partial derivatives for the scalar-valued
function u, which is called the Hessian matrix in mathematics. In general, the Hessian
matrix can describe the local curvature of the function u with multiple variables. Suppose
λ1, λ2, . . . , λN are the eigenvalues of the Hessian matrix D2u, define the k-Hessian
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operator Sk(λ(D2u)) as follows:

Sk
(
λ
(
D2u

))
=

∑
16i1<i2<···<ik6N

λi1λi2 · · ·λik , k = 1, 2, . . . , N,

where λ(D2u) = (λ1, λ2, . . . , λN ) is the vector of eigenvalues of D2u, that is
Sk(λ(D2u)) is the sum of the kth principal minors of the Hessian matrix, and here we
define

Γk :=
{
λ ∈ RN : Sl

(
λ
(
D2u

))
> 0, 1 6 l 6 k

}
.

On the other hand, the k-Hessian operator can also be expressed as the following form of
divergence:

Sk
(
λ
(
D2u

))
=

1

k

N∑
i,j=1

(
Sijk ui

)
j
,

where Sijk = ∂Sk(D2u)/∂uij , and for more details, see Trudinger et al. [50] and Gavi-
tone [7].

For k > 1, Sk(λ(D2u)) is a second-order fully nonlinear differential operator. When
k =N , the k-Hessian operator reduces to the Monge–Ampère operator detD2u, and if
k= 1, then Sk(λ(D2u)) turns into a Laplace operator, which implies that the k-Hessian
operator constructs a discrete collection of partial differential operators including the
Monge–Ampère operator detD2u and the Laplace operator ∆u as special cases.

In this paper, we consider the existence and nonexistence of blow-up solutions for the
following k-Hessian equation with a nonlinear operator:

B
(
S
1/k
k

(
λ
(
D2u

)))
S
1/k
k

(
λ
(
D2u

))
= f

(
|x|, u

)
, x ∈ RN (N > 2k), (1)

where f : C((0,+∞) × R → [0,+∞)) is nondecreasing, and the nonlinear operator
B ∈ X satisfies the following property:

X =
{
B ∈ C2

(
[0,+∞), [0,+∞)

)
: there exists a constant α > 0

such that, for any 0 < b < 1, B(bs) 6 bαB(s)
}
.

Many existing work for the k-Hessian equation is devoted to constructing mathe-
matical theory rather than modeling or exploring new applications. Here we will briefly
mention some potential implications in physics and applied mathematics. Escudero [3]
described some phenomena of non-equilibrium phase transitions and statistical physics
by using the k-Hessian equation. In addition, the k-Hessian equation also gives a class
of important fully nonlinear elliptic operators related to geometric optics [51], study of
quasilinear parabolic problems [40], optimal transportation, and isometric embedding
[19].

The k-Hessian equation of form (1) has attracted much research interest, and there
are many rich literatures concerning the k-Hessian equation. If B(x) = xk−1, then the
k-Hessian equation (1) reduces to the standard Hessian equation Sk(λ(D2u)) = f and the
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standard Monge–Ampère equation when k = n. Caffarelli et al. [1] studied the existence
and a priori estimate of the smooth solutions for the k-Hessian equation

Sk
(
λ
(
D2u

))
= f in Ω ⊂ RN ,

u = ϕ on ∂Ω,

and the work was then extended to more general equations in [25,49]. If B(x)=const 6=0,
then the k-Hessian equation becomes the Hessian equation

S
1/k
k

(
λ
(
D2u

))
= f, x ∈ RN (N > 2k),

Covei [2] considered the existence of positive radial solutions for the above Hessian
equation, provided that f = p(|x|)h(u). If B(x) = |x|p−2, p > 2, the k-Hessian
equation (1) turns into the form

ϕp
(
S
1/k
k

(
λ
(
D2u

)))
= f

(
|x|,−u

)
in RN ,

which is a p-Poisson Hessian equation, and few work was reported. Thus, since the
k-Hessian equation (1) involves a nonlinear operator B, it includes many interesting
and important equations such as the Hessian equation, the Monge–Ampère equation,
the p-Poisson Hessian equation as special cases. To the best of our knowledge, no re-
sult has been reported on the existence and nonexistence of blow-up solutions for the
k-Hessian equation (1), and this is the first paper using the iterative method to study the
k-Hessian equation involving a nonlinear operator.

The rest of the paper is organized as follows. In Section 2, we firstly study the prop-
erty of the nonlinear operator B and then transform the k-Hessian partial differential
equation (1) to an ordinary differential equation. In Section 3, we establish the results of
the nonexistence of blow-up solutions for the k-Hessian equation (1) by some estimations.
In Section 4, a necessary and sufficient condition on existence of blow-up solutions for
equation (1) is established and some further results are obtained.

2 Preliminary results on radial solutions

Before we give a detailed description of our main results, we firstly establish a property
for the inverse operator of the operator sB(s).

Lemma 1. Let L(s) = sB(s), B ∈ X , then there exists a nonnegative increasing inverse
mapping L−1(s), and for any 0 < b < 1,

L−1(bs) > b1/(1+α)L−1(s).

Proof. Firstly, we assert that B is an increasing operator if B ∈ X . In fact, for any
B ∈ X and s, t ∈ [0,+∞), without loss of the generality, let 0 6 s < t. If s = 0, then,
obviously, B(s) 6 B(t) holds. If s 6= 0, let c0 = s/t, then 0 < c0 < 1. It follows from
the property of B that

B(s) = B(c0t) 6 cα0B(t) 6 B(t),
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which implies that B is an increasing operator. Thus we have L′(s) = (sB(s))′ > 0 for
any s > 0, which implies that L is a bijection on (0,∞) and has a nonnegative increasing
inverse mapping L−1(s).

On the other hand, for any 0 < b < 1, let c = b1/(1+α), then 0 < c < 1. Thus we
have

L(cx) = cxB(cx) 6 c1+αxB(x) = c1+αL(x), x > 0.

Consequently, let s = L(x), then

cL−1(s) = cx 6 L−1
(
c1+αL(x)

)
= L−1(bs),

that is
b1/(1+α)L−1(s) 6 L−1(bs).

The proof is completed.

Remark 1. Clearly, if a > 1, then we have

L−1(as) 6 a1/(1+α)L−1(s).

Remark 2. The operator set X includes a large class of operators and the standard type
of operators is B(s) =

∑n
i=1 s

αi , αi > 0. In fact, take α = min{α1, . . . , αn} > 0, then
for any 0 < c < 1, one has

B(cs) 6 cαB(s).

For BR := {x ∈ RN : |x| < R} and r =
√
x21 + x22 + · · ·+ x2N , the following

lemma has been proven.

Lemma 2. (See [18].) Assume y(r) ∈ C2[0, R) is radially symmetric and y(′0) = 0.
Then the function u(|x|) = y(r) with r = |x| < R is C2(BR), and

λ(D2u) =

{
(y′′(r), y

′(r)
r , . . . , y

′(r)
r ), r ∈ (0, R),

(y′′(0), y′′(0), . . . , y′′(0)), r = 0,

Sk
(
λ
(
D2u

))
=

{
Ck−1N−1y

′′(r)(y
′(r)
r )k−1 + CkN−1(y

′(r)
r )k, r ∈ (0, R),

CkN (y′′(0))k, r = 0,

where CkN = N !/(k!(N − k)!).

Now we consider the k-Hessian equation (1). By using Lemma 1, equation (1) can be
transformed into the following form:

Sk
(
λ
(
D2u

))
=
[
L−1

(
f
(
|x|, u

))]k
, x ∈ RN (N > 2k). (2)
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Make the radial transformation u(|x|) = y(r), then from Lemma 2 and (2), u(|x|) = y(r)
is a radial solution of equation (1) if and only if y(r) is a solution of the ODE

Ck−1N−1y
′′(r)

(
y′(r)

r

)k−1
+ CkN−1

(
y′(r)

r

)k
=
[
L−1

(
f
(
r,−y(r)

))]k
, r > 0. (3)

Take any central value y(0) = d > 0 for equation (1). Since

y′(0) = lim
r→0

y(r)− d
r − 0

= lim
ξ→0

y′(ξ)

= lim
ξ→0

(
k

ξN−k

ξ∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
r, y(s)

))]k
ds

)1/k

= 0,

we have y(r) ∈ C1[0, R). Consequently,

y′′(0) = lim
r→0

y′(r)− y′(0)

r − 0
= lim
r→0

(
k

rN

r∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
r, y(s)

))]k
ds

)1/k

= lim
r→0

(
krN−1[L−1(f(r, y(r)))]k

Ck−1N−1r
N−1

)1/k
=

(
k[L−1(f(0, d))]k

Ck−1N−1

)1/k
, (4)

which implies that y(r) ∈ C2[0, R). Thus it follows from (4) that the following lemma
holds.

Lemma 3. For any number d > 0, assume y ∈ C[0, R) ∩ C1(0, R) is a solution to the
Cauchy problem

y′(r) =

(
k

rN

r∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
r, y(s)

))]k
ds

)1/k

, y(0) = d, r > 0.

Then y(r) ∈ C2(BR) and satisfies equation (3) with y′(0) = 0, and

λr =

(
y′′(r),

y′(r)

r
, . . . ,

y′(r)

r

)
∈ Γk, 0 6 r < R.

Thus in this paper, we only focus on the classical blow-up solutions of the k-Hessian
equation (1), namely, a function u(r) in C2[0,+∞) satisfies the k-Hessian equation (1)
and limr→+∞ u(r) = ∞. Normally, a blow-up behaviour is often caused by singularity
[12,16,20,24,26,27,59,87] and impulse behavior of nonlinearities [4–6,8,10,21,30,34,
44,45,52,53,56,63–65,90,91] in various complex process, but here blow-up phenomena
refers to the boundary blow of solution; for more details, see [75, 77, 79, 85].
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Our main tool is analysis method and iterative technique as well as some suitable
estimations. Here, in order to make the article more complete, we also recall some analysis
methods and numerical techniques, which have been used to study various nonlinear
ordinary differential equations and partial differential equations such as iterative methods
[9, 11, 28, 29, 42, 43, 48, 54, 60, 61, 72, 76, 81, 84, 86], variational methods [17, 31–33, 36–
39, 41, 46, 62, 67, 74, 78, 80, 83, 88, 89], fixed point theorems [13–15, 22, 23, 35, 47, 55, 57,
66, 70, 71, 73, 82], and upper and lower solution methods [58, 68, 69]. These theoretical
methods and tools not only enrich the scientific field of differential equations, but also
give some new scientific explanations and practical applications for the corresponding
natural phenomena.

3 Nonexistence of blow-up solutions

Now let us list a growth assumption, which is to be used in the rest of this paper.

(A) f ∈ C((0,+∞) × [0,+∞), (0,+∞)) is nondecreasing on the second variable,
and there exists a positive constant β < 1 + α such that

f(s, cu) > cβf(s, u) ∀(s, u) ∈ (0,+∞)× [0,+∞), c ∈ (0, 1].

Remark 3. It follows from (A) that, for any c > 1, (s, u) ∈ (0,+∞)× [0,+∞),

f(s, cu) 6 cβf(s, u).

Under the above growth condition, we have the following result of nonexistence of
blow-up solution for the k-Hessian equation (1).

Theorem 1. Suppose (A) holds, and the fast decay condition is satisfied:

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt < +∞, (5)

then the k-Hessian equation (1) has no positive entire blow-up solutions.

Proof. We shall establish the result of nonexistence by using the method of contradiction.
Suppose that the k-Hessian equation (1) has a positive entire blow-up solution, say u =
y(r). Then by (5), there exists a sufficiently large r̃ > 0 such that

∞∫
r̃

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt < 1.

Since y is radially symmetric, by using the standard integrating procedure for (3), we
have

y(r) = y(0) +

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

dt. (6)
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Consequently, for any r > r̃ > 0, (6) yields

y(r) = y(r̃) +

r∫
r̃

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

dt. (7)

Thus it follows from (7), (A), and Remark 1 that

y(r) 6 y(r̃) +

r∫
r̃

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

((
y(s) + 1

)β
f(s, 1)

)]k
ds

)1/k

dt

6 y(r̃) +
(
y(r) + 1

)β/(1+α) r∫
r̃

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt

6 y(r̃) +
(
y(r) + 1

)β/(1+α) ∀r > r̃,

which implies that

1 6
y(r̃)

y(r)
+

(y(r) + 1)β/(1+α)

y(r)
→ 0 as r → +∞,

which contradicts with the assumption that y is the positive entire blow-up solution of
equation (1) since 0 < β/(1 + α) < 1. Thus (1) has no positive entire radial blow-up
solution, and the proof is completed.

4 Existence of entire blow-up solutions

Theorem 2. Assume that (A) holds. Then the k-Hessian equation (1) has infinitely many
positive entire blow-up radial solutions if and only if the function f satisfies the following
slow decay condition:

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt =∞. (8)

Proof. Sufficient condition. We firstly prove that the k-Hessian equation (1) has a pos-
itive radial solution. For this purpose, according to Lemma 3 and (3), we consider the
equivalent integral equation

y(r) = y(0) +

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

dt. (9)

In the following, we shall construct a positive increasing sequence {y(m)(r)}m>1 by
using (9), which is bounded above on [0, R] for any fixed R > 0. For this purpose,
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we take the central value y(0) = d > 0 for equation (3), and then define recursively
a sequence {y(m)(r)}m>1 on [0,∞) by

y(0)(r) = d ∀r > 0

and

y(m)(r) = d+

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(m−1)(s)

))]k
ds

)1/k

dt. (10)

Obviously, {y(m)(r)}m>1 is an increasing sequence of nonnegative and increasing func-
tions, and y(m)(r) > d for all r > 0 and m ∈ N . Thus it is sufficient to prove that the
sequences {y(m)(r)}m>1 are bounded from above on bounded subsets for obtaining our
desired conclusion.

Fix R > 0, since f is increasing with respect to the second variable y on [0,∞), then
it follows from (A) and Remarks 1 and 3 that

y(m)(R) = d+

R∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(m−1)(s)

))]k
ds
)1/k

dt

6 d+

R∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(m)(s)

))]k
ds

)1/k

dt

6 d+

R∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

((
y(m)(s) + 1

)β
f(s, 1)

)]k
ds

)1/k

dt

6 d+
[(
y(m)(R)

)
+ 1
]β/(1+α)

×
R∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt. (11)

Hence from the monotonicity of {y(m)(R)}m>1 we have

L(R) := lim
m→∞

(
y(m)(R)

)
6 +∞.

We assert that L(R) is finite. In fact, if not, by (11), (8), and 0 < β < 1 + α, one has

1 6
d

y(m)(R)
+

[(y(m)(R)) + 1]β/(1+α)

y(m)(R)

×
R∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt

→ 0 as m→∞,
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which is a contradiction. So L(R) is finite, and the mapping L : (0,∞) → (0,∞) is
increasing since y(m)(r) is an increasing function in (0,∞). Thus for any r ∈ [0, R] and
m > 1, we have

y(m)(r) 6 y(m)(R) 6 L(R),

which implies that the sequence {(y(m)(r))}m>1 is bounded from above on bounded sets.
Letting

y(r) := lim
m→∞

y(m)(r) ∀r > 0,

and taking the limit for (10), we get that y is a positive solution of (1).
Now to complete the proof, we only need to prove that y blows up. Indeed, by (9)

and (8), we have

y(r) = d+

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

dt

> d+

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, d)

)]k
ds

)1/k

dt

> d+

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s,min{1, d}

))]k
ds

)1/k

dt

> d+
(
min{1, d}

)β/(1+α)
×

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt→ +∞ as r → +∞,

which implies that y is a blow-up solution of the k-Hessian equation (1). Noticing that
d ∈ (0,∞) is chosen arbitrarily, the k-Hessian equation (1) has infinitely many positive
entire blow-up solutions.

Necessary condition. For the proof of necessity, we still adopt the method of contra-
diction. Suppose y is any positive entire blow-up solution of the k-Hessian equation (1)
and (8) is not true, that is

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt <∞,

and

y(r) = y(0) +

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

dt,

lim
r→∞

y(r) = +∞.
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Then it follows from the fact of y being a positive solution of the k-Hessian equation (1)
that

y′(r) =

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f
(
s, y(s)

))]k
ds

)1/k

> 0,

which implies that y(r) is increasing on [0,∞). By (A), (9), and Remark 1, one has

y(r) 6 y(0) +

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

((
y(s) + 1

)β
f(s, 1)

)]k
ds

)1/k

dt

6 y(0) +
[(
y(r)

)
+ 1
]β/(1+α) r∫

0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt.

Noticing that limr→+∞ y(r) = +∞, we have

1 6
y(0)

y(r)
+

[(y(r)) + 1]β/(1+α)

y(r)

r∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt

→ 0 as r →∞,

which is a contradiction. The necessity of Theorem 2 is proved.

5 Further results

In this section, we discuss some alternative conditions of (A) and give some further
results.

(B) f ∈ C((0,+∞)× [0,+∞), (0,+∞)) is nondecreasing on the second variable u,
and there exists a positive constant β < 1 + α such that, for all s ∈ (0,+∞),
f(s, u)/uβ is decreasing on the variable u ∈ (0,+∞).

Remark 4. Assumption (B) is easy to check, and there is a large class of functions to
satisfy assumption (B). The typical example is f(s, u) =

∑m
i=1 gi(s)u

βi , where max{β1,
β2, . . . , βm} < 1 + α, gi(s) > 0, s ∈ (0,∞), i = 1, 2, . . . ,m.

In fact, clearly, f(s, u) is nondecreasing on the second variable u on [0,+∞). Take
β = max{β1, β2, . . . , βm}, then f(s, u)/uβ is decreasing on the variable u ∈ (0,+∞).

Now we show that assumption (B) implies assumption (A).

Proof. Notice that f(s, u)/uβ is decreasing on the variable u ∈ (0,+∞), for any 0 <
c 6 1 and u ∈ (0,+∞), we have

f(s, u)

uβ
6
f(s, cu)

(cu)β
,

which implies that f(s, cu) > cβf(s, u). The proof is completed.
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Thus we have the following corollaries:

Corollary 1. Suppose (B) holds and f satisfies the fast decay condition (5), then the
k-Hessian equation (1) has no positive entire blow-up solutions.

Corollary 2. Suppose (B) holds, then the k-Hessian equation (1) has infinitely many pos-
itive entire blow-up radial solutions if and only if f satisfies the slow decay condition (8).

(C) f : (0,+∞) × [0,+∞) → (0,+∞) is continuous and there exists a positive
constant β < 1 + α such that ∂f/∂u > 0 and

u
∂f(s, u)

∂u
6 βf(s, u) ∀u ∈ (0,∞). (12)

Obviously, (12) implies that f(s, u)/uβ is decreasing on the variable u ∈ (0,+∞),
and thus Corollaries 1 and 2 can be rewritten as:

Corollary 3. Suppose (C) holds and f satisfies the fast decay condition (5), then the
k-Hessian equation (1) has no positive entire blow-up solution.

Corollary 4. Suppose (C) holds, then the k-Hessian equation (1) has infinitely many pos-
itive entire blow-up radial solutions if and only if f satisfies the slow decay condition (8).

Now we consider the case where the nonlinearity includes a weigh function p, i.e,
f(x, u) = p(|x|)g(u).

(D) f ∈ C([0,+∞), (0,+∞)) is nondecreasing and p(t) > 0 for t ∈ [0,+∞), and
there exists a positive constant β < 1 + α such that

0 < sup
u>0

f(u)

uβ
<∞.

By checking the proof of Theorems 1 and 2, the conclusions can be rewritten as
follows:

Theorem 3. Suppose (D) holds, and the following fast decay condition holds:

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
p(s)

)]k
ds

)1/k

dt < +∞,

then the k-Hessian equation (1) has no positive entire blow-up solution.

Theorem 4. Assume that (D) holds, and the weigh function p satisfies the following slow
decay condition:

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
p(s)

)]k
ds

)1/k

dt =∞. (13)

Then the k-Hessian equation (1) has infinitely many positive entire blow-up radial solu-
tions if and only if the slow decay condition (13) is satisfied.
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In addition, noticing that

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1
ds

)1/k

dt =∞

always holds, if the weigh p ≡ const 6= 0, then we only have the result of existence of
blow-up positive solutions, that is

Corollary 5. Assume that (D) holds, then the k-Hessian equation (1) has infinitely many
positive entire blow-up radial solutions.

6 Numerical example

In this section, we present an example to illustrate our main results.

Example 1. Consider the existence and nonexistence of radial blow-up solutions for the
following 3-Hessian equation:(

S
1/3
3

(
λ
(
D2u

)))2
S
1/3
3

(
λ
(
D2u

))
= p
(
|x|
)
u1/4 in R7, (14)

where p(s) > 0, s ∈ (0,+∞). Then

(i) If p(r) = 4/(r3(1 + r4)2), the k-Hessian equation (14) has no positive entire
blow-up solutions.

(ii) If p(r) = er(4r−3 + r−2), the k-Hessian equation (14) has infinitely many
positive entire blow-up radial solution.

In fact, here k = 3, N = 7, f(x, u) = p(|x|)u1/4, and B(x) = x2. Thus we have
L−1(x) = x1/3 and

f(s, cu) = p(s)(cu)1/4 > p(s)c1/3u1/2 = c1/3f(s, u)

for all (s, u) ∈ (0,+∞)× [0,+∞), c ∈ (0, 1], which implies that (A) holds.

(i) If p(r) = 4/(r3(1 + r4)2), then

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt

=

∞∫
0

(
3

t4

t∫
0

4s3

C2
6 (1 + s4)2

ds

)1/3

dt =
4

5

∞∫
0

1
3
√
s4 + 1

dt <∞.

According to Theorem 1, the k-Hessian equation (14) has no positive entire blow-up
solutions.
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(ii) If p(r) = er(4r−3 + r−2), we have

∞∫
0

(
k

tN−k

t∫
0

sN−1

Ck−1N−1

[
L−1

(
f(s, 1)

)]k
ds

)1/k

dt

=

∞∫
0

(
3

t4

t∫
0

es(4s3 + s4)

C2
6

ds

)1/3

dt =

∞∫
0

et/3 dt =∞.

According to Theorem 2, the k-Hessian equation (14) has infinitely many positive entire
blow-up radial solutions.

Remark 5. From Example 1 we can see that assumption (A) permits f(s, u) to have
singularity at s = 0, which allows that the k-Hessian equation (1) can describe some
singular phenomena such as those in [22, 35, 58, 68, 69, 71, 82].

7 Conclusion

The k-Hessian operator is an important fully nonlinear and non-uniform elliptic par-
tial differential operator, which includes the Monge–Ampère operator and the Laplace
operator as special cases, thus the study of the k-Hessian equation is interesting and
challenging. In this paper, we introduce a new nonlinear operator B with suitable growth
condition, and the k-Hessian equation is extended to more generalized cases. In addition,
we also put forward some suitable growth conditions for nonlinearity for obtaining the
results of nonexistence and existence of blow-up radial solutions for the k-Hessian equa-
tion. The conditions are easy to be checked, and the corresponding results improve and
generalize some recent results such as those in [1, 2, 18, 25, 49].

Acknowledgment. The authors would like to thank the referee for his/her very impor-
tant comments that improved the results and the quality of the paper.
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