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Abstract. Let {ξ1, ξ2, . . . } be a sequence of independent real-valued, possibly nonidentically
distributed, random variables, and let η be a nonnegative, nondegenerate at 0, and integer-valued
random variable, which is independent of {ξ1, ξ2, . . . }. We consider conditions for {ξ1, ξ2, . . . }
and η under which the distributions of the randomly stopped minimum, maximum, and sum are
regularly varying.
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randomly stopped minimum, randomly stopped sum, closure property.

1 Introduction

Let {ξ1, ξ2, . . .} be a sequence of independent random variables (r.v.s) with distribution
functions (d.f.s) {Fξ1 , Fξ2 , . . .}, and let η be a counting random variable (c.r.v.), that is,
a nonnegative, nondegenerate at 0, and integer-valued r.v. In addition, we suppose that the
r.v. η and the sequence {ξ1, ξ2, . . .} are independent.

Let S0 := 0, Sn := ξ1 + · · ·+ ξn for n ∈ N, and let

Sη =

η∑
k=1

ξk

be the randomly stopped sum of the r.v.s ξ1, ξ2, . . . .
Next, let ξ(0) := 0, ξ(n) := max{0, ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) :=

{
0 if η = 0,

max{0, ξ1, . . . , ξη} if η > 1,

be the randomly stopped maximum of the r.v.s ξ1, ξ2, . . . .
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Similarly, let ξ(0) := 0, ξ(n) := min{ξ1, . . . , ξn} for n ∈ N, and let

ξ(η) :=

{
0 if η = 0,

min{ξ1, . . . , ξη} if η > 1

be the randomly stopped minimum of the r.v.s ξ1, ξ2, . . . .
We denote by Fξ(η) , Fξ(η) , and FSη the d.f.s of ξ(η), ξ(η), and Sη , respectively. We

denote by F the tail of a d.f. F , that is, F (x) = 1−F (x) for x ∈ R. It is obvious that the
following equalities hold for x > 0:

F ξ(η)(x) =

∞∑
n=1

P(η = n)P(ξ(n) > x),

F ξ(η)(x) =

∞∑
n=1

P(η = n)P(ξ(n) > x),

FSη (x) =

∞∑
n=1

P(η = n)P(Sn > x).

We use the following three notations for the asymptotic relations of arbitrary posi-
tive functions f and g: f(x) = o(g(x)) means that limx→∞ f(x)/g(x) = 0; f(x) ∼
cg(x), c > 0, means that limx→∞ f(x)/g(x) = c; and f(x) � g(x) means that
0 < lim infx→∞ f(x)/g(x) 6 lim supx→∞ f(x)/g(x) <∞.

Before discussing the properties of the d.f.s Fξ(η) , Fξ(η) , and FSη , we recall the
definition of a regularly varying distribution function.

A d.f. F is regularly varying (F ∈ Rα) for some index α > 0 if

lim
x→∞

F (xy)

F (x)
= y−α

for any y > 0. A r.v. X is regularly varying with index α > 0 if its distribution FX
belongs toRα.

An important property following from the definition of Rα is that the tail function
of an arbitrary regularly varying d.f. can be represented in the form F (x) = x−αL(x),
where L is a slowly varying function, that is,

lim
x→∞

L(xy)

L(x)
= 1

for any y > 0.
In this paper, we consider a sequence {ξ1, ξ2, . . .} of possibly nonidentically dis-

tributed r.v.s. We suppose that some of the d.f.s of these r.v.s belong either to the class
Rα with some α > 0 or to the classes R =

⋃
α>0Rα, R+ =

⋃
α>0Rα. We find

conditions under which the d.f.s Fξ(η) , Fξ(η) , and FSη are regularly varying.
The class of regularly varying functions was introduced by Karamata [14] in the con-

text of real analysis. The notion of regular variation was introduced in probability theory
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by Feller [11] when considering limit theorems for sums of i.i.d. r.v.s. Many analytical
results on regularly varying functions can be found in the monograph by Bingham et
al. [1]. Some applications of regularly varying distributions to finance and insurance are
presented by Embrechts et al. [9]. We further present a few results on randomly stopped
structures related to regularly varying distribution functions.

The following two results present sufficient (Theorem 1) and necessary (Theorem 2)
conditions for the closure of random sum of regularly varying r.v.s, see [10], Proposi-
tions 4.1 and 4.8, respectively.

Theorem 1. Let ξ1, ξ2, . . . be independent and identically distributed (i.i.d.) nonnegative
r.v.s, and let η be a counting r.v. independent of {ξ1, ξ2, . . .}. Assume that the d.f. Fξ1 is
regularly varying with index α > 0, Eη < ∞, and F η(x) = o(F ξ1(x)). Then the d.f.
FSη belongs to the classRα, and FSη (x) ∼ EηF ξ1(x).

Theorem 2. Let ξ1, ξ2, . . . be i.i.d. nonnegative r.v.s, and let η be a counting r.v. in-
dependent of {ξ1, ξ2, . . .}. Assume that Sη is regularly varying with index α > 0 and
Eη1∨p < ∞ for some p > α. Then the d.f. Fξ1 belongs to the class Rα, and FSη (x) ∼
EηF ξ1(x).

The following result on sufficient and necessary conditions for the closure under
random maximum of regularly varying r.v.s was obtained in [13] (see Lemma 5.1(i)).

Theorem 3. Let ξ1, ξ2, . . . be i.i.d. real-valued r.v.s, and let η be a counting r.v. indepen-
dent of {ξ1, ξ2, . . .} such that Eη < ∞. Then F ξ(η)(x) ∼ EηF ξ1(x), and hence Fξ(η)
belongs to the classRα if and only if Fξ1 belongs toRα, α > 0.

Motivated by the presented statements and results obtained in [2,4,5,7,15,18–21,24,
26], we continue to consider conditions under which the d.f.s Fξ(η) , Fξ(η) , and FSη belong
to either the class Rα with some α > 0 or the class R. As we mentioned before, we
deal with the case where the sequence {ξ1, ξ2, . . .} consists of independent but possibly
nonidentically distributed r.v.s.

The rest of the paper is organized as follows. In Section 2, we present our main results.
Section 3 consists of some auxiliary lemmas. The proofs of the main results are given in
Section 4. Finally, in Section 5, we present two examples to expose the usefulness of our
results.

2 Main results

In this section, we present the main results of this paper. In all the statements, we sup-
pose that the sequence {ξ1, ξ2, . . . } and the c.r.v. η are independent. Our first theorem
describes properties of randomly stopped minima.

Theorem 4. Let {ξ1, ξ2, . . .} be a sequence of real-valued r.v.s. Then Fξk ∈ R for all
k ∈ N if and only if Fξ(η) ∈ R for every c.r.v. η.

The second theorem below describes sufficient conditions for the regularity of ran-
domly stopped maxima and sums when the c.r.v. η has a finite support.
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https://doi.org/10.15388/namc.2020.25.16661


512 J. Sprindys, J. Šiaulys

Theorem 5. Let ξ1, . . . , ξm be independent real-valued r.v.s, and let η be a counting r.v.
independent of {ξ1, . . . , ξm} such that P(η 6 m) = 1. Then the d.f.s FSη and Fξ(η)
belong to the classRα, α > 0, if the following two conditions are satisfied:

(i) Fξ1 ∈ Rα;
(ii) For each k > 2, either Fξk ∈ Rα or F ξk(x) = o(F ξ1(x)).

Furthermore, under conditions (i)–(ii), the following tail equivalences hold:

F ξ(η)(x) ∼ FSη (x) ∼ x−α
m∑
n=1

P(η = n)
∑
k∈In

Lk(x), (1)

where In = {k = 1, . . . , n: Fξk ∈ Rα}, and Lk are slowly varying functions from the
representations F ξk(x) = x−αLk(x).

The following theorem describes properties of randomly stopped sums and maxima
when the c.r.v. has a finite support. Here we provide both necessary and sufficient condi-
tions for {ξ1, ξ2, . . . }, but the initial conditions for the collection of the primary r.v.s are
more restrictive than in the previous theorem.

Theorem 6. Let {ξ1, ξ2, . . .} be a sequence of independent real-valued r.v.s such that
F ξk(x) � F ξ1(x) for all k > 2. Then the following statements are equivalent:

(i) Fξk ∈ R+ for all k ∈ N;
(ii) FSη ∈ R+ for any c.r.v. η with finite support;

(iii) Fξ(η) ∈ R+ for any c.r.v. η with finite support.

In the following theorem, we give sufficient conditions under which the randomly
stopped sum is regularly varying in the case of a general c.r.v. η.

Theorem 7. Let ξ1, ξ2, . . . independent real-valued r.v.s, and let η be a counting r.v.
independent of {ξ1, ξ2, . . .}. Assume the following conditions are satisfied:

(i) Fξ1 ∈ Rα, α > 0;
(ii) For a sequence of nonnegative constants {d1, d2, d3, . . .} such that d1 = 1 and

lim supn→∞(1/n)
∑n
k=1 dk <∞, it holds that

lim sup
x→∞

sup
n>1

1

n

n∑
k=1

∣∣∣∣F ξk(x)

F ξ1(x)
− dk

∣∣∣∣ = 0;

(iii) Eηp+1 <∞ for some p > α.

Then the following tail equivalence holds:

FSη (x) ∼ F ξ1(x)

∞∑
n=1

P(η = n)

n∑
k=1

dk,

and hence FSη ∈ Rα.
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The following result on sufficient and necessary conditions for the closure under
random maximum of regularly varying r.v.s is a direct generalization of Theorem 3.

Theorem 8. Let ξ1, ξ2, . . . be real-valued r.v.s such that F ξ1(x) > 0 for all x ∈ R, and
let η be a counting r.v. independent of {ξ1, ξ2, . . .}. In addition, suppose that

lim sup
x→∞

sup
n>1

1

n

n∑
k=1

∣∣∣∣F ξk(x)

F ξ1(x)
− dk

∣∣∣∣ = 0 and max

{
Eη,E

(
η∑
k=1

dk

)}
<∞

for a sequence of nonnegative constants {d1 = 1, d2, . . .}. Then

F ξ(η)(x) ∼ F ξ1(x)E

(
η∑
k=1

dk

)
,

and hence Fξ(η) belongs to the classRα if and only if Fξ1 belongs toRα, α > 0.

3 Auxiliary lemmas

In this section, we give several auxiliary lemmas. Some of these lemmas are originally
stated for wider heavy-tailed distribution classes, which include the classR as a subclass.
Here we restate these lemmas for regularly varying d.f.s. The first lemma follows from
Theorem 3.1 of [3] (see also Theorem 2.1 from [25]).

Lemma 1. Let X1, . . . , Xn be independent real-valued r.v.s. If FXk ∈ R for k ∈
{1, . . . , n}, then

P

(
n∑
k=1

Xk > x

)
∼

n∑
k=1

FXk(x). (2)

The next lemma is Theorem 4.1 from [23]. This lemma provides necessary and
sufficient conditions for the max-sum equivalence of regularly varying distributions.

Lemma 2. Let X1, . . . , Xn be independent real-valued r.v.s. Then FΣn ∈ Rα, α > 0, if
and only if max{0, 1−

∑n
k=1 FXk} ∈ Rα, where FΣn is d.f. of sum Σn = X1+· · ·+Xn.

In this case, the asymptotic relation (2) holds.

The next lemma follows from Theorems 3.10, 3.11, and 4.1 by Shimura [23]. It
describes the decomposition property of regularly varying distributions.

Lemma 3. Let X be a real-valued r.v., and suppose that FX ∈ R+. Furthermore,
suppose that X can be decomposed into independent r.v.s X1 and X2, that is, X =
X1 +X2. If FX1

∈ R+ and FX2
(x) � FX1

(x), then FX2
∈ R+.

The following statement was proved in Proposition 1 of [8] and later was generalized
to a broader distribution class in Corollary 3.19 of [12].
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Lemma 4. Let {X1, . . . , Xn} be a collection of independent real-valued r.v.s. Assume
thatFXk(x)/F (x)→ bk as x→∞ for some regularly varying d.f.F and some constants
bi > 0, i ∈ {1, . . . n}. Then

P(
∑n
k=1Xk > x)

F (x)
→
x→∞

n∑
k=1

bk.

In the next lemma, we show in which cases the d.f. FΣn of the sum Σn = X1 +
· · · + Xn and the d.f. FX(n) of the maximum X(n) = max{X1, . . . , Xn} belong to the
classRα.

Lemma 5. Let X1, . . . , Xn be independent real-valued r.v.s. Then the d.f.s FΣn and
FX(n) belong to the classRα, α > 0, if the following conditions are satisfied:

(i) FX1
∈ Rα;

(ii) For each k = 2, . . . , n, either FXk ∈ Rα or FXk(x) = o(FX1
(x)).

Furthermore, under these conditions,

FX(n)(x) ∼ FΣn(x) ∼ x−α
∑
k∈În

Lk(x),

where Lk are slowly varying functions from representations FXk(x) = x−αLk(x), and
În = {k = 1, . . . , n: FXk ∈ Rα}.

Proof. We first consider the sum Σn. For n = 2, the statement is well known (see,
e.g., p. 278 in [11], Lemma 1.3.4 in [17], Proposition 4.2.5 in [22] or the case n = 2 of
Corollary 3.19 of [12]). We use induction. Suppose the statement of the lemma holds for
n = K. This means that FΣK ∈ Rα and, due to Lemma 2,

FΣK (x) ∼ x−α
∑
k∈ÎK

Lk(x) ∼
K∑
k=1

FXk(x).

According to the conditions of the lemma, either FXK+1
∈ Rα or FXK+1

(x) =
o(FΣK (x)). Since ΣK+1 = ΣK + XK+1, in both cases, we obtain that FΣK+1

∈ Rα
and

FΣK+1
(x) ∼

K+1∑
k=1

FXk(x) ∼ x−α
∑

k∈ÎK+1

Lk(x)

by Proposition 4.2.5 from [22] and Proposition 1.3.6 from [1] on the properties of slowly
varying functions. According to the induction principle, the statement of the lemma holds
for all sums Σn.

The statement of the lemma for X(n) follows immediately from the following asymp-
totic relations:

FX(n)(x) = P

(
n⋃
k=1

{Xk > x}

)
∼

n∑
k=1

FXk(x) ∼ x−α
∑
k∈În

Lk(x)

http://www.journals.vu.lt/nonlinear-analysis
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for each n ∈ N by the classical Bonferoni inequalities and properties of slowly varying
functions. The lemma is proved.

The following statement follows from Lemma 3.2 of [6].

Lemma 6. Let X1, . . . , Xn be independent real-valued r.v.s, and let FXν ∈ Rα for some
ν > 1 and α > 0. Suppose, in addition, that

lim sup
x→∞

1

FXν (x)
sup
n>ν

1

n

n∑
k=1

FXk(x) <∞.

Then, for any p > α, there exists a positive constant c = c(p) such that

FSn(x) 6 c np+1FXν (x)

for all n > ν and x > 0.

In fact, Lemma 3.2 in [6] is proved for nonnegative r.v.s, but the statement remains
valid for real-valued r.v.s. To see this, it suffices to observe that P(X1 + · · ·+Xn > x) 6
P(X+

1 · · · + X+
n > x) and P(Xk > x) = P(X+

k > x) for n ∈ N, k ∈ {1, . . . , n},
x > 0, where a+ denotes the positive part of a.

4 Proofs of main results

In this section, we give detailed proofs of our main results.

Proof of Theorem 4. Let η be an arbitrary c.r.v., and set

κ := min
{
n > 1: P(η = n) > 0

}
.

Then for any x > 0, we have

F ξ(η)(x) =

∞∑
n=1

F ξ(n)
(x)P(η = n)

= F ξ(κ)
(x)P(η = κ) +

∞∑
n=κ+1

F ξ(n)
(x)P(η = n)

= F ξ(κ)
(x)P(η = κ)

(
1 +

∞∑
n=κ+1

(
n∏

k=κ+1

F ξk(x)

)
P(η = n)

P(η = κ)

)

6 F ξ(κ)
(x)P(η = κ)

(
1 + F ξκ+1

(x)
P(η > κ + 1)

P(η = κ)

)
and

F ξ(η)(x) > F ξ(κ)
(x)P(η = κ).

Nonlinear Anal. Model. Control, 25(3):509–522
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Therefore we obtain

F ξ(η)(x) ∼ P(η = κ)F ξ(κ)
(x). (3)

Necessity. If Fξk ∈ R for all k ∈ N, then Fξ1 ∈ Rα1
, Fξ2 ∈ Rα2

, . . . for
some nonnegative parameters α1, α2, . . . . This means that, for each k ∈ N, F ξk(x) =
x−αkLk(x) with a slowly varying function Lk. Hence, for a finite nonrandom κ,

Fξ(κ)
∈ Rα1+···+ακ (4)

by the closure properties of slowly varying functions (see, e.g., Proposition 1.3.6 in
Bingham et al. [1]) because

F ξ(κ)
(x) =

κ∏
k=1

F ξk(x) = x−(α1+···+ακ)
κ∏
k=1

Lk(x)

for x > 0. Thus, it follows from (3) and (4) that

Fξ(η) ∈ Rα1+···+ακ ⊂ R
for any c.r.v. η.

Sufficiency. If Fξ(η)∈R for an arbitrary c.r.v. η, then from (3) it follows that Fξ(n)
∈R

for any fixed n ∈ N. In addition, for all x > 0, we have that F ξ1(x) = F ξ(1)(x) and

F ξk(x) =
F ξ(k)(x)

F ξ(k−1)
(x)

, k ∈ {2, 3, . . .}.

Therefore, by the closure properties of slowly varying functions (see, e.g., Proposi-
tion 1.3.6 in Bingham et al. [1]), we obtain that Fξk ∈ R for each k ∈ N. Theorem 4 is
proved.

Proof of Theorem 5. To verify that FSη ∈ Rα, it suffices to prove that

FSη (x) ∼ x−αL(x) (5)

for some slowly varying function L.
For all x > 0, we have

FSη (x) =

m∑
n=1

P(η = n)P(Sn > x).

By Lemma 5 we conclude that for each n ∈ {1, . . . ,m},

FSn(x) ∼ x−α
∑
k∈In

Lk(x),

whereLk are slowly varying functions. Asymptotic relation (1) now immediately follows.
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By the closure properties of slowly varying functions (see Proposition 1.3.6 in Bing-
ham et al. [1]) we conclude that asymptotic relation (5) holds with slowly varying function

L(x) =

m∑
n=1

P(η = n)
∑
k∈In

Lk(x).

Consequently, FSη ∈ Rα.
The proof of the theorem for the d.f. Fξ(η) is identical to that for FSη , and hence we

omit it. The theorem is proved.

Proof of Theorem 6. The implication (i)⇒ (iii) immediately follows from Theorem 5.
Suppose now assumption (iii) holds, that is, Fξ(η) ∈ R+ for any c.r.v. η with finite

support. From this assumption it follows that Fξ(n) ∈ Rαn for each n ∈ N with some
index αn > 0. Applying the classical Bonferroni inequality, we obtain

P
(
ξ(n) > x

)
= P

(
n⋃
k=1

{ξk > x}

)
∼

n∑
k=1

P(ξk > x).

Therefore the d.f. max{0, 1−
∑n
k=1 F k} belongs to the classRαn as well. Lemma 2

and the last asymptotic relation imply that FSn ∈ Rαn and

P(Sn > x) ∼
n∑
k=1

P(ξk > x) ∼ P
(
ξ(n) > x

)
(6)

for n ∈ N.
Let us consider a c.r.v. η with finite support {0, 1, . . . ,m}, m > 1. In such a case, by

the asymptotic relation (6) we have

FSη (x) =

m∑
n=1

P(η = n)P(Sn > x) ∼
m∑
n=1

P(η = n)P
(
ξ(n) > x

)
= F ξ(η)(x).

Consequently, FSη ∈ R+ for c.r.v. η. The implication (iii)⇒ (ii) is proved.
Finally, we give a proof of the implication (ii)⇒ (i). Since by assumption (ii) FSη ∈

R+ for every c.r.v. η with finite support, it follows that

FSn ∈ R+ (7)

for each n ∈ N. In particular, Fξ1 ∈ R+ and Fξ1+ξ2 ∈ R+. Lemma 3 implies that
Fξ1 ∈ Rα and Fξ2 ∈ Rα for some α > 0 because F ξ1(x) � F ξ2(x) by the conditions of
the theorem.

Let us continue by induction. Suppose that Fξ1 ∈ Rα, Fξ2 ∈ Rα, . . . , FξK ∈ Rα
with K > 2. Lemma 1 implies that FSK ∈ Rα ⊂ R+ and

FSK (x) ∼
K∑
k=1

F ξk(x). (8)

Nonlinear Anal. Model. Control, 25(3):509–522
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The distribution function FSK+1
∈ R+ because of relation (7). In addition, the conditions

of the theorem imply that F ξk(x) � F ξ1(x) � F ξK+1
(x) for each k ∈ {1, . . . ,K}. This,

together with asymptotic relation (8), implies that FSK (x) � F ξK+1
(x). Using Lemma

3, we obtain that FξK+1
∈ Rα ⊂ R+. Now statement (i) of Theorem 6 follows by the

induction principle. This completes the proof.

Proof of Theorem 7. As in Theorem 5, it suffices to prove the tail equivalence formula (5)
with some slowly varying function L.

For any K ∈ N and all x > 0, define the function

L∗K(x) = L1(x)

K∑
n=1

P(η = n)

n∑
k=1

dk.

In addition, for all x > 0, define

L∗∞(x) := lim
K→∞

L∗K(x).

We begin with the existence of this limit. First, for each fixed x, the sequence L∗K(x)
is nondecreasing. Second, for each fixed x, the sequence L∗K(x) has an upper bound by
conditions (ii) and (iii). Indeed, condition (ii) implies that

n∑
k=1

dk 6 c1n

for all n ∈ N and some positive constant c1, and condition (iii) implies that

K∑
n=1

P(η = n)

n∑
k=1

dk 6 c1

∞∑
n=1

nP(η = n) = c1Eη <∞

for all K ∈ N.
Besides that, the function L∗∞(x) is slowly varying. Let us prove the asymptotic

relation
FSη (x) ∼ x−αL∗∞(x),

which is analogous to (5). For all K ∈ N and x > 0, denote

J :=
P(Sη > x)

L∗∞(x)x−α

=

∑K
n=1 P(Sn > x)P(η = n)

L∗∞(x)x−α
+

∑∞
n=K+1 P(Sn > x)P(η = n)

L∗∞(x)x−α

=: J1(K) + J2(K).

We have to prove the inequalities

lim inf
x→∞

J > 1 and lim sup
x→∞

J 6 1. (9)
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Condition (ii) implies that

lim
x→∞

∣∣∣∣F ξk(x)

F ξ1(x)
− dk

∣∣∣∣ = 0

for each fixed k. Consequently, either F ξk(x) ∼ dkF ξ1(x) for positive dk, implying that
Fξk ∈ Rα, or F ξk(x) = o(F ξ1(x)). By Lemma 5, for all n ∈ N, we have FSn ∈ Rα and

FSn(x) ∼
∑
k∈In

F ξk(x) ∼ x−αL1(x)

n∑
k=1

dk.

From these asymptotic relations we get that

lim inf
x→∞

J1(K) = lim sup
x→∞

J1(K) =

∑K
n=1 P(η = n)

∑n
k=1 dk∑∞

n=1 P(η = n)
∑n
k=1 dk

. (10)

Using the obvious inequality lim infx→∞ J > lim infx→∞ J1(K) and lettingK tend
to infinity, we derive from (10) the first inequality in (9).

Since

lim sup
x→∞

sup
n>1

1

nF ξ1(x)

n∑
k=1

F ξk(x)

6 lim sup
x→∞

sup
n>1

(
1

n

n∑
k=1

∣∣∣∣F ξk(x)

F ξ1(x)
− dk

∣∣∣∣+
1

n

n∑
k=1

dk

)
<∞

by condition (ii) of the theorem, we can use Lemma 6 for the numerator of J2(K) to
obtain

∞∑
n=K+1

P(Sn > x)P(η = n) 6 c2F ξ1(x)

∞∑
n=K+1

np+1P(η = n)

with some positive constant c2. Therefore

lim sup
x→∞

J2(K) 6 c2 lim sup
x→∞

L1(x)

L∗∞(x)

∞∑
n=K+1

np+1P(η = n)

6 c3

∞∑
n=K+1

np+1P(η = n)

with some positive constant c3.
The last inequality together with (10) implies that

lim sup
x→∞

J 6 lim sup
x→∞

J1(K) + lim sup
x→∞

J2(K)

6

∑K
n=1 P(η = n)

∑n
k=1 dk∑∞

n=1 P(η = n)
∑n
k=1 dk

+ c3E
(
ηp+11{η>K+1}

)
.

Letting K tend to infinity, we get the second desired inequality in (9) by condition (iii) of
the theorem. This completes the proof of Theorem 7.

Nonlinear Anal. Model. Control, 25(3):509–522

https://doi.org/10.15388/namc.2020.25.16661


520 J. Sprindys, J. Šiaulys

Proof of Theorem 8. Note that

F ξ(n)(x) = P(ξ(n) > x) =

n∑
k=1

F ξk(x)

k−1∏
j=1

Fξj (x)

for all x > 0 and n ∈ N. Therefore

F ξ(η)(x)

F ξ1(x)
=

K∑
n=1

P(η = n)

n∑
k=1

F ξk(x)

F ξ1(x)

k−1∏
j=1

Fξj (x)

+

∞∑
n=K+1

P(η = n)

n∑
k=1

(
F ξk(x)

F ξ1(x)
− dk

) k−1∏
j=1

Fξj (x)

+

∞∑
n=K+1

P(η = n)

n∑
k=1

dk

k−1∏
j=1

Fξj (x)

=: L1(K) + L2(K) + L3(K) (11)

with an arbitrary K > 2.
For the first term, we have

lim
x→∞

L1(K) =

K∑
n=1

P(η = n)

n∑
k=1

dk (12)

because limx→∞ F ξk(x)/F ξ1(x) = dk for each fixed k.
In addition,

∣∣L2(K)
∣∣ 6 sup

n>K

1

n

n∑
k=1

∣∣∣∣F ξk(x)

F ξ1(x)
− dk

∣∣∣∣E(η1{η>K}), (13)

L3(K) 6 E

(
η∑
k=1

dk1{η>K}

)
. (14)

Theorem 8 now follows from equalities (11), (12) and estimates (13), (14).

5 Examples

In this section, we present two examples, which demonstrate the applicability of Theo-
rem 7.

Example 1. Consider a counting r.v. η and a sequence of i.i.d. real-valued r.v.s {ξ1, ξ2, . . .}
such that Fξ1 ∈ Rα.
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In this case, conditions (i) and (ii) of Theorem 7 are satisfied with constants d1 =
d2 = · · · = 1. Hence the theorem implies that FSη (x) ∼ Eη F ξ1(x) if Eη1+p < ∞ for
some p > α.

Note that this example deals with the same i.i.d. r.v.s as in Theorem 1. The difference
is that Theorem 7 imposes stricter conditions on the c.r.v., which are sufficient for the d.f.
of the random sum to be regularly varying as well as for real valued summands

Example 2. Consider an example similar to that in [16]. Suppose that η is an arbitrary
counting r.v. and {ξ1, ξ2, . . .} is a sequence of independent r.v.s distributed according to
the two-sided Pareto laws

Fξk(x) =
a−k
|x|α

1(−∞,−1) +
(
1− bk − a+

k

)
1[−1,1)(x) +

(
1−

a+
k

xα

)
1[1,∞)(x),

where α > 0, and a−k , a+
k , and bk are nonnegative constants such that a+

k > 0 and
a−k + bk + a+

k 6 1 for all k ∈ N.

In this case, if lim supn→∞
1
n

∑n
k=1 a

+
k <∞ and Eη1+p <∞ for some p > α, then

conditions (i)–(iii) of Theorem 7 are satisfied, and

FSη (x) ∼ 1

xα

∞∑
k=1

a+
k P(η > k).

Particularly, if η is distributed according to the Poisson law with parameter λ > 0 and
a+
k = 1/(k(k + 1)), k > 1, then

FSη (x) ∼ 1

λ

(
e−λ + λ− 1

)
x−α.
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