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Abstract. We give a simple geometrical criterion for the nonexistence of constant-sign solutions
for a certain type of third-order two-point boundary value problem in terms of the behavior of
nonlinearity in the equation. We also provide examples to illustrate the applicability of our results.
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1 Introduction

We study boundary value problem consisting of the nonlinear third-order differential
equation

x′′′ = −p(t)f(x), (1)

subject to the two-point boundary conditions

x(t0) = x′(t0) = 0 = x(b), (2)

where b > t0, f : R → R and p : [t0,+∞) → [0,+∞) are continuous, xf(x) > 0 for
x 6= 0, and for every ε > 0, there exists ξ ∈ (t0, t0 + ε) such that p(ξ) > 0. Some
additional assumptions on the function p will be introduced later.

It is the intent of this paper to provide a simple geometrical criterion for nonexistence
of constant-sign solutions to boundary value problem (1), (2). By a constant-sign solution
of (1), (2), we mean a solution x(t) such that x(t) 6= 0 for t ∈ (t0, b).

Many papers deal with nonexistence results. We mention only few [1, 7, 8, 12] for the
third-order problems and [5, 10, 11] for the second-order problems.

This investigation was motivated by the paper [2] in which the authors obtain sufficient
conditions for the existence and nonexistence of positive solutions to the third-order
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two-point boundary value problem. The nonexistence theorems are formulated there in
terms of inequalities of the type we use. To prove their results, the authors use so-called
Guo–Krasnosel’skii fixed point theorem [3, 6], but in our proofs, we employ comparison
methods for the first zero functions.

The key idea is the following. Let us consider solution x(t, γ) of Eq. (1), which
satisfies initial conditions

x(t0) = x′(t0) = 0, x′′(t0) = γ 6= 0. (3)

Suppose that x(t, γ) is unique with respect to initial data. Let us denote the first zero
of x(t, γ) (if it exists) by t1 (t1 > t0). The first zero t1 is a function of γ.

If, for all γ 6= 0, t1(γ) 6= b, then boundary value problem (1), (2) has no nontrivial
constant-sign solutions (has only the trivial solution).

For some equations (for example, linear equations, Emden–Fowler-type equations
[9]), it is possible to find analytic expressions for the first zero function, but mostly it is
impossible. In these cases, we can employ comparison methods.

The idea is very simple. Comparing the right-hand side functions in equations, we
can make a conclusion about the corresponding first zero functions. It is convenient to
compare with linear equations because linear equations are well researched.

The rest of the paper is organized as follows. The next section contains some prelim-
inary results. Section 3 contains nonexistence results as well as some examples.

2 Preliminary results

We start with an elementary observation.

Proposition 1. If x(t, γ) is a nontrivial solution of initial value problem (1), (3) and
x(t1, γ) = 0 (x(t, γ) 6= 0 for t ∈ (t0, t1)), then x′(t1, γ) 6= 0.

Proof. In view of assumptions on functions f and p, we get

0 >

t∫
t0

xx′′′ ds = x(t, γ)x′′(t, γ)−
t∫

t0

x′x′′ ds

= x(t, γ)x′′(t, γ)− 1

2
x′(t, γ)2 +

1

2
x′(t0, γ)

2.

If x′(t1, γ) = 0, we have the contradiction x′(t0, γ)2 < 0.

Since we want to compare nonlinear equation with linear one, let us consider auxiliary
problem for linear equation

y′′′ = kp(t)y, (4)

y(t0) = 0, y(τ1) = y′(τ1) = 0, (5)

where k > 0 and τ1 > t0 is the first conjugate point of t0 (y(t) 6= 0 for t ∈ (t0, τ1)).
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The concept of conjugate points for linear third-order equations was introduced by
Hanan in his famous work [4]. To provide the existence of τ1, we use the additional
assumption [4, Thm. 5.7] on the function p

lim inf
t→∞

(
t3p(t)

)
>

2

3
√
3
.

Note that this condition holds throughout the paper.
The first conjugate point of t0 is independent of initial data at the point t0, but τ1

depends on k or τ1 = τ1(k). Moreover, τ1 is a decreasing function of k.
Let us denote solution of auxiliary problem (4), (5) by y(t).
The next proposition plays an important role in the proofs of our main results.

Proposition 2. If x(t, γ) is a solution of initial value problem (1), (3) and y(t) is a solu-
tion of auxiliary problem (4), (5), then

x(τ1, γ) y
′′(τ1) =

τ1∫
t0

p(t)y(t)
[
k x(t, γ)− f

(
x(t, γ)

)]
dt. (6)

Proof. Multiplying Eq. (1) by y(t), Eq. (4) by x(t, γ) and adding, we get

x′′′(t, γ) y(t) + y′′′(t)x(t, γ) = p(t)y(t)
[
kx(t, γ)− f

(
x(t, γ)

)]
.

Then integrating from t0 to τ1, we obtain formula (6).

3 Main results

The next proposition is a straight consequence of formula (6).

Proposition 3. If there exists a nontrivial solution x(t, γ0) of initial value problem (1),
(3) such that t1(γ0) = τ1(k), then there exists x0 6= 0 such that kx0 = f(x0).

Proof. Since t1(γ0) = τ1(k), we have x(τ1, γ0) = 0, and in view of formula (6), we get

τ1∫
t0

p(t)y(t)
[
kx(t, γ0)− f

(
x(t, γ0)

)]
dt = 0.

Since p(t) > 0, y(t) 6= 0 for t ∈ (t0, τ1), it follows that there exists x0 6= 0 such that
kx0 − f(x0) = 0 (if not, then for all x 6= 0, kx− f(x) 6= 0, and we get the contradiction
that the integral is not equal to zero).

By the law of contraposition, we get the next corollary.

Corollary 1. If, for all x 6= 0, kx 6= f(x), then, for all nontrivial solutions x(t, γ) of
initial value problem (1), (3), t1(γ) 6= τ1(k) (t1(γ) < τ1(k) or t1(γ) > τ1(k)).
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We can formulate the last corollary in terms of solutions of boundary value prob-
lem (1), (2).

Theorem 1. If, for all x 6= 0, kx 6= f(x), then boundary value problem (1), (2) with
b = τ1(k) has no nontrivial constant-sign solutions.

Our nonexistence Theorem 1 has a simple geometrical interpretation. Employing aux-
iliary problem (4), (5), we can find k for which τ1(k) = b, then we can construct the
graph of the function f(x) and the straight line kx, and if, for all x 6= 0, the straight
line kx does not intersect the graph of f(x), then boundary value problem (1), (2) has no
nontrivial constant-sign solutions.

To illustrate the last theorem, let us consider the next example.

Example 1. Consider the problem

x′′′ = −25 arctg x, x(0) = x′(0) = 0 = x(1) (7)

and the auxiliary linear problem

y′′′ = ky, y(0) = 0 = y(1) = y′(1).

In view of τ1(k) = 1, we get k ≈ 75.8593. Thus, constructing the graphs, we get that
problem (7) has no nontrivial constant-sign solutions (see Fig. 1).

We can check this result constructing the first zero function for the problem by using
program Mathematica 7.0 (see Fig. 2).

k x

f HxL = 25 arctg x
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Figure 1. The graphs of the functions f(x) and kx.
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Figure 2. The graph of the first zero function t1(γ).
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As we can see, for every b from the interval (0, t∗), the problem has no nontrivial
constant-sign solutions.

In general, we can find intervals for b, where boundary value problem (1), (2) has
no nontrivial constant-sign solutions using formula (6). Let us consider some auxiliary
propositions.

Proposition 4. If, for all x, |f(x)| > k2|x|, then, for all nontrivial solutions x(t, γ) of
initial value problem (1), (3), t1(γ) 6 τ1(k2).

Proof. Let us suppose that there exists a nontrivial solution x(t, γ0) such that t1(γ0) >
τ1(k2). Let t1(γ0) = τ1(k3), where k3 < k2 because τ1(k) decreases in k. Then, by
Proposition 3, there exists x0 6= 0 such that k3x0 = f(x0). We get the contradiction
since, for all x, |f(x)| > k2|x|.

Proposition 5. If, for all x, |f(x)| 6 k1|x|, then, for all nontrivial solutions x(t, γ) of
initial value problem (1), (3), t1(γ) > τ1(k1).

Proof. The proof is analogous to that of Proposition 4.

Corollary 2. If, for all x,
k2|x| 6

∣∣f(x)∣∣ 6 k1|x|,

then, for all nontrivial solutions x(t, γ) of initial value problem (1), (3),

τ1(k1) 6 t1(γ) 6 τ1(k2).

We can formulate the last corollary in terms of solutions of boundary value prob-
lem (1), (2).

Theorem 2. If, for all x,
k2|x| 6

∣∣f(x)∣∣ 6 k1|x|,

then boundary value problem (1), (2) with b < τ1(k1) or b > τ1(k2) has no nontrivial
constant-sign solutions.

Remark 1. Unfortunately, we cannot use the result on the boundedness of the first zero
function (Corollary 2) to state the criterion for the existence of nontrivial constant-sign
solutions because we cannot guarantee that the range of the first zero function is interval
[τ1(k1), τ1(k2)]. As the examples show, very often the range of t1(γ) is only a subinterval
of [τ1(k1), τ1(k2)].

Example 2. Consider the problem

x′′′ = −x− sinx,

x(0) = x′(0) = 0, x′′(0) = γ.

As we can see, the graph of the function f(x) = x+ sinx lies between two straight lines
2x and 0.78x (Fig. 3). By Corollary 2, we get that the first zero function is bounded by
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Figure 3. The graph of the function f(x) = x+ sinx.
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Figure 4. The first zero function.

two constants 4.6 and 3.36, where τ1(0.78) ≈ 4.6 and τ1(2) ≈ 3.36. Constructing the
first zero function for the problem by using program Mathematica 7.0, we can make sure
that the range of t1(γ) is only a subinterval of [3.36, 4.6] (Fig. 4). So, if b < τ1(2) or
b > τ1(0.78), then (by Theorem 2) boundary value problem

x′′′ = −x− sinx,

x(0) = x′(0) = 0 = x(b)

has no nontrivial constant-sign solutions, but if, for example, b = 3.5, then the problem
has exactly two nontrivial constant-sign solutions.
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