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Abstract. The sum of symmetric three-point 1-dependent nonidentically distributed random
variables is approximated by a compound Poisson distribution. The accuracy of approximation
is estimated in the local and total variation norms. For distributions uniformly bounded from zero,
the accuracy of approximation is of the order O(n~'). In the general case of triangular arrays
of identically distributed summands, the accuracy is at least of the order O(n’l/ 2). Nonuniform
estimates are obtained for distribution functions and probabilities. The characteristic function
method is used.

Keywords: compound Poisson distribution, 1-dependent variables, total variation norm, local norm,
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1 Introduction

We consider the direct extension of 2-runs statistic to a symmetric case. Note that, due
to its explicit structure, k-runs (and, especially, 2-runs) statistic is arguably the best
investigated case of m-dependent rvs, see [2, 11, 20]. However, in the papers devoted
to discrete approximations of weakly dependent random variables (rvs), it is typical to
assume their nonnegativeness, for example, see [4, 14, 19, 20]. As far as we know, so
far there was no attempt to apply compound Poisson approximation to the sums of 1-
dependent rvs taking positive and negative values. Meanwhile, for independent rvs, it is
well-known that symmetry can considerably improve the accuracy of approximation. Our
goal is to demonstrate that similar improvement is also possible for 1-dependent rvs.

The 2-runs statistic can be expressed as a sum S = &1+ 283+ - - +£,&p 11, Where
all &; are independent Bernoulli variables. In this paper, we retain a similar structure,
replacing Bernoulli variables by symmetric three-point rvs. We use the difference of two
independent Poisson variables with the same mean for approximation. Obviously, the
corresponding rv is infinitely divisible and is a special case of compound Poisson (CP)
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rvs. Such a rv naturally occurs in various situations and its probabilities can be expressed
as modified Bessel functions of the first kind, see [9, p. 198].

The 2-runs statistic can be associated with an electric circuit of n-switches having
two positions (on and off), where current flows only if both consequent switches are
on. Similarly, we can relate our scheme to switches with three positions. For example,
imagine the game in which each player chooses between two options (say red and blue)
or refuses to play. If the player chooses the same color as previous one, casino pays some
amount to the player. If the player chooses different color from the previous player, then
the same amount is paid by the player to the casino. If the player refuses to play or the
previous player has refused to play, then no amount is paid by either side. The first choice
is done by the casino. Then S is the aggregate amount of money paid by casino to the
team of n players.

Next, we introduce some preliminary notation. Let Mz be a set of finite signed mea-
sures concentrated on the set of all integers Z. The Fourier transform of M € My is
denoted by

[ee]
Z Mk}, teR.
k=—o00
Characteristic functions and Fourier transforms are denoted by small Greek letters or the
same capital letters as their measures with additional hats, for example, F, (¢) denotes the
characteristic function of F,.
We define M ((—o0,x]) := Zfzfoo M{j}. Let I, denote the distribution concen-

trated at a point @ € R, with I = Ij. Then I,(t) = e'*® and I(t ( ) = 1. All products of
measures are defined in the convolution sense, that is, for all finite signed measures F', G

defined on the o-field B of one-dimensional Borel subsets and Borel set X
FG{X} = / F{X — 2} G{dz}.
R

If N,M € Mz, foraset A C Z, NM{A} = > 72 N{A—k}M{k} and M° = 1.
The exponential of M is given by

=1
M — exp{M} ::ZEMk‘
k=0 "

The CP distribution with compounding distribution F' is defined as

exp{\(F - 1)} = Z Gl I), A> 0.

This is a generalization of the Poisson law exp{A\(Iy — I)}, A > 0, see [3, p. 4].
In this paper, the accuracy of approximation is measured in the local, uniform (Kol-
mogorov) and total-variation norms defined by

[Mloo :=

M| =

|M i = sup |[M{(~o0,a]}|,
z€R

j=—o00
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respectively. In the proofs, we apply the following well-known relations:

MN(t) = M(t)N(t), IMN|| < [|MI[[[N]],  [MN]x < [[M]||N]xk,
IMN]|oo < M Nllo, — [M@®)] <M, exp{M}(t) = exp{M(t)}.

The next section will provide the already known results related to the approximations
of m-dependent random variables. After that, the obtained results are presented, followed
by auxiliary results and proofs.

__ To measure similarity of two rvs we need a notation for mixed centered moments. Let
EY; = EY;. Then E(Y1,Y3,...,Y}) is defined recursively by

~

k—1
E(Y1,Yz,....Ys) =EViYa - Yi = > _E(Y1,...,Y;) EYjs1 - Vi
j=1

This notation was introduced by Statulevicius [16]; see also [7] and the reference therein.

We denote by C' all positive absolute constants. The letter 6 stands for any complex
number satisfying |#| < 1. The values of C' and € can vary from line to line or even within
the same line. Sometimes we supply constants with indices.

2 Known results

CP and signed CP approximations are frequently applied in insurance models and in
limit theorems because the accuracy of such approximations can be of better order than
the limit normal distribution (see [5, 8] and the reference therein). For example, in his
seminal paper Prokhorov showed that Poisson approximation to binomial distribution can
be more accurate than the normal one (see [13]). It is also well-known that symmetry can
significantly improve the accuracy of CP approximation. Thus, two of the most general
results for sums of independent symmetric rvs state that

sup ’F"—exp{n(F—I)}‘K<Cn_1/2, (1
FeF,

sup |F™ — exp{n(F — I)}|K <Cnt. (2)
FeFy

Here the first supremum is taken over all symmetric distributions F;, and the second
supremum is taken over all distributions with nonnegative characteristic functions F .
Estimates (1) and (2) were proved respectively by Zaitsev and Arak, see [1].

Additional moment assumptions are needed if one wants to replace the Kolmogorov
norm by a stronger total variation norm in (2).

The sum of m-dependent rvs have been thoroughly approximated by a normal dis-
tribution (see, for example, [15]). It has properties similar to the well-known Berry—
Essen theorem, i.e., in the scheme of sequences, the accuracy of approximation in the
Kolmogorov norm is of the order O(n’l/ 2). Note that a scheme of sequences refers to
iid rvs &1, &9, . . ., &, having distribution F', where the characteristics of F' do not depend
on n.
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In principle, research can be extended to the symmetric case. However, not much can
be said about the accuracy of normal approximation if we consider the triangular arrays
(when all parameters can depend on the number of summands n, i.e., for each n, we
consider different sets of rvs &1, Eon, - - -, Enn) and if we want to use the total variation
norm which is stronger than the Kolmogorov norm.

We are aware about just few results related to Poisson-type approximations to sym-
metric weakly dependent rvs. The sums of symmetric Markov-dependent rvs with three
states are approximated by the CP distribution in [18]. A more general nonsymmetric
case is analyzed in [10]. It was proved that, under the assumption on the smallness of
transition probabilities, some analogue of (2) holds for the total variation metric. Notably
the symmetrized Pélya—Aeppli distribution is used as CP approximation.

Our aim is to prove similar results for the triangular array of symmetric 1-dependent
rvs. As we already mentioned in Introduction, we consider the extension of 2-runs statistic
to a symmetric case. Our assumptions are formulated more precisely in the next section.

3 Setting

We assume that

e & (j =1,2,...) are independent (not necessarily identically distributed) symmet-
ricrvs with P(§; = —1) = p;, P(§; =0) =1 —2pj,and P(§; = 1) = p;.
o Xj=¢&&+1, S =X1+ + X

All results are proved under assumption

= < —. 3
pi=maxp; S o7 (3)
Observe that, in general, we consider triangular arrays, that is, p;, j = 1,2,..., can
depend on n. Further on, we also use the following notations:

e 02 =Vars,,

e [, is a distribution of S,,,

-1

o &= (Pe-1PkPrr1 + (PrPr+1)?),

oV, =eXi—1 2=¢ll -1, z=¢71"-1,

o G = HZ:l Gk, Gk = eXp{kapk+1(Il +1_4— 2])}

Notice that Gj,(t) = exp{2piprs1(e™ — 1)} exp{2prprs1(e™ — 1)}, that is, Gy,
is the distribution of the difference of two independent Poisson rvs with the same mean
2Dk Pk+1-

It is obvious that previously defined X; are 1-dependent rvs because X ; depends only
on X;_; and X, forall j > 2. We recall that a sequence of rvs Zy,, k = 1,. .., is called
m-dependent if, for 1 < s <t < o0, t — s > m, the o-algebras generated by 71, ..., Z;
and by Z;, Zy+1, . .. are independent.

Observe that the sum of m-dependent rvs can be easily reduced to the sum of 1-de-
pendent rvs by grouping consecutive summands. The characteristic function method is

http://www.journals.vu.lt/nonlinear-analysis
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used in the proofs. We apply Heinrich’s adaptation of the characteristic function method
for weakly dependent random variables (see [6, 7], also [3, Chap. 13]).

4 Results

The following theorem is the main result of this paper. It includes the general approxima-
tion result for F;,.

Theorem 1. Let condition (3) be satisfied. Then, foralln =2,3...,
| Fn — Glloo < Cemin(0_5,1), I, — G| < Camin(0_4,l). 4)

Since |F,, — G|k < ||F,, — G|, the accuracy in Kolmogorov norm is at least as in (4).
Corollary 1. If0 < 0 < pr < p< 1/24 forallk = 1,2,...,n and for some p, p, then

P’ 3
|F — G < C’mln<na4,np )
Corollary 2. If pp, =p > O0forallk =1,2,...,n, then
1
|E, — G < Cmin(,an).
np

It can be clearly seen that, in the case of identically distributed rvs with p, = p > 0,
the accuracy of approximation is not worse than of the order O((np)~!). The same accu-
racy can be expected from the symmetric case of the central limit theorem. However, our
estimate holds for a stronger total variation metric. In the case of identically distributed
rvs, the accuracy of approximation is at least of the order O(n’l/ 2), which is achieved
when p = O(n=1/?).

Finally, nonuniform estimates are obtained for point estimates and distribution func-
tions.

Theorem 2. Letk € Z, k > 1. Then foralln =23 ...,

(1 + E') |Fo{k} — G{k}| < Cemin(c7°,1),

(1+ B 17 (-o0.) = G50, kD] < Comin(o~, 1)

g

The remaining part of the paper is devoted to the proofs.

5 Auxiliary results

5.1 Inversion formulas

In this paper, the characteristic function method is used, i.e., the differences between
distributions (measures) are estimated through the differences of their characteristic func-
tions. The following lemma contains the inversion formulas used to estimate measures
from their Fourier transforms.
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Lemma 1. Let M € My. Then

[ M)

Mk < — [ =
M e 27r e 1]

dt, &)

[M]oo < f/ t)| dt. (6)
If, in addition, ), , |k||M{k}| < oo, then, for any a € R, b > 0,
) 1/2
M| < (1+br) 1”( /\M + 53l (7N (1)) ] dt) (7

and

|k — al|M{k}| < /y e )| dt, 8)

1 M(t) —ita '
|k—a|!M<k>\<%/](e_u_1e )

Observe that (5) and (9) are trivial if integrals on the right-hand side are infinite.
All inequalities are well-known and can be found in [3, Sects. 6.1, 6.2]; see, also [12]
and [17, Lemma 3.3].

dt. 9)

5.2 Heinrich’s lemma

In this paper, Heinrich’s lemma is used to derive the characteristic function of the sum of
weakly dependent random variables.

Lemma 2. Let X1, Xo, ..., Xy be 1-dependent real variables, S, = X1+ Xo+-- -+ X,
and let t be such that

max (E elt Xk 1|2)1/2 < 1 (10)

1<k<n

(=)

Then the following representation holds: E e*5n = ¢ (t)pa(t) - - - 0, (k). Here p1(t) =
Ec"™ and, fork=2,...,n

orl) = 1+ B (1) 4 3 BE =D, (@00 2 1), (@ 1)
= ©i () pjt1(t) - pr-1(t)
Moreover, for j = 1,2,...,n,
lg;(t) —Ee"X| < 61211%1]3 et Xr — 1|2.
Proof. The proof of Lemma 2 can be found in [6]; see also [3, pp. 208-210]. O
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5.3 Explicit expression for E(Y},Y3,...,Y}) and E(Yh Y2,...,Yk)

In the following two lemmas, we are going to derive the explicit expressions for EY; x
Yy Y, and EY;Y5 - - - Yy so that the expression of F),(t) can be later simplified.

Lemma 3. Foreach k € N,

EY1Ys-- Vi =2pipa - prir(z + 2)F = 2pipa o (DF(22)F. (1)
Here rvs Y1,Y5, ... are defined in Section 3.

Proof. The equality can be proved by induction. When k = 1,

EY; =E (% - 1) =p,E ("> —1) + p E (e7% — 1)
= p1(p2z + p2Z) + p1(p2Z + paz) = 2p1p2(2 + 2).
Assume that (11) equation is true for £ € N. We must prove that the formula is true for
k + 1. Indeed,
EYiYs - Y
=EYi- Vi (" — 1)ppia + EY1 - Yi (71 — 1) ppy
=EY;---Yi1 (eitfkékﬂ _ 1) (eitfk+1 _ 1)pk+2
+EY;--- Y,y (eit£k5k+1 - 1) (efit”t’ﬂ+1 — l)pk+2
=EY, - Y1 (eitg’“ — 1) 2Pkt 1Pk+2
+EY; - Y1 (e — 1) Zppi1ppye
+EY; - Vi1 (€% — 1) Zppi1prse
+EY; Y1 (e — 1) zppi1pro
= prr1Prr2(z + 2) (BYy -+ Yoy (% — 1)
+EY; - Yq (e — 1))

= pk-‘r?(z + Z)Ei/l c 'Yk = 2p1 .- 'pk+1pk+2(2 + 2)k+1.

It can be easily checked that

—zz=—("—1)(eT"—1) =2+ +e =2+ 2 O

Lemmad. Foreachk € N, k > 2,

~

E(Y1,Ys,...,Ys)
=2p1 -+ prpa (1= 2p2) (1 = 2p3) -+ (1 — 2py) (2 + 2)*
= 2p1 - pra (1= 2p2) (1 = 2p3) - (1 = 2pg) (1) (22)". (12)
Here rvs Y1, Yo, ... are defined in Section 3.
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Proof. We apply induction. When k = 2, from Lemma 3 we get
E(Y;,Y:) =EY)Y, ~EY,EY,
= 2p1paps(z + 2)% — 2p1pa(z + 2) - 2pap3(z + 2)
= 2p1paps(1 — 2p2) (2 + 2)%
Assume that (12) equation is true for k£ € N, k£ > 2. Also notice that
EY; =EY; = 2p1po(z + 2).
Using Lemma 3 and induction hypothesis, it can be proved that (12) is true for k + 1:

E(Y1,Ys,..., Y1)
= EY1"'Yk+1 —EYiEYs-- Yy — E(Y1,Y2)EYs - Yiy,

—ZEYl,..., YEYj1 - Vi

= 2P1 copppa(z 4+ 2T = 2pipa(2 4 2) - 2pa - prya(z + 2)F
— 2P1p2p3(1 —2p2) (2 + 2)% - 2p3 -+ - prga(z + 2)F 1

- Z 2p1 -+ pjr (1= 2p2) -+ (1= 2p;) (2 + 2)2pj 1 - prya(z + 2)F 7

= 2191 ez + 2)F !

k

X (1 —2py — 2(1 — 2p2)ps — Y 2pj41(1 — 2p2) -+ (1 —2pj)> =
j=3

=2p1 -+ prgalz + 2)"TH (1 = 2pa) (1 — 2p3) -+ (1 — 2pptr). O

54 Recursive formula for F},(t)

Now we can easily obtain the characteristic function of the sum of 1-dependent symmetric
three-point random variables.

Lemma 5. The following representation holds for the characteristic function of S,, de-
fined in Section 3: R 4
Fu(t) = Ee™ = o1(t)pa(t) -+ pul(t).

Here p1(t) = 14 2p1pa(z + 2) and, fork =2, ...,n,
er(t) =1+ 2PkPk+1(Z +Z)

20ipj+1 - Pr1(1 = 2pjg1) -+ (1= 2pg) (2 + 2)F—7F1
+Z 0i(t)pjp1(t) - or_1(t) :

j=1

http://www.journals.vu.lt/nonlinear-analysis
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Proof. First, note that if p < 1/24, then (10) is satisfied for all ¢. Indeed,

eltéréht1 _ |

E|e — 1) =B ?

= et — 1|22pkpk+1 + e — 1|22Pkpk+1
< 2f4p* <22 -4 % < %.
Hence,
e, (Bl 1) <
It remains to apply Lemmas 2, 3, and 4. O

5.5 Estimates for @ (t)

Now ¢ (t) can be estimated.

Lemma 6. Forallt, k =2,...,n, n > 3, the following estimates hold:

1 48
e =1 <3 < a3
o (t) = 1= 2prpry1 (2 + 2)| < 3|z pr—1PkPrs1, (14)
[or(0)] < 1= Gprpsn sin? 3. (1)
Here functions ¢y (t) are defined in Lemma 5.
Proof. We prove (13) by induction. Notice that |z + z| = | — 22| = |2|?> < 4. When

k=2,

2p1pap3(1 — 2p2) (2 + 2)?
14 2p1p2(2 + 2)

|pa(t) — 1] = 2paps|(z + 2)| +

2p3|2|* 24
2|12 212 2012 212
< 2p7[2] +W<2p |2 + P |27 < 3p72["
Assume that |¢;(t) — 1| < 3p?|z|? is correct for j = 3,...,k — 1. Taking into account
the trivial estimate |z| < 2, we obtain that, forall j = 3,...,k — 1,
12
212
|05(t) = 1] < 3p*|2f* < BYPR
12 47
a0 =L — (L y(0) | > 1- L~ s8] 31— 1 = 4T
1 48
loj(t)] 4T
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and, using the expression of ((t) from Lemma 5, we get

lo(t) — 1| < 2pepria|2)?

k—1 .
3 2 P (L 2py0) (1L 20 20
s OMesa (0] Tera ()
k—1

asplz|>\ "™
< 2p2|2|2 + 2p2|2‘22 < p|Z| )
j=1

j=1
47

48 - 4 48 -4\?
<2p2|z|2{1+47_24+<47_24> +}

< 3?2

Inequality (14) is proved analogously. When k = 2,

|g02(t) —1—2pops(z + 2)|

_ 2p1paps(1 — 2p2) (2 + 2)?
1 + 2p1p2(z + 5)

2 4
1—8p2 |z p1paps

< 2|z|*p1p2ps.

Assume that |, (t) — 1 —2p;pj+1(2+2)| < 2|z|*pj—1pjpj+1 holdsforj = 3,... k—1.
Then

lor(t) = 1 = 2prprsr(z + 2)|

k-1 »
<Y 2ppj1 - Pepr (1= 2pjg1) -+ (1 = 2pg) 22T HD)
ot o Ollj+1 ()] [or—1(t)]

k-1 g\ Lt
< Z 2p;pjs1 - Prya|2PFTITY <47)
=1

47 47

j=1

4g K=l 7 g\ kim1
< 2|Z|4Pk—1pkpk+1z7 Z <47>
j=1

< 3|2 Pr—1PkPr41-

k—1 k—j—1
48 48p|z|? J
< 22| Pr—1PkPR+1 = E < 12 )

The proof of (15) requires the application of estimate (14):

| or ()] = [1+ 2Prprsr (= + 2) + i) — 1 = 2ppraa (2 + 2)|
< |1 + 2pkpr+1(z + 5)‘ + 3|Z‘4Pk—1pkpk+1
<1+ 2pkpr41 (2 + 2)| + 0.5 2 *prpra.

http://www.journals.vu.lt/nonlinear-analysis
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Since z + z = —4sin?(t/2) and |z|? = 4sin?(¢/2), we get

2

N | =+

. ot .
lor(t)] < ‘1 — 8PkPk+15in’ 2‘ + 2pgpr41 sin

<1 —6prpr+1 sin?

N |+

Since §; (j = 1,2, ...) are independent, observe that

n

ES, =Y B =) EGEE =0,

j=1 j=1
and
o?=VarS, => E(&)? =Y BEES  =4) pipji.
j=1 j=1 j=1
Hence,

n
~ t 3 t
|Fn(t)| < I | exp{kapkH sin? 2} < exp{2a2 sin? 2}.
k=1

5.6 Estimates for ¢} ()

To approximate lattice variables in the total variation metric, estimates for the derivatives
of characteristic functions are needed.

Lemma 7. Forallt, k =2,...,n,n > 3, the following estimates hold:
|0k ()| < 6prprs1lzl, 0% (t) = 2papr41(2 + 2)'| < 12pk—1pepisl2)’,
_ _ !/
0% (t) = 2ppi41(2 + 2)" — 2pr—_1prprsr (1 — 2pi) ((z + 2)°) |

< 2pe—1prpit 2"
Here functions oy (t) are defined in Lemma 5.
Proof. Observe that
Zl=1,  ZI=1,  [e+2)]<2, |[((z+2)?)] <4}
The first two estimates follow from the last one. Indeed,
|23 (t) = 2prpria (= + 2)|
< 2P 1Pk |2+ |20 1pkpra (1 — 2p1) (2 + 2)2)'|
< 2pk—1PkPrt1 2" + 2Pk 1PkPR41 - 42
< 12p 1papira|z;
|0k ()] < 12pr_1prprsr |z + 12pkprs1 (2 + 2)'|
< 6pgprlz.
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Therefore, it suffices to prove the last estimate. We use induction. It is easy to check that
it holds for k = 2:

|05 (t) — 2p2ps (2 + 2) — 2p1papa(1 — 2po) (2 + 2)2)|

_ ’ <2p1p2p3(1 —2p2)(2 + 2)°

)l — 2p1pap3(1 — 2p2) ((2 + 2)2)/‘

p1(t)
< 2pipap “ijl(j; y _ “”1(”;(;(; D (4 z>2>’]
(2 + 22l — 1] (= + 2l (1)
S 2p1p2p3( o (t)] HEPNOTE )
AP 2ppa(z + 2] | 1=+ 2)2]1201pa(z + 2]
<2ppop?’(|1+2p1202(2:+z)| 11+ 2p1pa(z + 2))2 )

< 0.09p1p2ps|z|*.

Next, assume that it also holds for j = 3,...,k — 1. Then

2px—1prprr1 (1 — 2pg) (2 + 5)2>/
or-1(t)

() — i (= 1 2) — (

— o _
Z k—j+1)p; pey1(1—2pjp1) - (1 — 2pi) (2 + 2)" I (2 + 2)/

@i (t) - pr-1(t)

- i 2p; -+ pen (1= 2pj01) -+ (1= 2p) (2 + 2)F 7 8 (1)
(1) pra (D) om(1)

m=j

J=1

— 48 k—j—2
<2 Apeoapipri g |z+z|2< )Z j+1< )

1 48 = 48\ "2
213
+ 2pk-1PkPr+1 54 |2 + 2] <47> 6pkpk+1|z|z —J <4P47>

< dpp_ 1pkpk+124 <) [22 +3) (47)j+;§(j+2)<2>3

< 2pi—1Pkpr+1|2]*

||

The last inequality has been obtained using the fact that, for 0 < x < 1,

ij:l—x’ Z]x]: l—x)

http://www.journals.vu.lt/nonlinear-analysis
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To complete the proof, we observe that

(o) -]

2pr—1PkPr+1(1 — 2py)
1(z + 2)?| | _1 (2)]

[((z +2))|len—1() — 1
< 2Pk—1PkPk+1 2Pk—1PkPk+1
' e (D) T e )P
< 0.2pg—1prpralzl*. 0
5.7 Closeness of F,(t) and G(t)
Now we can approximate F, n(t). The well-known inequalities are used:
re " <1, x>0 l+z<e”, zeR;

n n n j—1 n
[Tes-TIGiO] <D les) =GO T lex®] T 1G@)]-
j=1 j=1 j=1 k=1 k=j+1

Observe that G(t) = [[r_, Gk (t) and
. : _ .ot
Gi(t) = exp{Zpk.pk_,_l (elt et~ 2)} = eXp{Spkpk+1 sin? 2}.
Lemma 8. Foralln > 3, |t| < 7w, we have
o A cat 2. 21 . €
|Fo(t) — G(t)| < Cesin® - expq —Co?sin” = ¢ < Cemin| —, 1),
2 2 ot
~ ~ t 4
|(Fa(t) — G(1))'| < Cesin® 3 exp{002 sin? 2} < Ce min(i’, 1>.
o
Proof. We know that, for any finite signed measure M and s € Z,
M|+ exp{lIM][}O, IO <1.  (16)

>\ MY 1
epMy =143 M1
= 4! (s+ 1)

The analogue of (16) for Fourier transforms gives us
t

Gi(t) =1+ 2pipis1 (2 + 2) + CO(piprs1)? sin® >
- ot
G (t) = 2pgprs1(z + 2)" + Cﬁ(pkpkH)Q sin® 7

From Lemma 6 it follows that

lor(t) — @k(t)| < |en(t) = 1 = 2ppprs1(z + 2)|

+|Gr(t) =1 — 2pepria (2 + 2)|
4 9 . g4t
< 3|2 pr—1PkPr+1 + C(Prprs1)” sin >
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and hence

J
n j—1 +
~ o
< Z EAGEIEAGIN (1 — 6pkPry1 sin 2)
Jj=1 k=1
- t

X H exp{8pkpk+1 sin? 2}

k=j+1
n

Z 1210 | - Py —6prp 51112E
1 Y kPk+1 5

J=1 6pJpJ+1 sin §

t 3 t
< Cesin? 3 exp{—202 sin? 2}

1
< Cemin <47 1).
o

Similarly, from Lemma 7 it follows that

|04 (t) = Gi(t)| < |k () — 2prprsa (= + 2)'|

+ |G (t) — 2pkprra(z + 2)|

t
< 12pg—1pkpr1 |2 + C(prpr—1)? sin® 3

and hence

n n
t t
<C Z 6prprs1|zesin? 3 exp{z —6p Py sin’ 2}

k=1 —1
- t
+ C}; (Pr—1PkPr+1 + (Pr—1pk)?) sin® 5

- 5 1
X exp{ Z S8PkDk+1 sin? 5 }

k=1

< Cesin® exp{ Co?sin® }

C’&tmm( ) O
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6 Proofs of the main results

Proof of Theorem 1. For the proof the following inequality is used:

/

k
t
exp{—2)\sin2 2} dt < C(RA"FFD/2 0 =0,1,2,..., A>0.

.t
sin —
2

Using the inversion formula (6) and Lemma 8, we get
B2~ Gl < 5= [ 1Bt~ Glo)| e
27
cal 2 .2t
< Cesin 3 exps —Co” sin 3 d¢

1
< Csmin(s, 1).
o

Applying the inversion formula (7) with a = 0, b = 1 and Lemma 8, we get

g 1/2
1F, — Gl < (1+m)H? (2177 / |Fat) = G + | (Fu(t) - @(t))'lzdt>

1 t AR
< (1+m)/? (27r/ [(C’ssin42exp{—002sin22}>

2
+ <C’€ sin® ;exp{—C’U2 sin? ;}) ] dt)

1
< C’smin(4,1>. O
o

1/2

Proof of Theorem 2. Applying the inversion formula (8) with a = 0 and Lemma 8, we
get

1 [~ S
1) - Gk} < o [ [(Futt) - Glo)'| e
/ .3t 2.2t
< C | esin §exp —Co*sin 3 dt
. 1
§C’8m1n(4,1>.
g
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Combining the obtained nonuniform estimate with the local norm estimate we get
|Fo{k} — G{k}| < ||F) — Gllos < Cemi 1,
n X n oo XX £min 0_5 s .
Therefore, we can write the following nonuniform estimate:
|k| (1
1+— |F{k} — G{k}| < Cemin ;,1 .

The inversion formula (9) with a = 0 leads to

|k”Fn((_oov k]) - G((—OO, k])’

)
/‘ 71 dt—s—/’ OGP

e 1t 1)2
C/esm L exp{—Co?sin® & +C/Esm L exp{—Co?sin’ Q}dt

2| sin 5| 4sin® %

dt

X

1
< Csmin(S, 1>.
o

Since
| Fo (00, k]) = G((—00, k])| < |F = Glx < [|F = G|
<C5min<14,1>7
o

the nonuniform estimate can be expressed as

(1 - f') | Fp (=00, k]) = G((—00, k])| < Camin<014, 1). O
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