
https://doi.org/10.15388/namc.2020.25.17203
Nonlinear Analysis: Modelling and Control, Vol. 25, No. 4, 598–617

eISSN: 2335-8963
ISSN: 1392-5113

New extended generalized Kudryashov method for
solving three nonlinear partial differential equations

Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar

Mathematics Department, Faculty of Science, Zagazig University,
Zagazig, Egypt
eme_zayed@yahoo.com; r.shohib@yahoo.com;
mohamed.alngar2010@yahoo.com

Received: February 18, 2019 / Revised: July 23, 2019 / Published online: July 1, 2020

Abstract. New extended generalized Kudryashov method is proposed in this paper for the first
time. Many solitons and other solutions of three nonlinear partial differential equations (PDEs),
namely, the (1+1)-dimensional improved perturbed nonlinear Schrödinger equation with anti-cubic
nonlinearity, the (2+1)-dimensional Davey–Sterwatson (DS) equation and the (3+1)-dimensional
modified Zakharov–Kuznetsov (mZK) equation of ion-acoustic waves in a magnetized plasma have
been presented. Comparing our new results with the well-known results are given. Our results in
this article emphasize that the used method gives a vast applicability for handling other nonlinear
partial differential equations in mathematical physics.

Keywords: solitary solutions, a new extended generalized Kudryashov method, the improved
perturbed nonlinear Schrödinger equation with anti-cubic nonlinearity, Davey–Sterwatson (DS)
equation, the modified Zakharov–Kuznetsov (mZK) equation of ion-acoustic waves in a magnetized
plasma.

1 Introduction

It is well known that nonlinear complex physical phenomena are related to nonlinear
partial differential equations (NLPDEs), which are implicated in many fields from physics
to biology, chemistry, mechanics, engineering, etc. As mathematical models of the phe-
nomena, the investigations of exact solutions of NLPDEs will help one to understand these
phenomena better. In the past several decades, many significant methods for obtaining
exact solutions of NLPDEs have been showed, such as the sine-cosine method [3, 5, 18,
44], the modified simple equation method [2,13,27,28,40,43], the soliton ansatz method
[6–8, 15, 16, 24, 32], the (G′/G)-expansion method [4, 12, 20, 21, 42], the generalized
Kudryashov method [25,30,41], the modified transformed rational function method [38],
the Lie symmetry method [29,34], the travelling wave hypothesis [14,33,39], the extended
trial equation method [9–11, 22, 23, 31] and so on.

c© 2020 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.

mailto:eme_zayed@yahoo.com
mailto:r.shohib@yahoo.com
mailto:mohamed.alngar2010@yahoo.com
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


New extended generalized Kudryashov method 599

The objective of this article is to use a new extended generalized Kudryashov method,
for the first time, to construct new exact solutions of the following three nonlinear partial
differential equations (PDEs).

(I) The (1+1)-dimensional improved perturbed nonlinear Schrödinger equation with
anti-cubic nonlinearity [17]:

iEt + aExt + bExx +

(
b1
|E|4

+ b2|E|2 + b3|E|4
)
E

= i
[
αEx + λ(|E|2E)x + υ1

(
|E|2

)
x
E
]
, (1)

where i =
√
−1, a, b, b1, b2, b3, α, λ and υ1 are real constants. The independent variables

x and t represent spatial and temporal variables, respectively. The dependent variable
E(x, t) is the complex valued wave profile for the (1 + 1)-dimensional improved per-
turbed nonlinear Schrödinger equation with anti-cubic nonlinearity. Here the coefficients
a and b represent the improved term that introduces stability to the NLS equation and the
usual group velocity dispersion (GVD), respectively. The nonlinearities stem out from
the coefficients of bj for j = 1, 2, 3, where b1 gives the effect of anti-cubic nonlinearity,
b2 is the coefficient of Kerr law nonlinearity, and b3 is the coefficient of pseudo-quintic
nonlinearity, respectively. The parameters α and λ represent the intermodal dispersion and
the self-steepening perturbation term, respectively. Finally, υ1 is the nonlinear dispersion
coefficient. If b1 = 0, there is no anti-cubic nonlinearity. which has been discussed in [17]
using the soliton ansatz method.

(II) The (2 + 1)-dimensional Davey–Sterwatson (DS) equation [19, 26, 35, 45]:

iut +
1

2
σ2
(
uxx + σ2uyy

)
+ λ|u|2u− uvx = 0,

vxx − σ2vyy − 2λ
(
|u|2
)
x
= 0,

(2)

where λ is a real constant. The case σ = 1 is called the DS-I equation, while σ = i
is the DS-II equation. The parameter λ characterizes the focusing or defocusing case.
The Davey–Stewartson I and II are two well-known examples of integrable equations in
two space dimensions, which arise as higher dimensional generalizations of the nonlinear
Schrodinger (NLS) equation [19]. They appear in many applications, for example, in
the description of gravity–capillarity surface wave packets in the limit of the shallow
water. Davey and Stewartson first derived their model in the context of water waves from
purely physical considerations. In the context, u(x, y, t) is the amplitude of a surface
wave packet, while v(x, y) represents the velocity potential of the mean flow interacting
with the surface wave [19]. Equation (2) has been discussed in [35] using the numerical
schemes method, in [45] – using the homotopy perturbation method, in [19] – using the
multiple scales method and in [26] – using the first-integral method.

(III) The (3 + 1)-dimensional modified ZK equation of ion-acoustic waves in a mag-
netized plasma [36]:

16

(
∂q

∂t
− c ∂q

∂x

)
+ 30q1/2

∂q

∂x
+
∂3q

∂x3
+

∂

∂x

(
∂2

∂y2
+

∂2

∂z2

)
q = 0, (3)
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where c is a positive real constant. Equation (3) has been discussed by Munro and Parkes
[36], where they showed that if the electrons are nonisothermal, then the govering equa-
tion of the ZK equation is a modified form refereed to as the mZK equation (3), also they
showed that the reductive perturbation method leads to a modified Zakharov–Kuznetsov
(mZK) equation.

This article is organised as follows: In Section 2, we give the description of a new
extended generalized Kudryashov method for the first time. In Sections 3, 4 and 5, we
solve Eqs. (1), (2) and (3) using the proposed method described in Section 2. In Section 6,
the graphical representations for some solutions of Eqs. (1), (2) and (3) are plotted. In
Sections 7, conclusions are illustrated. To our knowledge, Eqs. (1), (2) and (3) are not
discussed before using the proposed method obtained in the next section.

2 Description of a new extended generalized Kudryashov method

Consider the following nonlinear PDE:

P (u, ux, uy, uz, ut, uxx, uyy, uzz, uxy, utt, . . . ) = 0, (4)

where P is a polynomial in u and its partial derivatives in which the highest-order deriva-
tives and the nonlinear terms are involved. According to the well-known generalized
Kudryashov method [25, 30, 41] and with reference to [38], we can propose the main
steps of a new extended generalized Kudryashov method for the first time as follows:

Step 1. We use the traveling wave transformation

u(x, y, z, t) = u(ξ), ξ = l1x+ l2y + l3z − l4t,

where l1, l2, l3 and l4 are a nonzero constants, to reduce Eq. (4) to the following nonlinear
ordinary differential equation (ODE):

H(u, u′, u′′, . . . ) = 0, (5)

where H is a polynomial in u(ξ) and its total derivatives u′(ξ), u′′(ξ) and so on, where
′ = d/dξ.

Step 2. We assume that the formal solution of the ODE (5) can be written in the
following rational form:

u(ξ) =

∑s
i=0 αiQ

i(ξ)∑m
j=0 βjQ

j(ξ)
=
A[Q(ξ)]

B[Q(ξ)]
, (6)

where A[Q(ξ)]=
∑s
i=0 αiQ

i(ξ) and B[Q(ξ)]=
∑m
j=0 βjQ

j(ξ) such that αs and βm 6=0
and

Q(ξ) =

[
1

1± expa(pξ)

]1/p
, (7)
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where expa(pξ) = apξ and p is a positive integer. The function Q is the solution of the
first-order differential equation

Q′(ξ) =
[
Qp+1(ξ)−Q(ξ)

]
ln a, 0 < a 6= 1. (8)

From (6) and (8) we have

u′(ξ) = Q
(
Qp − 1

)[A′B −AB′
B2

]
ln a,

u′′(ξ) = Q
(
Qp − 1

)[
(p+ 1)Qp − 1

][A′B −AB′
B2

]
ln2a

+Q2
(
Qp − 1

)2[B(A′′B −AB′′)− 2A′B′B + 2AB′2

B3

]
ln2a,

(9)

and so on.

Step 3. We determine the positive integers values m and s in (6) by using the homo-
geneous balance method as follows: If D(u) = s −m,D(u′) = s −m + p,D(u′′) =
s−m+ 2p, then we have

D
[
uru(q)

]
= (s−m)(r + 1) + pq. (10)

Step 4. We substitute (6), (8) and (9) into Eq. (5) and equate all the coefficients of Qi

(i = 0, 1, 2, . . . ) to zero. We obtain a system of algebraic equations, which can be solved
using the Maple, to find the αi (i = 0, 1, . . . , s), βj (j = 0, 1, . . . ,m), l1, l2, l3 and l4.
Consequently, we can get the exact solutions of Eq. (4).

The obtained solutions will be depended on the symmetrical hyperbolic Fibonacci
functions given in [1] and [37]. The symmetrical Fibonacci sine, cosine, tangent and
cotangent functions are defined as

sFs(ξ) =
aξ − a−ξ√

5
, cFs(ξ) =

aξ + a−ξ√
5

,

(11)

tanFs(ξ) =
aξ − a−ξ

aξ + a−ξ
, cotFs(ξ) =

aξ + a−ξ

aξ − a−ξ
,

sFs(ξ) =
2√
5
sh[ξ ln a], cFs(ξ) =

2√
5

ch[ξ ln a],

tanFs(ξ) = tanh[ξ ln a], cotFs(ξ) = coth[ξ ln a].

3 On solving Eq. (1)(1)(1) using the new extended generalized Kudryashov
method

In this section, we use the above method describing in Section 2 for solving Eq. (1). To
this aim, we assume that Eq. (1) has the formal solution

E(x, t) = ψ(ξ)ei[χ(ξ)−ωt], ξ = kx− εt, (12)
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where ψ(ξ) and χ(ξ) are real functions of ξ, while ω, k and ε are real constants. Substi-
tuting (12) into Eq. (1) and separating the real and the imaginary parts, we have the two
nonlinear ODEs:

(ε+ akω + αk)χ′ψ + ωψ + b1ψ
−3 + b2ψ

3 + b3ψ
5 + k(bk − aε)ψ′′

− k(bk − aε)χ′2ψ + kλχ′ψ3 = 0 (13)

and
−(ε+ αk + akω)ψ′ + 2k(bk − aε)χ′ψ′ + k(bk − aε)χ′′ψ
− k[3λ+ 2υ1]ψ

2ψ′ = 0. (14)

To solve the above coupled pair of Eqs. (13) and (14), we introduce the ansatz:

χ′(ξ) = βψ2(ξ) + γ, (15)

where β and γ are constants. Inserting (15) into Eq. (14), we obtain

β =
3λ+ 2υ1
4(kb− aε)

and γ =
ε+ αk + akω

2k(bk − aε)
. (16)

Substituting (15) along with (16) into Eq. (13), we have the nonlinear ODE

ψ3ψ′′ +A1 +A2ψ
4 +A3ψ

6 +A4ψ
8 = 0, (17)

where the coefficients A1, A2, A3 and A4 are given by

A1 =
b1

k(bk − aε)
, A2 =

(ε+ αk + akω)2 + 4kω(bk − aε)
4k2(bk − aε)2

,

A3 =
2b2(bk − aε) + λ(ε+ αk + akω)

2k(bk − aε)2
,

A4 =
16b3(bk − aε)− k(3λ+ 2υ1)

2 + 4kλ(3λ+ 2υ1)

16k(bk − aε)2
,

where k(bk − aε) 6= 0. Setting
ψ2(ξ) = g(ξ), (18)

where g(ξ) is a positive function of ξ. Substituting (18) into (17), we have the new
equation

2gg′′ − g′2 + 4
(
A1 +A2g

2 +A3g
3 +A4g

4
)
= 0. (19)

By balancing gg′′ with g4 in (19), the following formula is obtained:

2(s−m) + 2p = 4(s−m) =⇒ s = m+ p.

Let us now discuss the following cases.
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Case 1. If we choose p = 1 and m = 1, then s = 2. Thus, we deduce from (6) that

ψ(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ)

β0 + β1Q(ξ)
, (20)

where α0, α1, α2, β0 and β1 are real constants to be determined such that α2 and β1 6= 0.
Substituting (20) along with (8) into Eq. (19), collecting the coefficients of each power of
Qi (i = 0, 1, . . . , 8) and setting each of these coefficients to zero, we obtain a system of
algebraic equations, which can be solved using Maple, we obtain the following results.

Result 1.

A1 =
α2
0 ln

2 å (β2
1 − 2β0β1 + β2

0)

4β2
0β

2
1

, A2 =
− ln2a (β2

1 − 6β0β1 + 6β2
0)

4β2
1

,

A3 =
β2
0 ln

2a (2β0 − β1)
α0β2

1

, A4 =
−3β4

0 ln
2a

4α2
0β

2
1

,

β0 = β0, β1 = β1, α0 = α0, α1 = 0, α2 =
−β2

1α0

β2
0

.

(21)

In this case, from (7), (12), (18), (20) and (21) we deduce that Eq. (1) has the solution

E(x, t) =

{
α0

β0
− α0β1

β2
0

1

1± aξ

}1/2

e(i[χ(ξ)−ωt]). (22)

From (22) we deduce that Eq. (1) has the dark soliton solution

E(x, t) =

{
α0

β0
− α0β1

2β2
0

[
1− tanh

ξ ln a

2

]}1/2

e(i[χ(ξ)−ωt])

and the singular soliton solution

E(x, t) =

{
α0

β0
− α0β1

2β2
0

[
1− coth

ξ ln a

2

]}1/2

e(i[χ(ξ)−ωt]),

provided α0β0 > 0 and α0β1 < 0.

Result 2.

A1 =
−3[9A4

3 + 8A4(2A4 ln
2a+ 3A2

3) ln
2a]

4096A3
4

, A2 =
9A2

3 + 4A4 ln
2a

32A4
,

α0 = 0, α1 =
−β1[2 ln a

√
−3A4 + 3A3]

8A4
, α2 =

β1 ln a
√
−3A4

2A4
,

β0 = 0, β1 = β1,

(23)

provided A4 < 0. In this case, from (7), (12), (18), (20) and (23) we deduce that Eq. (1)
has the solution

E(x, t) =

{
−3A3

8A4
+

ln a
√
−3A4

4A4

[
1∓ aξ

1± aξ

]}1/2

e(i[χ(ξ)−ωt]). (24)
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From (24) we deduce that Eq. (1) has the dark soliton solution

E(x, t) =

{
−3A3

8A4
− ln a

√
−3A4

4A4
tanh

ξ ln a

2

}1/2

e(i[χ(ξ)−ωt]) (25)

and the singular soliton solution

E(x, t) =

{
−3A3

8A4
− ln a

√
−3A4

4A4
coth

ξ ln a

2

}1/2

e(i[χ(ξ)−ωt]),

provided A4 < 0 and A3 > 0.

Case 2. If we choose p = 2 and m = 2, then s = 4, thus, we deduce from (6) that

g(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ) + α3Q
3(ξ) + α4Q

4(ξ)

β0 + β1Q(ξ) + β2Q2(ξ)
, (26)

where α0, α1, α2, α3, α4, β0, β1 and β2 are real constants to be determined such that
α4 and β2 6= 0. Substituting (26) along with (8) into Eq. (19), collecting the coefficients
of each power of Qi (i = 0, 1, . . . , 16) and setting each of these coefficients to zero, we
obtain a set of algebraic equations, which can be solved by Maple, to get the following
results.

Result 1.

α0 = 0, α1 = α1, α2 =
α1β2
β1

, α3 =
3β1 ln a√
−3A4

, α4 =
3β2 ln(a)√
−3A4

,

A1 =
−α2

1[6A4α1β1 ln a+ [A4α
2
1 − 3β2

1 ln
2a]
√
−3A4]

3β4
1

√
−3A4

,

A2 =
6A4α1β1 ln a+ [2A4α

2
1 − β2

1 ln
2a]
√
−3A4

β2
1

√
−3A4

,

A3 =
−4A4[3β1 ln a+ 2α1

√
−3A4]

3β1
√
−3A4

, β0 = 0, β1 = β1, β2 = β2,

(27)

provided A4 < 0. In this case, from (7), (12), (18), (26) and (27) we deduce that Eq. (1)
has the solution

E(x, t) =

{
α1

β1
+

3 ln a√
−3A4

1

1± a2ξ

}1/2

e(i[χ(ξ)−ωt]).

Equation (1) has the symmetrical Fibonacci cotangent function solutions

E(x, t) =

{
α1

β1
+

3 ln a

2
√
−3A4

[
1− tanFs(ξ)

]}1/2

e(i[χ(ξ)−ωt]) (28)

and

E(x, t) =

{
α1

β1
+

3 ln a

2
√
−3A4

[
1− cotFs(ξ)

]}1/2

e(i[χ(ξ)−ωt]). (29)
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From (28) we deduce that Eq. (1) has the dark soliton solution

E(x, t) =

{
α1

β1
+

3 ln a

2
√
−3A4

[
1− tanh(ξ ln a)

]}1/2

e(i[χ(ξ)−ωt]), (30)

and from (29) we deduce that Eq. (1) has the singular soliton solution

E(x, t) =

{
α1

β1
+

3 ln a

2
√
−3A4

[
1− coth(ξ ln a)

]}1/2

e(i[χ(ξ)−ωt]), (31)

provided A4 < 0 and α1β1 > 0.

Result 2.

α0 = 0, α1 = 0, α2 =
−β2(4 ln a

√
−3A4 + 3A3)

8A4
, α3 = 0,

α4 =
β2 ln a

√
−3A4

A4
, β0 = 0, β1 = 0, β2 = β2,

A1 =
−3[256A2

4 ln
4(a) + 96A2

3A4 ln
2(a) + 9A4

3]

4096A3
4

,

A2 =
16A4 ln

2(a) + 9A2
3

32A4
,

(32)

provided A4 < 0. In this case, from (7), (12), (18), (26) and (32) we deduce that Eq. (1)
has the solution

E(x, t) =

{
−3A3

8A4
+

ln a

2

√
−3
A4

1∓ a2ξ

1± a2ξ

}1/2

e(i[χ(ξ)−ωt]).

Equation (1) has the symmetrical Fibonacci cotangent function solutions

E(x, t) =

{
−3A3

8A4
− ln a

2

√
−3
A4

tanFs(ξ)

}1/2

e(i[χ(ξ)−ωt]) (33)

and

E(x, t) =

{
−3A3

8A4
− ln a

2

√
−3
A4

cotFs(ξ)

}1/2

e(i[χ(ξ)−ωt]). (34)

From (33) we deduce that Eq. (1) has the dark soliton solution

E(x, t) =

{
− 3A3

8A4
− ln a

2

√
−3
A4

tanh(ξ ln a)

}1/2

e(i[χ(ξ)−ωt]),

and from (34) we deduce that Eq. (1) has the singular soliton solution

E(x, t) =

{
−3A3

8A4
− ln a

2

√
−3
A4

coth(ξ ln a)

}1/2

e(i[χ(ξ)−ωt]),

provided A4 < 0 and A3 > 0. Simliarly, we can find many other solutions by choosing
another values for s, m and p.
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4 On solving Eq. (2)(2)(2) using the new extended generalized Kudryashov
method

In this section, we use the above method describing in Section 2 for solving Eq. (2). To
this aim, we assume that Eq. (2) has the formal solution

u(x, y, t) = u(ξ)eiη(x,y,t), v(x, y) = v(ξ), (35)

and
ξ = x− 2αy + αt, η(x, y, t) = αx+ y + kt+ l, (36)

where u(ξ), η(x, y, t) and v(ξ) are all real functions, while α, k and l are real constants.
Substituting (35) and (36) into Eq. (2) yield the following system of ODEs:

σ2
(
1 + 4σ2α2

)
u′′(ξ) + 2λu3(ξ)−

(
2k + σ2α2 + σ4

)
u(ξ)

− 2u(ξ)v′(ξ) = 0, (37)(
1− 4σ2α2)v′′(ξ) = 2λ

[
u2(ξ)

]′
. (38)

Integrating (38) with respect to ξ, we obtain

v′(ξ) =
2λ

(1− 4σ2α2)
u2(ξ) + ε, (39)

where ε is the constant of integration, and α2 6= ±1/4. Substituting (39) into (37), we
have

σ2
(
1 + 4σ2α2

)
u′′(ξ) + 2λ

[
1− 2

(1− 4σ2α2)

]
u3(ξ)

−
(
2k + σ2α2 + σ4 + 2ε

)
u(ξ) = 0. (40)

By balancing u′′ with u3 in (40), the following formula is obtained:

(s−m) + 2p = 3(s−m) =⇒ s = m+ p.

Let us now discuss the following cases.

Case 1. If we choose p = 1 and m = 1, then s = 2. Thus, we deduce from (6) that

u(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ)

β0 + β1Q(ξ)
, (41)

where α0, α1, α2, β0 and β1 are real constants to be determined such that α2 and β1 6= 0.
Substituting (41) along with (8) into Eq. (40), collecting the coefficients of each power of
Qi (i = 0, 1, . . . , 6) and setting each of these coefficients to zero, we obtain a system of
algebraic equations, which can be solved by Maple, we obtain the following results.
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Result 1.

ε = −1

2

[
2k + σ2

(
α2 + σ2

)
− σ2 ln2a

(
1 + 4σ2α2

)]
,

α0 = 0, α1 = α1, α2 = −α1,

β0 =
−α1

2σ ln a

√
λ

(1− 4σ2α2)
, β1 =

α1

σ ln a

√
λ

(1− 4σ2α2)
,

(42)

provided (1 − 4σ2α2)λ > 0. In this case, from (7), (35), (36), (41) and (42) we deduce
that Eq. (2) has the solution

u(x, y, t) =

(
±2σ ln a

√
(1− 4σ2α2)

λ

aξ

1− a2ξ

)
eiη(x,y,t). (43)

From (43) we deduce that Eq. (2) has the singular solitary wave solution

u(x, y, t) =

(
∓σ ln a

√
(1− 4σ2α2)

λ
csch[ξ ln a]

)
eiη(x,y,t). (44)

Result 2.

ε = −1

4

[
4k + 2σ2

(
α2 + σ2

)
+ σ2 ln2a

(
1 + 4σ2α2

)]
,

α0 = 0, α1 =
−β1σ ln a

2

√
(1− 4σ2α2)

λ
,

α2 = β1σ ln a

√
(1− 4σ2α2)

λ
, β0 = 0, β1 = β1,

(45)

provided (1 − 4σ2α2)λ > 0. In this case, from (7), (35), (36), (41) and (45) we deduce
that Eq. (2) has the solution

u(x, y, t) =

(
σ ln a

2

√
(1− 4σ2α2)

λ

1∓ aξ

1± aξ

)
eiη(x,y,t). (46)

From (46) we deduce that Eq. (2) has the shock wave solution

u(x, y, t) =

(
−σ ln a

2

√
(1− 4σ2α2)

λ
tanh

ξ ln a

2

)
eiη(x,y,t)

and the singular solitary wave solution

u(x, y, t) =

(
−σ ln a

2

√
(1− 4σ2α2)

λ
coth

ξ ln a

2

)
eiη(x,y,t).

Case 2. If we choose p = 2 and m = 2, then s = 4. Thus, we deduce from (6) that

u(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ) + α3Q
3(ξ) + α4Q

4(ξ)

β0 + β1Q(ξ) + β2Q2(ξ)
, (47)
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where α0, α1, α2, α3, α4, β0, β1 and β2 are real constants to be determined such that
α4 and β2 6= 0. Substituting (47) along with (8) into Eq. (40), collecting the coefficients
of each power of Qi (i = 0, 1, . . . , 12) and setting each of these coefficients to zero, we
obtain a set of algebraic equations, which can be solved by Maple, to get the following
results.

Result 1.

ε = −1

2

[
2k + σ2

(
α2 + σ2

)
+ 8σ2 ln2a

(
1 + 4σ2α2

)]
,

α0 = β2σ ln a

√
(1− 4σ2α2)

λ
, α1 = 0,

α2 = −2β2σ ln a
√

(1− 4σ2α2)

λ
,

α3 = 0, α4 = 2β2σ ln a

√
(1− 4σ2α2)

λ
,

β0 =
−1
2
β2, β1 = 0, β2 = β2,

(48)

provided (1 − 4σ2α2)λ > 0. In this case, from (7), (35), (36), (47) and (48) we deduce
that Eq. (2) has the solution

u(x, y, t) =

(
2σ ln a

√
(1− 4σ2α2)

λ

1 + a4ξ

1− a4ξ

)
eiη(x,y,t). (49)

From (49) we deduce that Eq. (2) has the singular solitary wave solution

u(x, y, t) =

(
−2σ ln a

√
(1− 4σ2α2)

λ
coth[2ξ ln a]

)
eiη(x,y,t). (50)

Result 2.

ε = −1

2

[
2k + σ2

(
α2 + σ2

)
− 4σ2 ln2a

(
1 + 4σ2α2

)]
,

α0 = 0, α1 = 0, α2 = −2β2σ ln a
√

(1− 4σ2α2)

λ
,

α3 = 0, α4 = 2β2σ ln a

√
(1− 4σ2α2)

λ
,

β0 = −1

2
β2, β1 = 0, β2 = β2,

(51)

provided (1 − 4σ2α2)λ > 0. In this case, from (7), (35), (36), (47) and (51) we deduce
that Eq. (2) has the solution

u(x, y, t) = ∓
(
4σ ln a

√
(1− 4σ2α2)

λ

a2ξ

1− a4ξ

)
eiη(x,y,t). (52)
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From (52) we deduce that Eq. (2) has the singular solitary wave solution

u(x, y, t) = ±
(
2σ ln a

√
(1− 4σ2α2)

λ
csch[2ξ ln a]

)
eiη(x,y,t).

Similarly, we can find many other solutions by choosing another values for s, m and p.

5 On solving Eq. (3)(3)(3) using the new extended generalized Kudryashov
method

In this section, we use the above method describing in Section 2 for solving Eq. (3). To
this aim, we assume that Eq. (3) has the formal solution

q(x, y, z, t) = B(ξ), ξ = kx+ ly + ρz − ωt, (53)

where B(ξ) is a real function, while k, l, ρ and ω are real constants, to reduce Eq. (3) into
the nonlinear ODE

− 16(ω + kc)B′(ξ) + 30kB1/2(ξ)B′(ξ) + k
(
k2 + l2 + ρ2

)
B′′′(ξ) = 0, (54)

where ′ = d/dξ. Integrating Eq. (54) once with respect to ξ, we have

−16(ω + kc)B(ξ) + 20kB3/2(ξ) + k
(
k2 + l2 + ρ2

)
B′′(ξ) + ε = 0,

where ε is the constant of integration. Setting

B(ξ) = H2(ξ), (55)

we get the equation

−16(ω+kc)H2(ξ)+20kH3(ξ)+2k
(
k2+l2+ρ2

)[
H ′2(ξ)+H(ξ)H ′′(ξ)

]
+ε = 0. (56)

By balancing HH ′′ with H3 in (56), the following formula is obtained:

2(s−m) + 2p = 3(s−m) =⇒ s = m+ 2p.

Let us now discuss the following cases.

Case 1. If we choose p = 1 and m = 1, then s = 3, Thus, we deduce from (6) that

H(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ) + α3Q
3(ξ)

β0 + β1Q(ξ)
, (57)

where α0, α1, α2, α3, β0 and β1 are real constants to be determined, such that α3 and
β1 6= 0. Substituting (57) along with (8) into Eq. (56), collecting the coefficients of each
power of Qi (i = 0, 1, . . . , 10) and setting each of these coefficients to zero, we obtain
a system of algebraic equations, which can be solved by Maple, we obtain the following
results.
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Result 1.

α0 = 0, α1 =
−β1(k2 + l2 + ρ2) ln2a

6
, α2 = β1(k

2 + l2 + ρ2) ln2a,

α3 = −β1(k2 + l2 + ρ2) ln2a, ω =
−k[(k2 + l2 + ρ2) ln2a+ 4c]

4
,

ε =
−k[(k2 + l2 + ρ2) ln2a]3

54
, β0 = 0, β1 = β1.

(58)

In this case, from (7), (53), (55), (57) and (58) we deduce that Eq. (3) has the solution

B(ξ) =

[
−(k2 + l2 + ρ2) ln2a

6

(
1∓ 6aξ

(1± aξ)2

)]2
. (59)

From (59) we deduce that Eq. (3) has the solitary wave solution

B(ξ) =
(k2 + l2 + ρ2)2 ln4(a)

36

[
1− 3

2
sech2

ξ ln a

2

]2
(60)

and the singular solitary wave solution

B(ξ) =
(k2 + l2 + ρ2)2 ln4a

36

[
1 +

3

2
csch2

ξ ln a

2

]2
,

where ξ = kx+ ly + ρz + (k/4)[(k2 + l2 + ρ2) ln2a+ 4c]t.
Result 2.

α0 = 0, α1 = 0, α2 = β1(k
2 + l2 + ρ2) ln2a,

α3 = −β1
(
k2 + l2 + ρ2

)
ln2a, ω =

k[(k2 + l2 + ρ2) ln2a− 4c]

4
,

ε = 0, β0 = 0, β1 = β1.

(61)

In this case, from (7), (53), (55), (57) and (61) we deduce that Eq. (3) has the solution

B(ξ) =
(
k2 + l2 + ρ2

)2
ln4a

(
aξ

(1± aξ)2

)2

. (62)

From (62) we deduce that Eq. (3) has the solitary wave solution

B(ξ) =
(k2 + l2 + ρ2)2 ln4a

16
sech4

ξ ln a

2

and the singular solitary wave solution

B(ξ) =
(k2 + l2 + ρ2)2 ln4a

16
csch4

ξ ln a

2
,

where ξ = kx+ ly + ρz − (k/4)[(k2 + l2 + ρ2) ln2a− 4c]t.
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Case 2. If we choose p = 2 and m = 1, then s = 5. Thus, we deduce from (6) that

H(ξ) =
α0 + α1Q(ξ) + α2Q

2(ξ) + α3Q
3(ξ) + α4Q

4(ξ) + α5Q
5(ξ)

β0 + β1Q(ξ)
, (63)

where α0, α1, α2, α3, α4, α5, β0 and β1 are real constants to be determined, such that
α5 and β1 6= 0. Substituting (63) along with (8) into Eq. (56), collecting the coefficients
of each power of Qi (i = 0, 1, . . . , 16) and setting each of these coefficients to zero, we
obtain a set of algebraic equations, which can be solved by Maple, to get the following
results.

Result 1.

α0 = −2

3
β0
(
k2+l2+ρ2

)
ln2a, α1 = −2

3
β1(k

2+l2+ρ2
)
ln2a, β0 = β0,

β1 = β1, α2 = 4β0
(
k2+l2+ρ2

)
ln2a, α3 = 4β1

(
k2+l2+ρ2

)
ln2a,

α4 = −4β0
(
k2+l2+ρ2

)
ln2a, α5 = −4β1

(
k2+l2+ρ2

)
ln2a,

ω = −k
[(
k2+l2+ρ2

)
ln2a+ c

]
, ε =

−32
27

k
[(
k2+l2+ρ2

)
ln2a

]3
.

(64)

In this case, (7), (53), (55), (63) and (64) we deduce that Eq. (3) has the solution

B(ξ) =

[
−2
3

(
k2 + l2 + ρ2

)
ln2a

(
1− 6

1± a2ξ
+

6

(1± a2ξ)2

)]2
.

With the help of (11), Eq. (3) has the symmetrical Fibonacci cotangent function solutions

B(ξ) =
1

9

(
k2 + l2 + ρ2

)2
ln4a

[
1− 3 tanFs2(ξ)

]2
, (65)

and

B(ξ) =
1

9

(
k2 + l2 + ρ2

)2
ln4a

[
1− 3 cotFs2(ξ)

]2
. (66)

From (65) we deduce that Eq. (3) has the shock wave solution

B(ξ) =
1

9

(
k2 + l2 + ρ2)2 ln4a

[
1− 3 tanh2(ξ ln a)

]2
,

and from (66) we deduce that Eq. (3) has the singular solitary wave solution

B(ξ) =
1

9
(k2 + l2 + ρ2)2 ln4a

[
1− 3 coth2(ξ ln a)

]2
,

where ξ = kx+ ly + ρz + k[(k2 + l2 + ρ2) ln2a+ c]t.
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Result 2.

α0 = 0, α1 = 0, β0 = β0, β1 = β1,

α2 = 4β0
(
k2 + l2 + ρ2

)
ln2a, α3 = 4β1

(
k2 + l2 + ρ2

)
ln2a,

α4 = −4β0
(
k2 + l2 + ρ2

)
ln2a, α5 = −4β1

(
k2 + l2 + ρ2

)
ln2a,

ε = 0, ω = k
[(
k2 + l2 + ρ2

)
ln2a− c

]
.

(67)

In this case, from (7), (53), (55), (63) and (67) we deduce that Eq. (3) has the solution

B(ξ) = 16
(
k2 + l2 + ρ2

)2
ln4a

(
a2ξ

(1± a2ξ)2

)2

.

With the help of (11), Eq. (3) has the symmetrical Fibonacci cotangent function solutions

B(ξ) =
(
k2 + l2 + ρ2

)2
ln4a

[
1− tanFs2(ξ)

]2
(68)

and
B(ξ) =

(
k2 + l2 + ρ2

)2
ln4a

[
1− cotFs2(ξ)

]2
. (69)

From (68) we deduce that Eq. (3) has the solitary wave solution

B(ξ) =
(
k2 + l2 + ρ2

)2
ln4a sech4[ξ ln a], (70)

and from (69) we deduce that Eq. (3) has the singular solitary wave solution

B(ξ) =
(
k2 + l2 + ρ2

)2
ln4a csch4[ξ ln a],

where ξ = kx+ ly + ρz − k[(k2 + l2 + ρ2) ln2a− c]t.

6 Some graphical representations of some solutions

In this section, we present the graphs of some solutions for Eqs. (1), (2) and (3). Let us
now examine Figs. 1–6. as it illustrates some of our solutions obtained in this paper. To
this aim, we select some special values of the obtained parameters: a = 4, b2 = 1/2,
b3 = 1/4, k = 1, b = 2, υ = 3, λ = 2, α = 2, ω = 1/2 and −10 6 x, t 6 10
in Fig. 1; a = 4, α1 = 2, β1 = 1/4, b3 = 4, k = 2, b = −1/2, υ = 1/3, λ = 2,
α = 2, ψ = 1/12 and −10 6 x, t 6 10 in Fig. 2; a = 4, λ = −3, α = 2, t = 1/2,
σ = 1 and −10 6 x, y 6 10 in Fig. 3; a = 5/2, λ = 2, α = 1/4, y = 0, σ = −1 and
−10 6 x, t 6 10 in Fig. 4; a = 2, k = 2, l = 3, ρ = 1, c = 1/4, z = 1, t = 4, σ = 1
and −10 6 x, y 6 10 in Fig. 5; a = 5, k = 1/2, l = 1/2, ρ = −1/

√
2, c = 1/2, x = 2,

y = −2 and −10 6 z, t 6 10 in Fig 6.
From Figs. 1–6 one can see that the obtained solutions possess the dark soliton solu-

tion, the singular soliton solution, the singular solitary wave solution, the solitary wave
solution. Also, these figures express the behaviour of these solutions, which give some
perspective readers how the behaviour solutions are produced.
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Figure 1. Dark soliton solution Ψ(ξ) of (25). Figure 2. Singular soliton solution Ψ(ξ) of (31).

Figure 3. Singular solitary wave solution u(ξ)
of (44).

Figure 4. Singular solitary wave solution u(ξ)
of (50).

Figure 5. Solitary wave solution H(ξ) of (60). Figure 6. Solitary wave solution H(ξ) of (70).
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7 Conclusions

For the first time, we have derived many new exact solutions of the three nonlinear partial
differential equations (PDEs), namely, the (1 + 1)-dimensional improved perturbed non-
linear Schrödinger equation with anti-cubic nonlinearity, the (2+1)-dimensional Davey–
Sterwatson (DS) equation and the (3 + 1)-dimensional modified Zakharov–Kuznetsov
(mZK) equation of ion-acoustic waves in a magnetized plasma using the new extended
generalized Kudryashov method. The obtained solutions will be depended on the symmet-
rical hyperbolic Fibonacci functions. Equation (1) is nonlinear optics, where its solutions
in Section 3 are called bright soliton solutions, dark soliton solutions, singular soliton
solutions and trigonometric function solutions, while Eq. (2) is fluid dynamics, and Eq. (3)
is plasma physics, where their solutions in Sections 4 and 5 are called solitary wave, shock
wave and singular solitary waves. All the solutions obtained in Sections 3–5 will be a good
guide line and great help for a large family of scientists. On comparing our solutions of
these equations with that obtained in [17, 19, 26, 35, 36, 45], we deduce that our solutions
are new and not reported previously in the literature. Finally, our results in this article
have been checked using the Maple by putting them back into the original equations (1),
(2) and (3).

Acknowledgment. The authors wish to thank the referees for their comments on this
paper.
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