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Abstract. Fractional dynamics is a scope of study in science considering the action of systems.
These systems are designated by utilizing derivatives of arbitrary orders. In this effort, we discuss
the sufficient conditions for the existence of the mild solution (m-solution) of a class of fractional
dynamic systems (FDS). We deal with a new family of fractional m-solution in Rn for fractional
dynamic systems. To accomplish it, we introduce first the concept of (F,ψ)-contraction based on
the measure of noncompactness in some Banach spaces. Consequently, we establish requisite fixed
point theorems (FPTs), which extend existing results following the Krasnoselskii FPT and coupled
fixed point results as a outcomes of derived one. Finally, we give a numerical example to verify the
considered FDS, and we solve it by iterative algorithm constructed by semianalytic method with
high accuracy. The solution can be considered as bacterial growth system when the time interval is
large.

Keywords: fractional calculus, fractional differential operator, fixed point theorem, measure of
noncompactness.

1 Introduction

Fractional calculus includes all fractional concepts, (operators) fractional formulas (equa-
tions, inequalities and inclusions) and fractional formal (logic concepts) (see [19, 20, 22,
23,26]) can express the possessions of the history of materials. Practical problems take in
classifications of the fractional operators (differential and integral) allowing the procedure
of the entity and uniqueness of associations outcome based equity model. For example,
fractional diffusion equations (derivatives with respect to time), where elements are more
slowly than a traditional diffusion. This concept demonstrated its authority in all sciences.
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Solvability of fractional dynamic systems 619

The main problem in the classes of fractional differentiation arguments (equations,
inclusions and systems) is the uniqueness of m-solution. This problem has been discussed
by many authors. For recent work, one can see [3, 9–11, 13, 15–17, 28, 32]. Most of these
efforts delivered by various types of FPTs in compact sets. Therefore, we shall develop
a set of fixed point theorems of measure of noncompactness based on (F,ψ)-contraction
functions (see [1–8, 12, 21]).

In our investigation, we establish some basic fixed point results, which generalize
some well-known results. Our method is based on the new definition of (F,ψ)-contraction
with respect to measures of noncompactness in Banach spaces. Consequently, a set of
coupled FPTs is also derived from the main result. Applying our results, we deliver
adequate conditions for a constructed mild solution (m-solution) of fractional dynamic
systems.

2 Background

2.1 M-solution

A continuous function ν : [0,∞)→ E is titled a mild solution (m-solution) of the Cauchy
problem ν′(t) = ∆ν(t), ν(0) = ν0 if

t∫
0

ν(s) ds ∈ Dom(∆) and ∆

t∫
0

ν(s) ds = ν(t)− ν0.

Any classical solution is m-solution. In [9], Araya and Lizama provided the idea of α-re-
solvent sets establishing the entity of m-solutions of equation [9]

Dα
t ν(t) = ∆ν(t) + tnφ(t) α ∈ [1, 2], n ∈ Z+,

in a Banach space E for automorphism functions φ : R → E. Moreover, the researchers
studied the m-solution of

Dα
t ν(t) = ∆ν(t) + φ

(
t, ν(t)

)
, α ∈ [1, 2],

and
Dα
t ν(t) = ∆ν(t) + φ

(
t, ν(t), ν′(t)

)
, α ∈ [1, 2].

Many investigators imposed different criteria of m-solution for various classes of FDS
(see [13, 28]). In [13], Cuevas and Lizama suggested the almost mild solutions for the
following class of equation:

Dα
t ν(t) = ∆ν(t) +Dα−1

t φ(·, ν), α ∈ [1, 2],

where ∆ is a linear operator, and φ(t, ν) is Lipschitz in ν. In [3], Agarwal et al. imposed
analytic operator establishing the integral formal

Dα
t ν(t) = ∆ν(t) +

t∫
0

Θ(t− ς)ν(ς) dς, t > 0,

ν(0) = ν0.
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In [28], Ponce studied the solutions of the following equation:

Dα
t ν(t) = ∆ν(t) +

t∫
−∞

ρ(t− ς)∆ν(ς) dς + φ
(
t, ν(t)

)
, t ∈ R,

where the linear operator ∆ is closed on a Banach space E, α > 0, ρ ∈ L1(R+) is
a kernel of the integral operator, and φ : R×E → E achieves a special type of Lipschitz
conditions. In [15], Dhanapalan et al. established m-solution of a class of nonlinear FDS
of the form

Dα
t ν(t) + ∆ν(t)

=

t∫
0

φ
(
t, ς, ν(ς)

)
dς +

t∫
0

ρ(t− ς)ψ
(
ς, ν(ς)

)
dς, ς, t ∈ [0, T ], ς < t,

ν(0) = ν0.

2.2 Measure concept

The following abbreviations are utilized in this manuscript: R is the set of real numbers,
R+ = [0,+∞); (E, ‖·‖) is the Banach space (BC); B(x, r) – the closed ball, Br =
B(0, r); ME and NE denote the family of nonempty bounded subsets of E and the
subfamily connecting all relatively compact set, respectively; µ denotes the measure of
noncompactness (MNC) (see [12]); BCC – the bounded closed convex set.

Definition 1. A mapping µ : ME → R+ is called MNC in E if it fulfills the next
conditions:

(d1) The family kerµ ⊂ NE (the kernel of the MNC) is nonempty set satisfying
kerµ = {Y ∈ME : µ(Y) = 0};

(d2) Y ⊂ Z⇒ µ(Y) 6 µ(Z);
(d3) µ(Ȳ) = µ(Y);
(d4) µ(ConvY) = µ(Y);
(d5) µ(ηY + (1− η)Z) 6 ηµ(Y) + (1− η)(Y) for η ∈ [0, 1];
(d6) Let (Yn) be a sequence of closed sets in ME achieving the inclusion Yn+1 ⊂

Yn (n = 1, 2, . . .), and let limn→∞ µ(Yn) = 0, then the conclusion setting by
Y∞ =

⋂∞
n=1 Yn is nonempty, and µ(Y∞) 6 µ(Yn), n ∈ N.

Denote Λ = {C: C 6= ∅,BCC, C ⊂ E}.

Lemma 1. (See [12].) Let C ∈ Λ, and T : C→ C be a continuous and µ-set contraction
operator such that there is a constant k ∈ [0, 1) with

µ
(
T(Y)

)
6 kµ(Y)

for any nonempty subset Y of C, where µ be the Kuratowski MNC on E. Then T admits
a fixed point.
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Thereafter, various types of DFPT and their coupled version were considered by
utilizing several types of contractive condition in the sense of MNC (for instant, see
[1–26]). Here, we introduce a new µ-contraction operator know as (F,ψ)-contraction
in the sense of MNC, and we prove some new fixed point, Krasnoselskii FPT and coupled
FPTs that generalize the outcomes in [5, 8, 12, 27] mainly.

3 FPTs outcomes

Here, we deal with the set of functions ψ,ϕ,F : [0,+∞)→ [0,+∞) with the following
properties:

(i) F is nondecreasing and continuous satisfying F(0) = 0 < F(t). The set of all
F is denoted by F;

(ii) ψ is right continuous, ψ(0) = 0 and bounded by t (ψ(t) < t). The set of all ψ is
denoted by Ψ ;

(iii) ϕ is a continuous mapping.

Theorem 1. Define a continuous operator T : C→ C, C ∈ Λ satisfying

F
(
µ
(
T(Y)

)
+ ϕ

(
µ
(
T(Y)

)))
6 ψ

(
F
(
µ(Y) + ϕ

(
µ(Y)

)))
(1)

for all Y ⊆ C. Then T admits at least one fixed point in C.

Proof. Starting from C0 = C, we construct a sequence {Cn} as Cn+1 = Conv(TCn) for
n ∈ N∗ = N ∪ {0}. Let n0 ∈ N∗ and

µ(Cn0
) + ϕ

(
µ(Cn0

)
)

= 0, µ(Cn0
) = 0,

then Cn0
is compact achieving the inclusion

T(Cn0
) ⊆ Conv(TCn0

= Cn0+1) ⊆ Cn0
.

Thus, Schauder’s fixed point theorem gives that T admits a fixed point. Therefore, we let

µ(Cn) + ϕ(µ(Cn)) > 0 ∀n > 1.

In view of (1), we conclude that

F
[
µ(Cn+1) + ϕ

(
µ(Cn+1)

)]
= F

[
µ
(
Conv(TCn)

)
+ ϕ

(
µ
(
Conv(TCn)

))]
= F

[
µ(TCn) + ϕ

(
µ(TCn)

)]
6 ψ

(
F
[
µ(Cn) + ϕ

(
µ(Cn)

)])
< F

[
µ(Cn) + ϕ

(
µ(Cn)

)]
.

Now, in virtue of

F
(
µ(Cn+1) + ϕ

(
µ(Cn+1)

))
6 ψ

(
F
(
µ(Cn) + ϕ

(
µ(Cn)

)))
6 · · · 6 ψn

(
F
(
µ(C0) + ϕ

(
µ(C0)

)))
,
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we attain to

lim
n→∞

F
(
µ(Cn+1) + ϕ

(
µ(Cn+1)

))
= 0,

which leads to

lim
n→∞

µ(Cn) + ϕ
(
µ(Cn)

)
= 0 and lim

n→∞
µ(Cn) = 0.

Since Cn ⊇ Cn+1 and TCn ⊆ Cn for all n = 1, 2, . . . , then by (d6) of Definition 1,
Y∞ =

⋂∞
n=1 Yn is nonempty convex closed set, invariant under T and belongs to kerµ.

So, Schauder’s FPT gives the requested result.

Remark 1. Putting F(t) = t in Theorem 1, we achieve the result given in [8]. Special
case when ϕ(t) = 0, then the inequality F(µ(T(Y))) 6 ψ(F(µ(Y))) implies that T
admits at least one fixed point in C. Moreover, if ψ(t) = λt and F(t) = t, where
0 6 λ < 1, then we obtain the DFPT. If F(t) = t and ϕ(t) = 0 for each t > 0 in
Theorem 1, we will have result given in [5].

Proposition 1. If T ∈ C satisfies the inequality

F
(
diam

(
T(Y)

)
+ ϕ

(
diam

(
T(Y)

)))
6 ψ

(
F
(
diamY + ϕ

(
diamY

)))
, (2)

then T admits a unique fixed point in C.

Proof. In view of (d6), it is well know that diam(·) is a MNC, and thus, from Theo-
rem 1 we get the existence of a T-invariant nonempty closed convex subset X∞ with
diamY∞ = 0. Consequently, X∞ is a singleton, and therefore, T has a fixed point in C.

To attain the uniqueness, we assume that there exist two distinct fixed points ζ, ξ ∈ C,
then we may define the set Y :={ζ, ξ}. In this case, diamY=diam(T(Y))=‖ξ−ζ‖>0.
Using (2) and notion of F and ψ, we obtain

F
(
diam

(
T(Y)

)
+ ϕ

(
diam

(
T(Y)

)))
6 ψ

(
F
(
diam(Y) + ϕ

(
diam(Y)

)))
< F

(
diamY + ϕ(diamY)

)
,

a contradiction and hence the result.

Now we are in position to derive some classical fixed point result from Proposition 1
and Theorem 1.

Corollary 1. Suppose that T ∈ C achieves the inequality

F
(
‖Tu− Tv‖+ ϕ

(
‖Tu− Tv‖

))
6 ψ

(
F
(
‖u− v‖+ ϕ

(
‖u− v‖

)))
(3)

for all u, v ∈ C. Then T admits a unique fixed point.

Proof. Suppose that µ(C) = diamC, where

diamC = sup
{
‖u− v‖: u, v ∈ C

}
http://www.journals.vu.lt/nonlinear-analysis
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is the diameter of C. Clearly, µ is a MNC in a space E in the sense of Definition 1.
Therefore, from (3) we have

sup
υ,ν∈C

F
(
‖Tυ − Tν‖+ ϕ

(
‖Tυ − Tν‖

))
6 F

(
sup
υ,ν∈C

‖Tυ − Tν‖+ sup
υ,ν∈C

ϕ
(
‖Tυ − Tν‖

))
6 sup
υ,ν∈C

ψ
(
F
(
‖υ − ν‖+ ϕ

(
‖υ − ν‖

)))
6 ψ

(
F
(

sup
u,v∈C

‖υ − ν‖+ ϕ
(

sup
υ,ν∈C

‖υ − ν‖
)))

,

which implies that

F
(
diam

(
T(C)

)
+ ϕ

(
diam

(
T(C)

)))
6 ψ

(
F
(
diamC + ϕ(diamC)

)
.

Thus, following Proposition 1, T has an unique fixed point.

Following is the Krasnoselskii FPT:

Corollary 2. Let T1,T2 : C→ C be two operators satisfying:

(i) (T1 + T2)(C) ⊆ C;
(ii) There exist F ∈ F, ψ ∈ Ψ , ϕ : R+ → R+, a continuous mapping such that

F
(
‖T1υ − T1ν‖+ ϕ

(
‖T1υ − T1ν‖

))
6 ψ

(
F
(
‖υ − ν‖+ ϕ

(
‖υ − ν‖

)))
; (4)

(iii) T2 is a continuous and compact operator.

Then T := T1 + T2 : C→ C admits a fixed point u ∈ C.

Proof. Define new Kuratowski MNC by χ : ME → [0,∞). Suppose that Y is a subset
of C with χ(Y) > 0. By the notion of Kuratowski MNC, for each n ∈ N, there exist
C1, . . . ,Cm(n) bounded subsets such that Y ⊆

⋃m(n)
i=1 Ci and diam(Ci) 6 χ(Y) +

1/n. Suppose that χ(T(Y)) > 0. Since T1(Y) ⊆
⋃m(n)
i=1 T1(Ci), there exists i0 ∈

{1, 2, . . . ,m(n)} such that χ(T(Y)) 6 diam(T1(Ci0)). Using (4) condition of T1 with
discussed arguments, we have

F
(
χ
(
T1(Y)

)
+ ϕ

(
χ
(
T1(Y)

)))
6 F

(
diam

(
T1(Ci0)

)
+ ϕ

(
diam

(
T1(Ci0)

)))
6 F

(
diamCi0 + ϕ

(
diamCi0

))
6 ψ

(
F
(
χ(Y) +

1

n
+ ϕ

(
χ(Y) +

1

n

)))
. (5)

Taking the limit in (5) as n→∞, we get

F
(
χ
(
T1(Y)

)
+ ϕ

(
χ
(
T1(Y)

)))
6 F

(
χ(Y) + ϕ

(
χ(Y)

))
. (6)
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By (iii) hypothesis and (6) we have by the notion of χ that

F
(
χ
(
T(Y)

)
+ ϕ

(
χ
(
T(Y)

)))
= F

(
χ
(
T1(Y) + T2(Y)

)
+ ϕ

(
χ
(
T1(Y) + T2(Y)

)))
6 F

(
χ
(
T1(Y)

)
+ χ

(
T2(Y)

)
+ ϕ

(
χ
(
T1(Y)

)
+ χ

(
T2(Y)

)))
= F

(
χ
(
T1(Y)

)
+ ϕ

(
χ
(
T1(Y)

)))
6 ψ

(
F
(
χ(Y) + ϕ

(
χ(Y)

)))
.

Therefore, from Theorem 1 T has a fixed point u ∈ C.

4 Coupled fixed point results

In this section, we introduce the result of Theorem 1 for ϕ(t) = 0.

Definition 2. (See [18].) An argument (u∗, v∗) ∈ E2 is said to be a coupled fixed point
(CFP) of a mapping G : E2 → E if G(u∗, v∗) = u∗ and G(v∗, u∗) = v∗.

Theorem 2. (See [12].) Assume that µ1, µ2, . . . , µn are MNCs in Banach spaces E1, E2,
. . . , En, respectively. Moreover, assume that the function G : [0,∞)n → [0,∞) is convex
and G(χ1, χ2, . . . , χn) = 0 if and only if χi = 0 for i = 1, 2, 3, . . . , n. Then

µ(C) = G
(
µ1(C1), µ2(C2), . . . , µn(Cn)

)
defines a MNC in E1 × E2 × E3 × · · · × En, where Ci denotes the natural projection of C
into Ei for i = 1, 2, 3, . . . , n.

Theorem 3. Let C ∈ Λ and G : C2 → C is continuous operator, and let there existF ∈ F,
ψ ∈ Ψ , and F is subadditive such that

F
(
µ
(
G(Y1 ×Y2)

))
6

1

2
ψ
(
F
(
µ(Y1) + µ(Y2)

))
(7)

for all Y1,Y2 in C. Then G admits at least a CFP.

Proof. Consider the map G : C2 → C2 having the definition Ĝ(υ, ν) = (G(υ, ν),G(ν, υ)).
Also, we define a new MNC in the space C2 (see [5]) as µ̂(Y) = µ(Y1) + µ(Y2), where
Yi, i = 1, 2, denote the natural projections of C. Now let ∅ 6= Y, and thus, by (7) and
condition (d2) of Definition 1 we conclude that

F
(
µ̂
(
Ĝ(Y)

))
6 F

(
µ̂
(
G(Y1 ×Y2)× G(Y2 ×Y1)

))
= F

(
µ
(
G(Y1 ×Y2)

))
+ F

(
µ
(
G(Y2 ×Y1)

))
6

1

2
ψ
(
F
(
µ(Y1) + µ(Y2)

))
+

1

2
ψ
(
F
(
µ(Y2) + µ(Y1)

))
= ψ

(
F
(
µ(Y1) + µ(Y2)

))
= ψ

(
F
(
µ̂(Y)

))
,

that is,
ψ
(
µ̂
(
Ĝ(Y)

))
6 ψ

(
F
(
µ̂(Y)

))
.

Hence, Ĝ admits a fixed point (CFP).
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Theorem 4. Let C ∈ Λ and G : C2 → C is continuous operator, and let there existF ∈ F,
ψ ∈ Ψ , and F is subadditive such that

F
(
µ
(
G(Y1 ×Y2)

))
6 ψ

(
F
(
max{µ(Y1), µ(Y2)}

))
(8)

for all Y1,Y2 in C. Then F admits at least one CFP.

Proof. Consider the map G : C2 → C2 by the formal

Ĝ(υ, ν) =
(
G(υ, ν),G(ν, υ)

)
.

Define a MNC in the space C2 (see [5]) by µ̂(Y) = max{µ(Y1), µ(Y2)}, where Yi,
i = 1, 2, denote the natural projections of C. Assume that Y ⊂ C2 is a nonempty subset.
Thus, by (8) and condition (d2) we obtain

F
(
µ̂
(
Ĝ(Y)

))
6 F

(
µ̂
(
G(Y1 ×Y2)× G(Y2 ×Y1)

))
= F

(
max

{
µ
(
G(Y1 ×Y2)

)
, µ
(
G(Y2 ×Y1)

)})
= max

{
F
(
µ
(
G(Y1 ×Y2)

))
,F
(
µ
(
G(Y2 ×Y1)

))}
6 max

{
ψ
(
F
(
max

{
µ(Y1), µ(Y2)

}))
, ψ
(
F
(
max

{
µ(Y2), µ(Y1)

}))}
= ψ

(
F
(
max

{
µ(Y1), µ(Y2)

}))
= ψ

(
F
(
µ̂(Y)

))
,

that is, F(µ̂(Ĝ(Y))) 6 ψ(F(µ(Y))). Consequently, G admits a CFP.

5 Applications

In this section, we construct a m-solution for a class of FDS with delay.

5.1 Construction

• Let ν(t) = (ν1(t), . . . , νn(t)
)T ∈ Rn be a vector of variables with continuously

differential components in the partition intervals [η1, t−τ1], . . . , [ηk, t−τk], t > τi,
i = 1, . . . , k, and Ci = CT

i (transpose matrix of Ci) be a constant n × n matrix
satisfying the following operational equation:

(∆iν)(t) = ν(t)− Ciν(t− τi) ∈ Rn,

where ∆ : Rn → Rn. Adding the above relation, we take out the operator D :
Rn → Rn possessing the n× n summation

(Dν)(t) :=

k∑
i=1

(∆iν)(t) ∈ Rn. (9)

• Let η1 < t− τ1, . . . , ηk < t− τk, ηi > 0, and Mi be a constant n× n matrix such
that Mi = MT

i > 0, i = 1, . . . , k, fulfilling the integral formula

(
Iαi ν
)
(t) :=

t∫
t−ηi

(t− %)α−1
[
Mi ν(%)

]
d% ∈ Rn.
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Repeating the above construction integral k times, we attain the general summation
formal (

Iαν
)
(t) =

k∑
i=1

(
Iαi ν
)
(t) ∈ Rn. (10)

• Let η1 < t − τ1, . . . , ηk < t − τk, ηi > 0, and Ri be a constant n × n matrix
satisfying Ri = RT

i > 0, i = 1, . . . , k, achieving the formal integral equation

(
Jαi ν

)
(t) :=

t−τi∫
ηi

(t− %)α
[
Ri ν(%)

]′
d% ∈ Rn.

Adding k times, we bring out

(
J αν

)
(t) =

k∑
i=1

(
Jαi ν

)
(t) ∈ Rn. (11)

Combine (9)–(11) to obtain a new mild solution ν : [0,∞)→ Rn:

ν(t) := (Dν)(t) +
(
Iαν

)
(t) +

(
J αν

)
(t) + ℘α

t∫
0

(t− %)α−1F
(
%, ν(%)

)
d%,

t0 = 0,

(12)

α ∈ (0, 1], ν ∈ Rn, F ∈ C(Rn), ℘α ∈ [0,∞), Obviously, ν(t) is a continuous and
differential function. Our aim is to show that the following dynamic system has a mild
solution in the frame of (12):

Dα
0 ν(t)− CiDα

0 ν(t− τi) = Aiν(t) + F (t, ν), (13)

where F : [0,∞)× Rn → Rn is continuous,∥∥F (t, ν)− F (t, χ)
∥∥ 6 `‖ν − χ‖, ` > 0,

and An×n and Cn×n are constant matrices achieving cij > aij > 0 with the property

Ĉ :=

k∑
i=1

‖Ci‖1 =

k∑
i=1

(
max

16j6n

n∑
ß=1

|cßj |

)
< 1. (14)

5.2 M-Solutions

In this subsection, we establish the m-solution of FDS (13).

Theorem 5. Let inequality (14) hold. Then the fractional dynamic system (13) admits at
least one m-solution ν ∈ BC(Rn) taking the form (12).
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Proof. Define an operator Q : Rn → Rn as follows:

(Qν)(t) := (Dν)(t) +
(
Iαν

)
(t) +

(
J αν

)
(t) + ℘α

t∫
0

(t− %)α−1F
(
%, ν(%)

)
d%.

Our aim is to show that Q admits at least one fixed point in a BCC set in Rn.

Boundedness. By (12) we get

∣∣(Qν)(t)
∣∣ =

∣∣∣∣∣(Dν)(t) +
(
Iαν

)
(t) +

(
J αν

)
(t) + ℘α

t∫
0

(t− %)α−1F
(
%, ν(%)

)
d%

∣∣∣∣∣
=

∣∣∣∣∣
k∑
i=1

(∆iν)(t) +

k∑
i=1

( t∫
t−ηi

(t− %)α−1
[
Mi ν(%)

]
d%

+

t−τi∫
ηi

(t− %)α
[
Ri ν(%)

]′
d%

)
+ ℘α

t∫
0

(t− %)α−1F
(
%, ν(%)

)
d%

∣∣∣∣∣
6

k∑
i=1

(
ν(t)− Ciν(t− τi)

)2
+

k∑
i=1

( t∫
t−ηi

(t− %)α−1
∣∣Mi ν(%)

∣∣d%
+ α

t−τi∫
ηi

(t− %)α−1
∣∣Ri ν(%)

∣∣d%
+ ταi

∣∣Riν(t− τi)− (t− ηi)αRiν(ηi)
∣∣)+ ℘α|F |

tα

α

6 ‖ν‖(1− Ĉ) + ‖ν‖M̂
k∑
i=1

(ηi)
α

α
+ ‖ν‖R̂

k∑
i=1

(t− ηi)α − (τi)
α

+
(
α1(t) + α2(t)

)
k‖ν‖R̂+ ℘α‖F‖

tα

α
,

where α1(t) = maxi τ
α
i and α2(t) = mini(t− ηi)α. Since τi < t− ηi, then if let

α3(t) := max
i

[
(t− ηi)α − (τi)

α
]
,

we obtain ∣∣(Qν)(t)
∣∣ 6 ‖ν‖(1− Ĉ) + ‖ν‖M̂ kη̂α

α
+ k
(
α1(t) + α2(t)

)
‖ν‖R̂

+ kα3(t)‖ν‖R̂+ ℘α‖F‖
tα

α

:= β(t)‖ν‖+ ℘α‖F‖
tα

α
6 2

[
β̄‖ν‖+ ℘α‖F‖

Tα

α

]
,
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where

β(t) := (1− Ĉ) + k

(
η̂α

α
M̂ +

(
α1(t) + α2(t) + α3(t)

)
R̂

)
, β̄ = max

t
β(t).

Taking the sup norm over t ∈ [0, T ], T <∞, we have

‖Q‖ 6
2℘αT

α

α ‖F‖
1− 2β̄

:= r, β̄ <
1

2
.

Hence, Q : Br → Br is bounded.

Continuity. Let δ > 0 and ν, υ ∈ Br such that ‖ν − υ‖ 6 δ. Then a computa-
tion implies∣∣(Qν)(t)− (Qυ)(t)

∣∣
6 ‖ν − υ‖(1− Ĉ) + ‖ν − υ‖M̂

k∑
i=1

(ηi)
α

α
− ‖ν − υ‖R̂

k∑
i=1

(τi)
α − (t− ηi)α

+
(
α1(t)‖ν − υ‖+ α2(t)

)
k‖ν − υ‖R̂+

∥∥F (ν)− F (υ)
∥∥℘αTα

α

6 ‖ν − υ‖(1− Ĉ) + ‖ν − υ‖M̂
k∑
i=1

(ηi)
α

α
− ‖ν − υ‖R̂

k∑
i=1

(τi)
α − (t− ηi)α

+
(
ᾱ1 + ᾱ2

)
k‖ν − υ‖R̂+ ‖ν − υ‖℘αT

α`

α

6 δ

(
(1− Ĉ) + M̂

kη̂α

α
+ k(ᾱ1 + ᾱ2)R̂+ kᾱ3|R̂+

℘αT
α`

α

)
:= ε,

where ᾱj := maxt αj(t), j = 1, 2, 3. Hence, Q is continuous in Br.

Measurement. Here, we aim to prove

µ(Q)(Br) 6 µ(Br).

For ν and υ ∈ Br, we have∣∣(Qν)(t)− (Qυ)(t)
∣∣

6 ‖ν − υ‖(1− Ĉ) + ‖ν − υ‖M̂
k∑
i=1

(ηi)
α

α
− ‖ν − υ‖R̂

k∑
i=1

(τi)
α − (t− ηi)α

+
(
ᾱ1 + ᾱ2

)
k‖ν − υ‖R̂+ ‖ν − υ‖℘αT

α`

α

= ‖ν − υ‖

(
(1− Ĉ) + M̂

k∑
i=1

(ηi)
α

α
+ R̂

k∑
i=1

(t− ηi)α − (τi)
α

+
(
ᾱ1 + ᾱ2

)
kR̂+

℘αT
α`

α

)
,
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(τi)
α < (t− ηi)α, then we conclude that

diam(Q(Br)) 6 Kα diamBr,

where

Kα : = (1− Ĉ) + M̂

k∑
i=1

(ηi)
α

α
+ R̂

k∑
i=1

(T − ηi)α − (τi)
α

+ (ᾱ1 + ᾱ2)kR̂+
℘αT

α`

α
.

To satisfy the condition of Theorem 1, we follow the same technique in [27]. Conse-
quently, we obtain the desired result.

Equicontinuous. Let t1 and t2 ∈ [0, T ] with t1 > t2, then we attain∣∣(Qν)(t1)− (Qν)(t2)
∣∣

=

∣∣∣∣∣
(

k∑
i=1

(∆iν)(t1)− (∆iν)(t2)

)

+

k∑
i=1

( t1∫
t1−ηi

(t1 − %)α−1
[
Mi ν(%)

]
d%−

t2∫
t2−ηi

(t2 − %)α−1
[
Mi ν(%)

]
d%

+

t1−τi∫
ηi

(t1 − %)α
[
Ri ν(%)

]′
ds−

t2−τi∫
ηi

(t2 − %)α
[
Ri ν(%)

]′
d%

)

+ ℘α

( t1∫
0

(t1 − %)α−1F
(
%, ν(%)

)
d%−

t2∫
0

(t2 − %)α−1F
(
%, ν(%)

)
d%

)∣∣∣∣∣
6 2

(
‖ν‖(1− Ĉ) + ‖ν‖M̂ kη̂α

α
+ k
(
α1(t) + α2(t)

)
‖ν‖R̂+ kα3(t)‖ν‖R̂

)
+ ℘α‖F‖

tα1 + tα2
α

6 2

[
β̄‖ν‖+ ℘α

Tα

α
‖F‖

]
.

This conclude that the operator Q is equicontinuous in Br. As a consequence, Theorem 1
yields that Q admits at least one fixed point.

Next, we provide the sufficient condition on Q to has a unique fixed point.

Theorem 6. Let inequality (14) hold. If

L := (1− Ĉ) + (kM̂ + ℘α`)
Tα

α
+
(
Tα + ᾱ1 + ᾱ2

)
kR̂ < 1,

then the FDS (13) has a unique m-solution ν ∈ BC(Rn) taking the form (12).
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Proof. Our aim is to satisfy inequality (3). For ν and υ ∈ Br, we have∣∣(Qν)(t)− (Qυ)(t)
∣∣

6 ‖ν − υ‖(1− Ĉ) + ‖ν − υ‖M̂
k∑
i=1

(ηi)
α

α
− ‖ν − υ‖R̂

k∑
i=1

(τi)
α − (t− ηi)α

+ (ᾱ1 + ᾱ2)k‖ν − υ‖R̂+ ‖ν − υ‖℘αT
α`

α

= ‖ν − υ‖

(
(1− Ĉ) + M̂

k∑
i=1

(ηi)
α

α
+ R̂

k∑
i=1

(t− ηi)α − (τi)
α

+ (ᾱ1 + ᾱ2)kR̂+
℘αT

α`

α

)
,

(τi)
α < (t− ηi)α

6 ‖ν − υ‖
(

(1− Ĉ) + (kM̂ + ℘α`)
Tα

α
+
(
Tα + ᾱ1 + ᾱ2

)
kR̂

)
:= L‖ν − υ‖.

Thus system (13) admits a unique m-solution ν ∈ BC(Rn).

5.3 Numerical example

Consider the following system:

Dα
0 ν(t)− CiDα

0 ν(t− τi) = Aiν(t) + F (t, ν) (15)

with the following data: n = 2, t ∈ [0, 1], ‖F‖ = 1/4, τi < 1/2,

Ai =

[
0.1 0
0 0.1

]
, Ci =

[
0.2 0
0 0.2

]
.

We have

‖Q‖ 6
2℘αT

α

α ‖F‖
1− 2β̄

= 1.3 = r,

where ℘ = 1, α = 0.5, M̂ = 0.5, R̂ = 1/30 with a simple calculation β̄ = 0.4 < 0.5.
Moreover, condition (14) is satisfied, hence, in view Theorem 5, system (15) admits at
least one m-solution taking the form (12).

6 An iterative algorithm to find solution of equation (15)(15)(15)

In fact, the above problem is a fractional delay singular integral equations system. We
decide to find solution of it by an iterative algorithm. At first, we introduce F (t, ν)
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function as follows:

F (t, ν) = 0.25

[
ν1(t) + ν2(t)
ν1(t) + ν2(t)

]
+

[
f1(t)
f2(t)

]
, (16)

where

f1(t) =
0.0857568√

t
+ 1.17351

√
t− 1.025t− 1.2036t3/2 − 0.00355339t2,

f2(t) =
0.064738√

t
+ 2.06073

√
t− 1.075t+ 1.70215t3/2 − 0.244975t2.

(17)

By substituting (16) and (17) into (15) and concept of Dα
0 ν(t) = DI1−αν(t), α = 0.5,

we obtain a system of fractional singular delay integral equations of the form∫
ν1(t) dt

− h1(t) +

t∫
0

−35ν1(s) + 7ν1(s− τ1) + 25ν2(s)− 5ν2(s− τ1)

6
√
π(t− s)1/2

ds = 0,

∫
ν2(t) dt

− h2(t) +

t∫
0

25ν1(s)− 5ν1(s− τ1)− 35ν2(s) + 7ν2(s− τ1)

6
√
π(t− s)1/2

ds = 0,

(18)

where τ1 = 0.4, η1 = 0.2 and t ∈ (0.6, 1], also

h1(t) = −0.4610126329751105
√
t+ 1.1605823875518624t3/2 + 0.75t2

+ 5.6453332542923516t5/2 − 0.3333333333333333t3,

h2(t) = −0.04063684742891729
√
t− 4.754186899317495t3/2 + t2

− 5.9776994441662845t5/2 + 0.4714045207910317t3.

Now, to solve (18), we use a modified technique constructed an important concept of
topology and perturbations theory that named modified homotopy perturbation method.
To introduce some applications of the similar method, [29–31] hcan be seen. To make the
above iterative algorithm, we consider the nonlinear problem in the general form

A(ν)−H(t) = 0, t ∈ (0.6, 1], (19)

where A is a general differential operator, H is a known function,

H(t) =
(
h1(t), h2(t)

)T ∈ C(R2
)
, ν(t) =

(
ν1(t), ν2(t)

)T ∈ BC(R2
)
.

We distribute the common operator A to N1 and N2 nonlinear operators, and correspond-
ingly H function adapts to some functions such as H1 and H2 in order to (19) can be
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represented byN1(ν)−H1(t)+N2(ν)−H2(t) = 0. Consequently, we define an adapted
homotopy perturbation as tails:

H(u, p) = N1(u)−H1(t) + p
(
N2(u)−H2(t)

)
= 0, p ∈ [0, 1], (20)

and

ν(t) ' u(t) =

[
u1(t)
u2(t)

]
=

[∑∞
j=0 p

ju1j(t)∑∞
j=0 p

ju2j(t)

]
, (21)

where p is an inserting parameter. According to variations of p = 0 to p = 1, we
deliver N1(u) = H1(t) to A(u) = H(t). Therefore, we can develop a solution of (19)
(numerical-solution) for p = 1 and ν(t) ' limp→1 u(t). Currently, considering the
system of fractional singular delay integral equations (18), we introduce operators N1

and N2 and also functions H1 and H2 in these forms:

N1(u) =

[ ∫
u1(t)c∫
u2(t) dt

]
,

N2(u) =

[∫ t
0
−35u1(s)+7u1(s−τ1)+25u2(s)−5u2(s−τ1)

6
√
π(t−s)1/2 ds∫ t

0
25u1(s)−5u1(s−τ1)−35u2(s)+7u2(s−τ1)

6
√
π(t−s)1/2 ds

]
,

H1(t) =

[
h11(t)
h21(t)

]
, H2(t) =

[
h12(t)
h22(t)

]
,

h1(t) = h11(t) + h12(t), h2(t) = h21(t) + h22(t).

(22)

Here h11(t) and h21(t) are simple functions, which are chosen as a prate of functions
h1(t) and h2(t), respectively. Substituting (22) and (21) in (20) concludes that

∞∑
j=0

pj
∫
u1j(t) dt− h11(t)

+ p

(
1

6
√
π

∞∑
j=0

pj
t∫

0

−35u1j(s) + 7u1j(s− τ1) + 25u2j(s)− 5u2j(s− τ1)

(t− s)1/2
ds

− h12(t)

)
= 0,

∞∑
j=0

pj
∫
u2j(t) dt− h21(t)

+ p

(
1

6
√
π

∞∑
j=0

pj
t∫

0

25u1j(s)− 5u1j(s− τ1)− 35u2j(s) + 7u2j(s− τ1)

(t− s)1/2
ds

− h22(t)

)
= 0.

(23)
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Rearranging (23) in terms of p powers concludes that

p0:

(∫
u10(t) dt− h11(t)

)
,

p1:

(∫
u11(t) dt

+
1

6
√
π

t∫
0

−35u10(s) + 7u10(s− τ1) + 25u20(s)− 5u20(s− τ1)

(t− s)1/2
ds

− h1(t) + h11(t)

)
,

pj :

(∫
u1j+1(t) dt

+
1

6
√
π

t∫
0

−35u1j(s) + 7u1j(s− τ1) + 25u2j(s)− 5u2j(s− τ1)

(t− s)1/2
ds

)
,

j = 1, 2, 3, . . . . Also,

p0:

(∫
u20(t) dt− h21(t)

)
,

p1:

(∫
u21(t) dt

+
1

6
√
π

t∫
0

25u10(s)− 5u10(s− τ1)− 35u20(s) + 7u20(s− τ1)

(t− s)1/2
ds

− h2(t) + h21(t)

)
,

pj :

(∫
u2j+1(t) dt

+
1

6
√
π

t∫
0

25u1j(s)− 5u1j(s− τ1)− 35u2j(s) + 7u2j(s− τ1)

(t− s)1/2
ds

)
,

j = 1, 2, 3, . . . .
By the construction of generalized homotopy perturbation (20) the coefficients of

p powers are amounting to zero. Thus, we obtain an iterative process for numerical
solution of (18).
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6.1 Algorithm∫
ui0(t) dt = hi1(t), i = 1, 2,

∫
u11(t) dt =

1

6
√
π

t∫
0

35u10(s)−7u10(s−τ1)−25u20(s)+5u20(s−τ1)

(t−s)1/2
ds

+ h1(t)− h11(t),∫
u21(t) dt =

1

6
√
π

t∫
0

−25u10(s)+5u10(s−τ1)+35u20(s)−7u20(s−τ1)

(t−s)1/2
ds

+ h2(t)− h21(t),∫
u1j+1(t) dt =

1

6
√
π

t∫
0

35u1j(s)−7u1j(s−τ1)−25u2j(s)+5u2j(s−τ1)

(t−s)1/2
ds,

∫
u2j+1(t) dt =

1

6
√
π

t∫
0

−25u1j(s)+5u1j(s−τ1)+35u2j(s)−7u2j(s−τ1)

(t−s)1/2
ds,

(24)

j = 1, 2, 3, . . . .
In algorithm (24), to solve example (18), we choose functions h11(t) and h21(t) as

a part of functions h1(t) and h2(t) in this form:

h11(t) = 0.75t2 − 0.3333333333333333t3,

h21(t) = t2 + 0.4714045207910317t3.

Then we have

u10(t) = 1.5t− t2, u20(t) = 2t+ 1.41421t2,

u11(t) = −2.77556 · 10−17

√
t

− 3.33067 · 10−16

√
t

,

u21(t) = −3.46945 · 10−17

√
t

.

(25)

In (25), u11(t) and u21(t) are approximately zero because t ∈ (0.6, 1]. Consequently,
according to algorithm (24), u1j(t) and u2j(t) are zero for all j > 2. We can give an
approximation of solution as follows:

ν(t) ' lim
p→1

u(t) =

[
limp→1 u1(t)
limp→1 u2(t)

]
=

[∑∞
j=0 u1j(t)∑∞
j=0 u2j(t)

]
,

=

[
u10(t) + u11(t) + u12(t) + · · ·
u20(t) + u21(t) + u22(t) + · · ·

]
=

[
1.5t− t2

2t+ 1.41421t2

]
.

(26)
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Table 1. Computing the absolute errors
in the some points.

t Absolute errors
ν1(t) ν2(t)

0.6 2.2 · 10−16 0.0
0.7 0.0 8.8 · 10−16

0.8 8.8 · 10−16 2.6 · 10−16

0.9 8.8 · 10−16 0.0
1.0 1.7 · 10−15 0.0

For validity of solution (26), we replace it in system of fractional delay singular integral
equations (18) and compute the absolute errors in the some points of interval (0.6, 1] (see
Table 1).

6.2 Bacterial growth system

From the solution ν(t) in (26) we consider a realistic model of Bacterial growth popula-
tion as follows:

ν(t) =

[
κt− `t2

2t+ 1.41421t2

]
, (27)

where ν(t) is the next-state function of the growth for two experiences, κ is a positive
constant, while ` is a negative constant. The quadratic term is called a corrected term for
the linear term. If the constant ` is negative, then the growth occurs; otherwise, there is
no growth (death). Figure 1 shows the bacterial growth of a population. Moreover, the
solution (27) converges to a fixed point of system (15). In fact, that there is an equilibrium
state corresponding to a fixed point. The accuracy of the growth is given by the ratio

0 0.2 0.4 0.6 0.8 1
0

1

2

3

t

ν
(t
)

ν1(t) = 1.5 ∗ t− (−0.9) ∗ t2

ν2(t) = 2 ∗ t+ 1.41 ∗ t2

Figure 1. Solution of (15) when α = 0.5, t ∈ [0, 1].
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Q := κ/|`|. Our example has accuracy = 1.5/0.9 = 1.6, which approximated to the value
of the golden ration. The degree of noncompactness of a set is measured by incomes of
functions entitled measures of noncompactness. This type of measure can describe the
behavior of the growth at infinity.
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