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Abstract. This paper provides a new, symmetric, nonexpansiveness condition to extend the classical
Suzuki mappings. The newly introduced property is proved to be equivalent to condition (E) on
Banach spaces, while it leads to an entirely new class of mappings when going to modular vector
spaces; anyhow, it still provides an extension for the modular version of condition (C). In connection
with the newly defined nonexpansiveness, some necessary and sufficient conditions for the existence
of fixed points are stated and proved. They are based on Mann and Ishikawa iteration procedures,
convenient uniform convexities and properly selected minimizing sequences.
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1 Introduction

The idea of looking for new contractive conditions to lead to wider and wider classes
of mappings, as well as the effort of extending the metric setting, are two of the main
directions in fixed point theory. This paper provides a new contribution related to these
directions by defining a new nonexpansiveness property, on Banach spaces initially, and
extending it afterwards to modular vector spaces (please see [11, 12] for the definition of
modular vector spaces, as well as [1–5, 8–10] and others, for important properties and
connections with fixed point theory).

An important step toward analyzing a more general nonexpansiveness condition on
Banach spaces was performed by Suzuki in [14]. He defined the so called condition (C),
which provided a wider class of mappings than the nonexpansive mappings and stronger
than the class of quasinonexpansive mappings. His idea inspired other researchers to
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introduce even more general properties:

• In [13], the class of Suzuki-type generalized nonexpansive mappings on Banach
spaces was changed in connection with an admissible pair of parameters. This new
property extends Suzuki’s condition, but remains subordinated to quasinonexpan-
siveness.

• In [7], property (E) was introduced, which extends Suzuki’s condition too.
• In [6], it has been defined the so called condition (Da), which properly contains the

nonexpansive mappings. This is stronger than the quasinonexpansiveness property,
and it has no inclusion connection with the class of Suzuki mappings; moreover, no
direct connection has been proved yet with mappings satisfying condition (E).

In addition, some of the previously listed properties were extended to modular vector
spaces, resulting new modular nonexpansiveness conditions:

• Condition (C) in [4] as a modular extension of the Suzuki’s nonexpansiveness
property;

• The modular Suzuki-type generalized nonexpansive mappings in [3] as a modular
extension for the mappings defined in [13], as well as generalization for mappings
satisfying condition (ρC);

• Condition (ρE) in [8], i.e. the modular version of condition (E). This condition has
not yet been proven to be related to property (ρC) or modular nonexpansiveness
(in fact, we will prove later in this paper that condition (ρE) does not extend
condition (ρC); moreover, it does not even extend the modular nonexpansiveness).

Obviously, the following two questions appear in connection with the following ap-
proaches:

1. Is it possible to define a nonexpansiveness condition to include all of the above?
2. Can this condition be extended to modular vector spaces?

This paper provides an answer by defining a new property, called condition (CDE),
which is proved to be equivalent to condition (E) on Banach spaces and to include the
classes of Suzuki-type generalized nonexpansive mappings, as well as the class of map-
pings satisfying condition (Da). When it comes to the modular version of the newly
defined condition, the generated class of mappings is distinct from the family of map-
pings satisfying condition (ρE), but it has the interesting property that it still provides
an extension for modular Suzuki-type generalized nonexpansive mappings, hence, for
modular nonexpansiveness too.

The rest of the paper is organized as follows. Section 2 contains the necessary back-
ground regarding modular vector spaces introducing the specific terminology and several
important technical elements. Section 3 is a review of several generalized nonexpan-
siveness conditions on Banach spaces. A new property is introduced, and a comparison
analysis with the already existing classes is performed. Section 4 includes the elements of
the previous section in modular setting. The newly introduced modular nonexpansiveness
condition is proved to be wider than most of the preexisting classes. Nevertheless, one
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notices that some properties holding true on Banach spaces are lost when going to modular
framework. The main outcome gives a necessary and sufficient condition for the existence
of fixed points of a generalized nonexpansive mapping in connection with Mann iterative
processes. Last, but not least, Section 5 reconsiders this approach via Ishikawa iteration
procedures. This issue will require stronger assumptions regarding the uniform convexity
and will use minimizing sequences for a mixed ρ-type function. Section 6 contains the
conclusions and policy implications.

2 Preliminaries

We start with a short description of basic elements regarding modular vector spaces.

Definition 1. [See [11, 12].) Let X be a real vector space. A function ρ : X → [0,∞]
satisfying

(a) ρ(x) = 0⇔ x = 0;
(b) ρ(−x) = ρ(x) for all x ∈ X;
(c) ρ(αx+ (1− α)y) 6 αρ(x) + (1− α)ρ(y) for all α ∈ [0, 1], for all x, y ∈ X

is called convex modular.
The set

Xρ =
{
x ∈ X: lim

α→0
ρ(αx) = 0

}
is called a modular vector space.

Similarly to normed spaces, concepts as modular convergent sequences, modular
Cauchy sequences, modular completeness, modular boundedness or modular closeness
of sets can be defined in connection with a given convex modular.

Definition 2. (See [1,4,8,11,12].) Let ρ be a convex modular defined on a vector spaceX .

(a) A sequence {xn} ⊂ Xρ is called ρ-convergent to the point x ∈ Xρ if and only if
limn→∞ ρ(xn − x) = 0. Note that the ρ-limit is unique if it exists.

(b) We say that a sequence {xn} ⊂ Xρ is ρ-Cauchy if limn,m→∞ ρ(xn − xm) = 0.
(c) We say that the modular space Xρ is ρ-complete if and only if any ρ-Cauchy

sequence in Xρ is ρ-convergent.
(d) A set C ⊂ Xρ is called ρ-closed if for any sequence {xn} ⊂ C, which ρ-con-

verges to x, it follows x ∈ C.
(e) A setC⊂Xρ is called ρ-bounded if diamρ(C) = sup{ρ(x−y): x, y ∈ C} <∞.
(f) ρ is said to satisfy the Fatou property if ρ(x) 6 lim infn→∞ ρ(xn) whenever
{xn} ρ-converges to x for any x and {xn} in Xρ.

(g) The modular ρ is said to satisfy the ∆2-condition if there exists K > 0 such that
ρ(2x) 6 Kρ(x) for all x ∈ Xρ. The smallest constant K with this property is
usually denoted by ω(2) and, divided by two and rewritten µ = ω(2)/2, is called
the modular factor.

Nonlinear Anal. Model. Control, 25(5):827–845
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Let us point out next an important property of the modular factor, which follows
directly from the ∆2-condition and the convexity.

Remark 1. For all x, y ∈ Xρ, the following inequality holds true:

ρ(x+ y) 6 µ
[
ρ(x) + ρ(y)

]
.

The next elements were initially stated in the setting of modular function spaces (see
[9]). Nevertheless, they can be easily reconsidered for modular vector spaces too (see [1]).

Definition 3. (See [1], cf. [9].) Let r, ε > 0. Consider the set

D1(r, ε) =
{

(x, y): x, y ∈ Xρ, ρ(x) 6 r, ρ(y) 6 r, ρ(x− y) > εr
}

and

δ1(r, ε) =

{
inf{1− 1

rρ(x+y2 ): x, y ∈ D1(r, ε)} if D1(r, ε) 6= ∅;
1 if D1(r, ε) = ∅.

The convex modular ρ satisfies property (UUC1) if for every s > 0 and ε > 0, there exists
η1(s, ε) > 0 such that δ1(r, ε) > η1(s, ε) > 0 for r > s.

Lemma 1. (Cf. [9].) Suppose that ρ is endowed with the (UUC1) property, and let {αn}
be a sequence bounded away from 0 and 1 (i.e. 0 < a 6 αn 6 b < 1 for all n ∈ N).
If there exists r > 0 such that lim supn→∞ ρ(xn) 6 r, lim supn→∞ ρ(yn) 6 r and
lim supn→∞ ρ(αnxn + (1− αn)yn) = r, then limn→∞ ρ(xn − yn) = 0.

Definition 4. (See [1].) Let {xn} be a sequence in Xρ, and let S ⊂ Xρ be a nonempty
subset.

(a) The function τ : S → [0,∞], τ(x) = lim supn→∞ ρ(x− xn), is called a ρ-type
function.

(b) The value r(S) = inf{τ(x): x ∈ S} is called the asymptotic radius of {xn}
relative to S.

(c) A sequence {cn} in S is called a minimizing sequence of τ if limn→∞ τ(cn) =
r(S).

Lemma 2. (See [1].) Let Xρ be a ρ-complete modular space. Assume that ρ satisfies
the Fatou property. Let S be a nonempty ρ-closed convex subset of Xρ, and let {xn}
be a sequence in Xρ with finite asymptotic radius relative to S (i.e. r(S) = inf{τ(x):
x ∈ S} <∞). If ρ satisfies (UUC1) property, then all the minimizing sequences of τ are
ρ-convergent to the same limit.

In addition to the modular related elements listed above, the following general out-
come will provide an important tool for our further analysis.

Lemma 3. Let {an} and {bn} be two bounded real sequences. Then

(i) lim infn→∞min{an, bn} = min{lim infn→∞ an, lim supn→∞ bn} and
lim supn→∞min{an, bn} 6 min{lim supn→∞ an, lim supn→∞ bn}.

(ii) Let cn = αnan + (1 − αn)bn with αn ∈ [0, 1] convergent to a real number
α ∈ [0, 1]. Then lim supn→∞ cn 6 α lim supn→∞ an+(1−α) lim supn→∞ bn.
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3 Classes of generalized nonexpansive mappings on Banach spaces

Let us start by recalling several important properties, which were meant to extend the
class of nonexpansive mappings on Banach spaces.

B.1 Mappings with condition (C) (Suzuki nonexpansive mappings)

Definition 5. (See [14].) Let S ⊂ X be a nonempty subset of a Banach space (X, ‖·‖).
A mapping T : S → S is said to satisfy condition (C) (or to be a Suzuki nonexpansive
mapping) if ‖Tx− Ty‖ 6 ‖x− y‖ whenever ‖x− Tx‖/2 6 ‖x− y‖.

The definition above makes clear the fact that each nonexpansive mapping is also
a Suzuki mapping, while each mapping satisfying condition (C) is quasinonexpansive.

The following lemma refers to an essential property of mappings under condition (C).

Lemma 4. (See [14].) If S ⊂ X is a nonempty subset of a Banach space (X, ‖·‖) and
T : S → S is a Suzuki nonexpansive mapping, then

(i) for each x ∈ S, one has ‖Tx− T 2x‖ 6 ‖x− Tx‖;
(ii) for any x, y ∈ S, either ‖x− Tx‖/2 6 ‖x− y‖ or ‖Tx− T 2x‖/2 6 ‖Tx− y‖.

(iii) the inequality ‖x− Ty‖ 6 3‖Tx− x‖+ ‖x− y‖ holds for all x, y ∈ S.

B.2 (α,β)-Suzuki-type generalized nonexpansive mappings

Definition 6. (See [13].) Let (X, ‖·‖) be a Banach space and S ⊂ X a nonempty subset.
Let α > 0 and β > 0. A mapping T : S → S is called (α, β)-Suzuki-type generalized
nonexpansive if, for all x, y ∈ S,

1

2
‖x− Tx‖ 6 ‖x− y‖

=⇒ α‖Tx− Ty‖+ (1− α)‖x− Ty‖ 6 β‖Tx− y‖+ (1− β)‖x− y‖.

We notice that the class of Suzuki nonexpansive mappings can be retrieved when
considering α = 1 and β = 0. Also, each (α, β)-Suzuki-type generalized nonexpansive
mapping is quasinonexpansive.

The following lemma recalls some basic properties of the (α, β)-Suzuki mappings as
they were stated and proved in [13] for properly chosen parameters (we shall refer to such
convenient parameters as admissible parameters).

Lemma 5. (See [13].) Let (X, ‖·‖) be a Banach space, and let S ⊂ X a nonempty subset.
Assume that α > 1, β > 0 and α − β 6 1, and let T : S → S be an (α, β)-Suzuki-type
mapping. Then the following inequalities hold:

(i) ‖Tx− T 2x‖ 6 ‖x− Tx‖ for all x ∈ S;
(ii) ‖x− Tx‖/2 6 ‖x− y‖ or ‖Tx− T 2x‖/2 6 ‖Tx− y‖ for all x, y ∈ S;

(iii) ‖x− Ty‖ 6 (3α+ β)‖Tx− x‖+ ‖x− y‖ for all x, y ∈ S.

Nonlinear Anal. Model. Control, 25(5):827–845
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B.3 Mappings satisfying condition (Da)

Definition 7. (See [6].) Let S ⊂ X be a nonempty subset of a Banach space (X, ‖·‖).
For a ∈ (1/2, 1), we say that a mapping T : S → S satisfies condition (Da) if

‖Tx− Ty‖ 6 ‖x− y‖ ∀α ∈ [a, 1], x ∈ S, y ∈ S(T, x, α),

where

S(T, x, α) =
{

(1− α)p+ αTq: p, q ∈ S, ‖Tp− p‖, ‖Tq − q‖ 6 ‖Tx− x‖
}
.

B.4 Mappings satisfying condition (D)

If we reduce the admissible set of pairs involved in Definition 7 by fixing α = 1, we could
define a more general class of mappings. We shall further refer to the resulting condition
by calling it condition (D). Its definition is stated below.

Definition 8. Let S ⊂ X be a nonempty subset of a Banach space (X, ‖·‖). We say that
a mapping T : S → S satisfies condition (D) if

‖Tx− Ty‖ 6 ‖x− y‖ ∀x ∈ S, y ∈ S(T, x),

where
S(T, x) =

{
Tp: p ∈ S, ‖Tp− p‖ 6 ‖Tx− x‖

}
.

We notice that the notion of mappings satisfying condition (D) is more general than
the notion of mappings satisfying condition (Da) for any a ∈ (1/2, 1).

The following result is an immediate consequence of the definition and requires no
special clarifications.

Proposition 1. Each nonexpansive mapping satisfies condition (D). If T satisfies condi-
tion (D), then T is quasinonexpansive.

In addition, the following list provides basic properties of mappings satisfying condi-
tion (D).

Lemma 6. Suppose T : S → S satisfies condition (D). Then

(i) ‖T 2x− Tx‖ 6 ‖Tx− x‖ for all x ∈ S;
(ii) for all x, y ∈ S, at least one of the inequalities ‖T 2x − Ty‖ 6 ‖Tx − y‖ or
‖T 2y − Tx‖ 6 ‖Ty − x‖ is satisfied;

(iii) ‖x− Ty‖ 6 3‖Tx− x‖+ ‖x− y‖ whenever ‖Tx− x‖ 6 ‖Ty − y‖;
(iv) ‖Tx− Ty‖ 6 2 min{‖Tx− x‖, ‖Ty − y‖}+ ‖x− y‖ for all x, y ∈ S.

Proof. (i) Since ‖Tx−x‖ 6 ‖Tx−x‖, it follows that Tx ∈ S(T, x), therefore, according
to the definition, ‖T 2x− Tx‖ 6 ‖Tx− x‖.

(ii) If ‖Tx − x‖ 6 ‖Ty − y‖, it follows that Tx ∈ S(T, y) and ‖T 2x − Ty‖ 6
‖Tx− y‖. Similarly, when ‖Ty − y‖ < ‖Tx− x‖, one finds ‖T 2y − Tx‖ 6 ‖Ty − x‖.
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(iii) Assume that ‖Tx − x‖ 6 ‖Ty − y‖. Then, using the subadditivity of the norm
and the inequalities stated at (i) and (ii), we obtain

‖x− Ty‖ 6 ‖x− Tx‖+
∥∥Tx− T 2x

∥∥+
∥∥T 2x− Ty

∥∥
6 ‖x− Tx‖+ ‖x− Tx‖+ ‖Tx− y‖
6 3‖Tx− x‖+ ‖x− y‖.

(iv) Suppose ‖Tx− x‖ 6 ‖Ty − y‖. Then

‖Tx− Ty‖ 6
∥∥Tx− T 2x

∥∥+
∥∥T 2x− Ty

∥∥
6 ‖Tx− x‖+ ‖Tx− y‖
6 2‖Tx− x‖+ ‖x− y‖
= 2 min

{
‖Tx− x‖, ‖Ty − y‖

}
+ ‖x− y‖.

By switching the order of x and y we find that the inequality is satisfied when
‖Ty − y‖ < ‖Tx− x‖ too. Therefore, the inequality holds for every pair (x, y).

B.5 Mappings satisfying condition (E)

Definition 9. (See [7].) Let S be a nonempty subset of a Banach space (X, ‖·‖). For
λ > 1, we say that a mapping T : S → S satisfies condition (Eλ) if

‖x− Ty‖ 6 λ‖x− Tx‖+ ‖x− y‖ ∀x, y ∈ S.

The mapping T is said to satisfy condition (E) whenever T satisfies (Eλ) for some λ > 1.

Proposition 2. (See [7].) Let T : S → S be a mapping, which satisfies condition (E) on
S. If T has fixed points, then T is quasinonexpansive. The converse is not true.

Moreover, Lemma 4(iii) and Lemma 5(iii) ensure us that each Suzuki nonexpansive
mapping, as well as each (α, β)-Suzuki-type nonexpansive mapping with convenient pair
of parameters, satisfies also condition (E). In particular, each nonexpansive mapping
satisfies condition (E). Nevertheless, we notice from Lemma 6(iii) that this property is
not necessarily satisfied by mappings endowed with property (D) in general.

B.6 A new class of nonexpansive mappings on Banach spaces

To summarize, we notice that all the conditions listed above are wider than nonexpan-
siveness and, simultaneously, remain stronger than quasinonexpansiveness. The (α, β)-
Suzuki-type generalized nonexpansive mappings with α > 1, β > 0 and α−β 6 1 satisfy
condition (E) for µ = 3α + β. In particular, the Suzuki nonexpansive mappings satisfy
condition (E). However, at this moment, we cannot state for sure that mappings satisfying
condition (D) have also the property (E). These lead us to the problem of finding an even
larger class of mappings that would include all of the above.

We introduce the following definition.

Nonlinear Anal. Model. Control, 25(5):827–845
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Definition 10. Let S be a nonempty subset of a Banach space (X, ‖·‖). We say that
a mapping T : S → S satisfies condition (CDE) if there exists λ > 1 such that

‖Tx− Ty‖ 6 λmin
{
‖x− Tx‖, ‖y − Ty‖

}
+ ‖x− y‖ ∀x, y,∈ S.

The statement below describes the connection of the newly defined nonexpansiveness
condition with the previously listed classes of mappings.

Proposition 3. The following statements hold true:

(i) Condition (E) is equivalent to condition (CDE): in particular, Suzuki nonexpan-
sive mappings and (α, β)-Suzuki nonexpansive mappings for an admissible set of
parameters satisfy condition (CDE).

(ii) Each mapping satisfying condition (D) satisfies condition (CDE) too; and, ac-
cording to (i), it satisfies also condition (E).

Proof. (i) Suppose that T satisfies condition (Eλ) for some λ > 1. Then

‖Tx− Ty‖ 6 ‖Tx− x‖+ ‖x− Ty‖
6 (λ+ 1)‖Tx− x‖+ ‖x− y‖ ∀x, y ∈ S.

Changing the order of x and y, one also finds

‖Tx− Ty‖ 6 (λ+ 1)‖Ty − y‖+ ‖x− y‖ ∀x, y ∈ S.

Combining the two resulted inequalities, one obtains precisely the condition (CDE).
Suppose now that T satisfies condition (CDE) for a given parameter λ > 1. Then

‖x− Ty‖ 6 ‖x− Tx‖+ ‖Tx− Ty‖
6 ‖x− Tx‖+ λmin

{
‖x− Tx‖, ‖y − Ty‖

}
+ ‖x− y‖

6 (λ+ 1)‖x− Tx‖+ ‖x− y‖,

which is precisely condition (E).
(ii) It follows directly from Lemma 6(iv).

4 Extensions to modular vector spaces

In a parallel approach, some of the classes listed above were extended to modular vector
spaces as it follows.

M.1 Condition (ρC) or modular Suzuki nonexpansive mappings

Definition 11. (See [4].) Let ρ denote a convex modular satisfying condition ∆2 on
a linear (vector) space X with modular factor µ, and let S ⊂ Xρ be a nonempty subset.
A mapping T : S → S is said to satisfy condition (ρC) if

ρ(Tx− Ty) 6 ρ(x− y) whenever
1

2µ
ρ(x− Tx) 6 ρ(x− y).

http://www.journals.vu.lt/nonlinear-analysis
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Lemma 7. (See [4].) Let ρ denote a convex modular with ∆2-property, and let S ⊂ Xρ

be a nonempty subset. Then

(i) for each x ∈ S, one has ρ(Tx− T 2x) 6 ρ(x− Tx);
(ii) for any x, y ∈ S, either ρ(x − Tx)/(2µ) 6 ρ(x − y) or ρ(Tx − T 2x)/(2µ) 6

ρ(Tx− y).

M.2 Modular (α,β)-Suzuki mappings

Definition 12. (See [3].) Let ρ be a convex modular satisfying ∆2-condition on a vector
space X , and let S ⊂ Xρ be a nonempty subset. Let α > 1 and β > 0. A mapping
T : S → S is said to be modular (α, β)-Suzuki mapping if, for all x, y ∈ S,

αρ(Tx− Ty) +
1− α
µ

ρ(x− Ty) 6
β

µ
ρ(Tx− y) + (1− β)ρ(x− y)

whenever ρ(x− Tx)/(2µ) 6 ρ(x− y).

Same as for Banach spaces, the modular Suzuki nonexpansive mappings are modular
(α, β)-Suzuki for α = 1 and β = 0. Moreover, when the modular is precisely the norm
of a Banach space, then the modular factor is µ = 1, and the definition above describes
the (α, β)-Suzuki-type nonexpansiveness condition.

Lemma 8. (See [3].) Let ρ denote a convex modular on X with ∆2-property, and let
µ denote the corresponding modular factor. Consider also a nonempty subset S ⊂ Xρ.
Assume that (α, β) ∈ A, where

A =
{

(α, β): α > 1, β > 0, α− β 6 1, (µ− 1)(α− 1) < 1
}
,

is a set of admissible parameters, and let T : S → S be a modular-(α, β)-Suzuki
mapping. Then

(i) ρ(Tx− T 2x) 6 ρ(x− Tx) for all x ∈ S;
(ii) ρ(x−Tx)/(2ν) 6 ρ(x−y) or ρ(Tx−T 2x)/(2µ) 6 ρ(Tx−y) for all x, y ∈ S;

(iii) there exists ϕ = ϕ(α, β, µ) such that ρ(x − Ty) 6 ϕ(α, β, µ)ρ(x − Tx) +
µρ(x− y) for all x, y ∈ S.

M.3 Condition (ρE)

Definition 13. (See [8].) Let S be a nonempty subset of a modular vector space Xρ. For
λ > 1, we say that a mapping T : S → S satisfies condition (ρEλ) if

ρ(x− Ty) 6 λρ(x− Tx) + ρ(x− y) ∀x, y ∈ S.

The mapping T is said to satisfy condition (ρE) whenever T satisfies (ρEλ) for some
λ > 1.

These definitions inspire us to perform an extension of the newly introduced condi-
tion (CDE) from Banach spaces to modular spaces.

Nonlinear Anal. Model. Control, 25(5):827–845
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M.4 Condition (ρCDE)

Definition 14. Let S be a nonempty subset of a modular vector space Xρ. For λ > 1, we
say that a mapping T : S → S satisfies condition (ρCDE) if

ρ(Tx− Ty) 6 λmin
{
ρ(x− Tx), ρ(y − Ty)

}
+ ρ(x− y) ∀x, y ∈ S.

Remark 2. Unfortunately, apart from Banach spaces, we do not have enough arguments
to state that modular (α, β)-Suzuki mappings with (α, β) ∈ A satisfy also condition
(ρE). Lemma 8(iii) gives a description for modular Suzuki mappings of high similitude
with the definition of condition (ρE), but the coefficient of ρ(x − y) in the right side
is different from 1. We cannot even state for sure that modular Suzuki mappings are
satisfying condition (ρE).

However, we shall prove that (α, β)-Suzuki mappings satisfy condition (ρCDE).

Proposition 4. Let ρ denote a convex modular on X with ∆2-property, and let S ⊂ Xρ

be a nonempty subset. Let T : S → S be a modular (α, β)-Suzuki mapping for a given
admissible pair of parameters. Then T satisfies condition (ρCDE).

Proof. Let x, y ∈ S. According to Lemma 8(ii), we have to consider two distinct cases:
Case 1. Suppose that ρ(x − Tx)/(2µ) 6 ρ(x − y). Then, since T is (α, β)-Suzuki

mapping, it follows

αρ(Tx− Tp) 6 α− 1

µ
ρ(x− Tp) +

β

µ
ρ(Tx− y) + (1− β)ρ(x− y)

6
α− 1

µ
µ
[
ρ(x− Tx) + ρ(Tx− Tp)

]
+
β

µ
µ
[
ρ(Tx− x) + ρ(x− y)

]
+ (1− β)ρ(x− y)

6 (α+ β − 1)ρ(x− Tx) + (α− 1)ρ(Tx− Tp) + ρ(x− y),

therefore,

ρ(Tx− Tp) 6 (α+ β − 1)ρ(x− Tx) + ρ(x− y). (1)

Case 2. Suppose that ρ(x − Tx)/(2µ) > ρ(x − y). Then we must have instead
ρ(Tx− T 2x)/(2µ) 6 ρ(Tx− y) and, since T is a (α, β)-Suzuki mapping, we find

αρ
(
T 2x− Ty

)
6
α− 1

µ
ρ(Tx− Ty) +

β

µ
ρ
(
T 2x− y

)
+ (1− β)ρ(Tx− y).

It follows that

αρ(Tx− Ty)

6 µ
(
αρ
(
Tx− T 2x

)
+ αρ

(
T 2x− Ty

))
6 µ

[
αρ
(
Tx− T 2x

)
+
α− 1

µ
ρ(Tx− Ty) +

β

µ
ρ
(
T 2x− y

)
+ (1− β)ρ(Tx− y)

]
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6 µ

[
αρ(Tx− T 2x) +

α− 1

µ
ρ(Tx− Ty) +

β

µ
µ
[
ρ(T 2x− Tx) + ρ(Tx− y)

]
+ (1− β)ρ(Tx− y)

]
6 µ

[(
α+ β

)
ρ
(
Tx− T 2x

)
+
α− 1

µ
ρ(Tx− Ty) + ρ(Tx− y)

]
6 µ

[(
α+ β

)
ρ
(
Tx− T 2x

)
+
α− 1

µ
ρ(Tx− Ty) + µ

[
ρ(Tx− x) + ρ(x− y)

]]
6 µ

[(
α+ β + µ

)
ρ
(
Tx− T 2x

)
+
α− 1

µ
ρ(Tx− Ty) + µρ(x− y)

]
,

that is,
ρ(Tx− Ty) 6 µ(α+ β + µ)ρ

(
Tx− T 2x

)
+ µ2ρ(x− y). (2)

From the initial assumption of Case 2 we have ρ(x − y) < ρ(x − Tx)/(2µ). Also,
from Lemma 8(i) we have ρ(Tx−T 2x) 6 ρ(x−Tx). Using these inequalities in relation
(2), this leads to

ρ(Tx− Ty) 6 µ

(
1

2
+ α+ β + µ

)
ρ(x− Tx). (3)

Denoting λ = µ(1/2 +α+ β + µ) and comparing inequalities (1) and (3), we obtain

ρ(Tx− Ty) 6 λρ(x− Tx) + ρ(x− y) ∀x, y ∈ S.

By considering property (b) from Definition 1 we also obtain

ρ(Tx− Ty) 6 λρ(y − Ty) + ρ(x− y) ∀x, y ∈ S

ultimately leading to the conclusion.

We previously had the opportunity to test the fact that, on what concerns Banach
spaces, condition (E) is equivalent to condition (CDE). In the following, we provide
an example to prove that this equivalence does not hold anymore for arbitrary modular
spaces.

Example 1. On X = R consider the modular

ρ : X → [0,∞], ρ(x) = |x|
(
|x|+ 1

)
and the mapping

T : [0,∞)→ [0,∞), Tx =
x2

x+ 1
.

It can be easily checked that ρ is a convex modular with ∆2-property and modular factor
µ = 2. We prove next that T satisfies condition (ρCDE). Indeed, we find

ρ(Tx− Ty) = ρ

(
x2

x+ 1
− y2

y + 1

)
= ρ

(
xy + x+ y

xy + x+ y + 1
(x− y)

)
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=
xy + x+ y

xy + x+ y + 1
|x− y|

(
xy + x+ y

xy + x+ y + 1
|x− y|+ 1

)
6 |x− y|

(
|x− y|+ 1

)
.

On the other hand,
ρ(x− y) = |x− y|

(
|x− y|+ 1

)
.

Therefore,
ρ(Tx− Ty) 6 ρ(x− y) ∀x, y ∈ X,

hence, T is modular nonexpansive, therefore, is also modular Suzuki and ultimately
satisfies condition (ρCDE).

Let us prove now that T does not satisfy condition (ρE). Assume the contrary, and let
λ > 1 be such that

ρ(x− Ty) 6 λρ(x− Tx) + ρ(x− y) ∀x, y ∈ [0,∞).

In particular, for y = 1 and x > 1, the above inequality comes to

ρ

(
x− 1

2

)
6 λρ(x− Tx) + ρ(x− 1),

that is,

λ >
(x− 1

2 )(x+ 1
2 )− (x− 1)x

x(2x+1)
(x+1)2

=
(x− 1

4 )(x+ 1)2

x(2x+ 1)
.

Taking the limit x→∞, we find λ =∞, which is not acceptable.

In the following we present our main result regarding condition (ρCDE).

Theorem 1. LetXρ be a ρ-complete modular vector space. Assume that ρ takes only finite
values, satisfies the∆2-condition, the Fatou and (UUC1) properties. Let S be a nonempty,
ρ-closed and convex subset of Xρ, and let T : S → S be a mapping satisfying condition
(ρCDE). Consider the sequence {xn} defined by the Mann iterative process xn+1 =
αnxn + (1 − αn)Txn, x0 ∈ S, for {αn} a real sequence convergent to α∗ such that
0 < a 6 αn 6 b < 1. Then Fix(T ) 6= ∅ if and only if {xn} has finite asymptotic radius
relative to S and limn→∞ ρ(Txn − xn) = 0.

Proof. We start with the direct implication. Let p ∈ Fix(T ). Applying the definition
regarding condition (ρCDE), one obtains

ρ(p− Tx) 6 λmin
{

0, ρ(x− Tx)
}

+ ρ(p− x) = ρ(p− x) ∀x ∈ S. (4)

Using the convexity of the modular and inequality (4), one finds

ρ(xn+1 − p) = ρ
(
αn(xn − p) + (1− αn)(Txn − p)

)
6 αnρ(xn − p) + (1− αn)ρ(Txn − p)
6 αnρ(xn − p) + (1− αn)ρ(xn − p)
= ρ(xn − p).
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It follows that {ρ(xn − p)} is a decreasing nonnegative sequence in R+. Therefore,
{ρ(xn − p)} is convergent to a nonnegative real number. Let

r = lim
n→∞

ρ(xn − p). (5)

One immediate consequence of this is that τ(S) 6 r < ∞, where τ denotes the
ρ-type function corresponding to {xn}; therefore, {xn} has finite asymptotic radius.

By denoting yn = Txn one finds, according to inequality (4), ρ(yn − p) =
ρ(Txn − p) 6 ρ(xn − p). Therefore,

lim sup
n→∞

ρ(yn − p) 6 r. (6)

In addition,

lim
n→∞

ρ
(
αn(xn − p) + (1− αn)(yn − p)

)
= lim
n→∞

ρ
(
xn+1 − p

)
= r. (7)

Using inequalities (5), (6) and (7) and the fact that ρ satisfies the (UUC1) property, it
follows, according to Lemma 1, that limn→∞ ρ(xn − yn) = limn→∞ ρ(xn − Txn) = 0,
which ends this part of the proof.

In the following, we test the converse statement. Let τ, τ̄ : S → [0,∞] denote the
ρ-type functions corresponding to sequences {xn} and {yn = Txn}, respectively. We
shall prove first that, for each p ∈ S, τ̄(Tp) 6 τ(p). Indeed, for each n ∈ N,

ρ(yn − Tp) = ρ(Txn − Tp)
6 λmin

{
ρ(xn − Txn), ρ(p− Tp)

}
+ ρ(xn, p).

Taking lim supn→∞ on the above inequality and using Lemma 3(i), one finds

τ̄(Tp) 6 λmin
{

0, ρ(p− Tp)
}

+ τ(p) = τ(p). (8)
Also,

ρ(xn+1 − p) = ρ
(
αn(xn − p) + (1− αn)(p− yn)

)
6 αnρ(xn − p) + (1− αn)ρ(p− yn).

Again, from Lemma 3(ii) it follows τ(p) 6 α∗τ(p) + (1−α∗)τ̄(p), where α∗ ∈ (0, 1) is
the limit of the sequence {αn}, thus

τ(p) 6 τ̄(p). (9)

Combining relations (8) and(9), one finds

τ(Tp) 6 τ̄(Tp) 6 τ(p) 6 τ̄(p) ∀p ∈ S.

Let {cn} be a minimizing sequence of τ . Then limn→∞ τ(cn) = r(S). Since, as we
just have proved, τ(Tcn) 6 τ(cn), it follows that {Tcn} is also a minimizing sequence
of τ . According to Lemma 2, all the minimizing sequences are ρ-convergent to the same
limit c, i.e.

lim
n→∞

ρ(cn − c) = lim
n→∞

ρ(Tcn − c). (10)
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On the other hand, using again the definition of condition (ρCDE), we find that

ρ(Tcn − Tc) 6 min
{
ρ(cn − Tcn), ρ(c− Tc)

}
+ ρ(cn − c)

6 min
{
µρ(cn − c) + µρ(c− Tcn), ρ(c− Tc)

}
+ ρ(cn − c),

which, by taking n to infinity, leads to the conclusion limn→∞ ρ(Tcn−Tc) = 0 meaning
that {Tcn} is ρ-convergent to Tc. On the other hand, equation (10) states that it is also
convergent to c, and, since the ρ-limit is unique, it follows that Tc = c.

5 Extension to Ishikawa iterative processes

In the following, let us consider an Ishikawa two-step iterative process

x0 ∈ Xρ;

yn = αnxn + (1− αn)Txn, 0 < a 6 αn 6 b < 1;

xn+1 = βnxn + (1− βn)Tyn, 0 6 βn 6 c < 1, ∀n > 0.

(11)

The aim of this section is to phrase a new necessary and sufficient condition for the
existence of fixed points of a given mapping T satisfying condition (ρCDE) via the
iterative procedure listed above. In order to reach this outcome, a stronger definition of
modular uniform convexity is required as follows.

Definition 15. Let D1(r, ε) and δ1(r, ε) be as in Definition 3. The convex modular ρ is
said to satisfy property (UUC1′) if for every s > 0 and ε > 0, there exists η1(s, ε) > 1/2
such that δ1(r, ε) > η1(s, ε) > 1/2 for r > s.

Obviously, if ρ satisfies property (UUC1′), it also satisfies condition (UUC1).
The next Lemma will provide an important tool for the proof of the main outcome.

Lemma 9. Let Xρ be a ρ-complete modular space. Let S be a nonempty ρ-closed convex
subset of Xρ, and {xn}, {yn} be two sequences in Xρ. Assume that τ and τ̄ denote their
ρ-type functions and τ0 < ∞ and τ̄0 < ∞, respectively, are their finite asymptotic radii.
For a, b > 0, define the mixed ρ-type function

ϕ : S → [0,∞], ϕ(x) = aτ(x) + bτ̄(x).

If ρ satisfies property (UUC1′), then all the minimizing sequences of ϕ are ρ-convergent
to the same limit.

Proof. Let us denote ϕ0 = infx∈S ϕ(x), and let {cn} be a minimizing sequence for ϕ.
Assume that {cn} is not ρ-Cauchy. Then there exists two subsequences {ckn} and {cmn},
kn 6= mn > n, and ε0 > 0 such that ρ(ckn − cmn

) > ε0 for all n. Let us analyze next the
first subsequence. Since {cn} is minimizing, one also has

lim
n→∞

ϕ(ckn) = a lim
n→∞

τ(ckn) + b lim
n→∞

τ̄(ckn) = ϕ0.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


A unifying approach for some nonexpansiveness conditions on modular vector spaces 841

Fix ε ∈ (0, 1). Then there exists n0 such that, for all n > n0,

aτ(ckn) + bτ̄(ckn) < ϕ0 + ε.

This leads to

τ̄(ckn) <
1

b
(ϕ0 − aτ0 + ε), (12)

τ(ckn) <
1

a
(ϕ0 − bτ̄0 + ε). (13)

We focus next on inequality (12) meaning

lim sup
l→∞

ρ(ckn − yl) <
1

b
(ϕ0 − aτ0 + ε).

It follows that

ρ(ckn − yl) <
1

b
(ϕ0 − aτ0 + 2ε) ∀l > l0, ∀n > n0.

A similar inequality could be obtained for the subsequence {cmn
} too. Since also

ρ
(
(ckn − yl)− (cmn

− yl)
)

> ε0 >
1

b
(ϕ0 − aτ0 + 2ε)

bε0
ϕ0 − aτ0 + 2

∀n 6= m > n0,

the uniform convexity condition (UUC1′) leads to the conclusion that there exists
η1((ϕ0 − aτ0)/b, bε0/(ϕ0 − aτ0 + 2)) > 1/2 such that

ρ

(
ckn − cmn

2
− yl

)
6

1

b
(ϕ0 − aτ0 + ε)

[
1− η1

(
1

b
(ϕ0 − aτ0),

bε0
ϕ0 − aτ0 + 2

)]
.

Letting ε→ 0, taking afterwards lim supl→∞ and using the fact that η1 > 1/2, we find

bτ̄

(
ckn − cmn

2

)
6 (ϕ0 − aτ0)

[
1− η1

(
1

b
(ϕ0 − aτ0),

bε0
ϕ0 − aτ0 + 2

)]
<

1

2
(ϕ0 − aτ0). (14)

Similar arguments for inequality (13) lead to

aτ

(
ckn − cmn

2

)
<

1

2
(ϕ0 − bτ̄0). (15)

By adding inequalities (14) and (15), we find

ϕ

(
ckn − cmn

2

)
< ϕ0 −

1

2
(aτ+bτ̄0)
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leading to

ϕ0 < ϕ0 −
1

2
(aτ+bτ̄0),

which is impossible. Therefore, {cn} is a Cauchy sequence, and, since S is a nonempty
ρ-closed convex subset of a ρ-complete modular space, it follows that {cn} is convergent
to a point c ∈ S. To finish the proof, we need to test that the ρ-limit is independent of
the minimizing sequence. Indeed, if {cn} and {c̄n} are two minimizing sequences of ϕ,
so it is the sequence {c̃n}, where c̃2n = cn and c̃2n+1 = c̄n. Hence, its modular limit is
common for both {cn} and {c̄n}.

We state next the main outcome of the section.

Theorem 2. Let Xρ be a ρ-complete modular vector space. Assume that ρ takes only
finite values, satisfies the ∆2-condition and (UUC1′)-property. Let S be a nonempty,
ρ-closed and convex subset of Xρ, and let T : S → S be mapping satisfying condi-
tion (ρCDE). Consider the sequence {xn} defined by the Ishikawa iterative process (11)
with {αn} convergent to α∗ ∈ (0, 1) and {βn} convergent to β∗ ∈ [0, 1). Then
Fix(T ) 6= ∅ if and only if {xn} and {yn} have finite asymptotic radiuses relative to S
and limn→∞ ρ(Txn − xn) = 0.

Proof. Assume that p ∈ Fix(T ). Inequality (4) holds true, which means that T is modular
quasinonexpansive. The following relations derive from the convexity of ρ:

ρ(yn − p) = ρ
((
αnxn + (1− αn)Txn

)
− p
)

= ρ
(
αn(xn − p) + (1− αn)(Txn − p)

)
6 αnρ(xn − p) + (1− αn)ρ(Txn − p)
6 ρ(xn − p),

and also
ρ(xn+1 − p) = ρ

((
βnxn + (1− βn)Tyn

)
− p
)

= ρ
(
βn(xn − p) + (1− αn)(Tyn − p)

)
6 βnρ(xn − p) + (1− βn)ρ(yn − p)
6 ρ(xn − p). (16)

We have obtained again that {ρ(xn−p)} is a decreasing nonnegative sequence in R+

and, consequently, it is convergent. Let r > 0 denote its ρ-limit. Using again inequality
(4), it follows ρ(Txn − p) 6 ρ(xn − p). Therefore,

lim sup
n→∞

ρ(Txn − p) 6 r.

From inequality (16) one also finds that

ρ(xn+1)− βnρ(xn − p)
1− βn

6 ρ(yn − p) 6 ρ(xn − p).
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Letting n→∞, one obtains

lim sup
n→∞

ρ(yn − p) = r

meaning
lim
n→∞

ρ
(
αn(xn − p) + (1− αn)(Txn − p)

)
= r.

Using again Lemma 1, we may conclude that limn→∞ ρ(xn−Txn) = 0, which ends
this part of the proof.

In the following, we test the converse statement. Let τ, τ̄ : S → [0,∞] denote the
ρ-type functions corresponding to sequences {xn} and {yn}, and let ϕ denote the mixed
ρ-type function

ϕ : S → [0,∞], ϕ(x) = (1− α∗)τ(x) + τ̄(x) ∀x ∈ S.

We know that limn→∞ ρ(xn − Txn) = 0. Then

ρ(yn − xn) 6 (1− αn)ρ(Txn − xn)→ 0;

ρ(yn − Txn) 6 αnρ(xn − Txn)→ 0;

ρ(Tyn − Txn) 6 λmin
{
ρ(xn − Txn), ρ(yn − Tyn)

}
+ ρ(xn − yn)→ 0;

ρ(yn − Tyn) 6 µ
[
ρ(yn − Txn) + ρ(Tyn − Txn)

]
→ 0.

Let p ∈ S be an arbitrary point. Using the iterative formulas for {yn} and {xn+1}
from (11), we find

ρ(yn − Tp) 6 αnρ(xn − Tp) + (1− αn)ρ(Txn − Tp)
6 αnρ(xn − Tp)

+ (1− αn)
[
λmin

{
ρ(xn − Txn), ρ(p− Tp)

}
+ ρ(xn − p)

]
,

ρ(xn+1 − Tp) 6 βnρ(xn − Tp) + (1− βn)ρ(Tyn − Tp)
6 βnρ(xn − Tp)

+ (1− βn)
[
λmin

{
ρ(yn − Tyn), ρ(p− Tp)

}
+ ρ(yn − p)

]
.

Letting n→∞, the above inequalities lead to

τ̄(Tp) 6 α∗τ(Tp) + (1− α∗)τ(p);

τ(Tp) 6 β∗τ(Tp) + (1− β∗)τ̄(p) ⇐⇒ τ(Tp) 6 τ̄(p).

Combining these two, we find

τ̄(Tp) + (1− α∗)τ(Tp) 6 τ̄(p) + (1− α∗)τ(p),

that is,
ϕ(Tp) 6 ϕ(p) ∀p ∈ S.
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Let {cn} be a minimizing sequence of ϕ. Then limn→∞ ϕ(cn) = ϕ0. Since, as we
just have proved, ϕ(Tcn) 6 ϕ(cn), it follows that {Tcn} is also a minimizing sequence
of ϕ. According to Lemma 9, all the minimizing sequences are ρ-convergent to the same
limit c, i.e.

lim
n→∞

ρ(cn − c) = lim
n→∞

ρ(Tcn − c) = 0.

On the other hand, using again condition (ρCDE), we find that

ρ(Tcn − Tc) 6 λmin
{
ρ(cn − Tcn), ρ(c− Tc)

}
+ ρ(cn − c)

6 λmin
{
µρ(cn − c) + µρ(c− Tcn), ρ(c− Tc)

}
+ ρ(cn − c),

which, by taking n to infinity, leads to the conclusion limn→∞ ρ(Tcn−Tc) = 0 meaning
that {Tcn} is ρ-convergent to Tc. Since the ρ-limit is unique, it follows that Tc = c.

6 Conclusions

The elements presented above show that the search for wider classes of nonexpansive
mappings is far away from reaching to an end; we were able to define a new nonexpan-
siveness property, namely, the (CDE) condition, which, as it concerns Banach spaces,
proves to be equivalent to condition (E), while, when going to modular vector spaces,
provides a distinct class of mappings. Moreover, compared with modular condition (ρE),
this new modular condition has the advantage to include the modular Suzuki mappings.

On the other hand, our approach proves that the extension of newly introduced non-
expansiveness conditions to modular vector spaces leads often to similar outcomes as on
Banach spaces, despite the fact that modulars lack some properties when compared with
norms. Nevertheless, the limits of such extensions are also emphasized. It seems that not
all the properties from Banach spaces can be so smoothly transposed to modular setting;
for instance, the equivalence between classes of mappings satisfying conditions (CDE)
and (E) on Banach spaces is lost when turning to modular framework.

Moreover, the content of the last section proves that the choice of the Mann iterative
process to study the fixed points for mappings on modular vector spaces is not arbitrary.
When taking more elaborated iteration procedures (Ishikawa, for instance), some stronger
uniform convexity related requirements are necessary.
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