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Abstract. In this paper, we discuss the consensus tracking problem by introducing two iterative
learning control (ILC) protocols (namely, Dα-type and PDα-type) with initial state error for
fractional-order homogenous and heterogenous multi-agent systems (MASs), respectively. The
initial state of each agent is fixed at the same position away from the desired one for iterations. For
both homogenous and heterogenous MASs, the Dα-type ILC rule is first designed and analyzed,
and the asymptotical convergence property is carefully derived. Then, an additional P -type
component is added to formulate a PDα-type ILC rule, which also guarantees the asymptotical
consensus performance. Moreover, it turns out that the PDα-type ILC rule can further adjust the
final performance. Two numerical examples are provided to verify the theoretical results.

Keywords: fractional-order, homogenous and heterogenous multi-agent systems, initial state error,
convergence.

1 Introduction and problem formulation

With the developments in various fields such as unmanned aerial vehicle (UVA) forma-
tion, wireless sensor network, and micro-robot, multi-agent systems (MASs) have been
became a hotly investigated topic in recent years.
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In accordance to the agent dynamics, MASs are classified into homogenous and
heterogenous types [6, 31]. A majority of rich references concerns homogeneous MASs
[2, 4, 19, 24, 28], where all agents are assumed to have the same time-domain dynam-
ics. However, MASs are heterogeneous among numerous practical applications. That
is, agents have different system dynamics. The conventional Kronecker product cannot
be applied for the closed system dynamics because of different state evolution mecha-
nisms. Thus, the design and analysis for heterogeneous MASs are more complex. Iterative
learning control (ILC) has been proved an effective control strategy for various repetitive
systems by trial and error to improve the system performance. As a consequence, ILC is
also applied to achieve iteration-domain-based learning consensus for MASs whenever
the MASs can repeat their coordination process. Indeed, the conventional MASs have
been widely investigated in the past few years [11, 17, 18, 30].

To achieve the perfect tracking of system, the initial states for all agents are same as
the desired initial state or are set via proper updating rule [1, 9]. Nevertheless, MASs can
be regarded as “systems of systems”, where the controllers are distributed in nature, and
all agents are independent entities. Therefore, it is difficult to require all agents to realize
the desired initial state because the communication among agents may not be integrated.
Moreover, it is not feasible that all agents’ initial states are adjusted arbitrarily even if all
agents are conscious of the desired initial state. Thus, it is extremely important to relax
the initial condition.

To describe memory and hereditary properties of the systems, in which some effects
are ignored while using integer-order models, fractional-order differential equation filed
a powerful tool [22]. Some systems such as electromagnetism, damped vibrations, and
viscoelastic single mass systems should be described by fractional differential equations
[5, 20, 34–36]. For example, aircrafts in a particular formulation fly under the influence
of granular materials such as rain, snow, fog, and dust [3]. As a consequence, group-
ing the above objectives clearly forms fractional-order multi-agent systems, which have
become important in practice. Recently, fractional-order MASs are widely used in cross-
disciplinary nature and attract much attention on the coordination and control problems
[7, 16, 21, 27, 31, 37]. Emerging results have been reported on the leader-follower solu-
tions of fractional-order MASs [25,26]. Available literatures, authors study the consensus
problem of fractional-order systems with input delays by Laplace transform in [21].
The convergence of the iterative process for fractional-order system in time domain is
discussed in [10]. Luo et al. [12] designed both P -type and PI-type ILC update laws
for linear fractional-order MAS, where a direct channel from the input to the output was
assumed for facilitation of the control design. In [33], a fractional-order iterative learning
control framework with initial state learning for the tracking problem of integrate linear
time-varying systems is present, where both open-loop and closed-loop Dα-type iterative
learning updating laws are considered. Yang et al. in Chapter 4 of [30] address a leader-
follower tracking problem by ILC approach in the integral multi-agent systems with initial
state error, which shows the PD-type updating rule is able to tune the final control perfor-
mance than D-type one. In addition to ILC approach, there are many interesting results
for fractional-order MAS by using frequency domain theory, linear matrix inequality,
observer-based protocols, and sampled-data control [15, 29, 32].
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How to establish a framework to describe the communication topology is the key prob-
lem in ILC problem for fractional-order MASs. In fact, their communication networks are
much more complicated than the first-order MAS due the memory and hereditary prop-
erties. First, the information is transmitted crossly for each MAS for digital control, and
different MAS makes some necessary communication. Second, how to design ILC laws
to display the reliable information channels for each MAS is important. It is a difficult
to design the suitable ILC laws to deal with the singularity for the output digital message
deriving from the fractional-order MASs. Thus, many techniques of fractional differential
equations have been involved in establishing the convergence results. According to this
investigation, general results of ILC for fractional-order MASs with initial state error have
not been reported. This observation strongly motivates the investigation of this paper. In
other words, we investigate the consensus tracking problem by designing Dα-type and
PDα-type ILC laws with initial state error for fractional-order homogenous MASs and
fractional-order heterogenous MASs, respectively. This will provide another possible way
to realizing the consensus control for fractional-order MASs.

In MASs, the graph theory is an assistant tool to depict the communication topology
among agents. In this paper, we use the symbol G (G = (V, E ,A)) as a directed graph
(or weighted graph), where V = {v1, v2, . . . , vN} ({vi, i = 1, 2, . . . , N} is node of the
ith agent, N is the number of agent)is the set of vertex, E ⊆ V × V is the set of edges,
and A is the adjacency matrix. A directed edge from vi to vj is indicated by an ordered
pair 〈vi, vj〉 ∈ E , which denotes the ith agent transmits information to the jth agent.
All neighboring nodes of the jth agent are denoted by Nj = {vi ∈ V | 〈vi, vj〉 ∈ E}.
A = (aij) ∈ RN×N (aij > 0) is the adjacency matrix of G, where aij is the weight of
the edge 〈vj , vi〉. If 〈vj , vi〉 ∈ E , we say a neighbour of the ith agent is the jth agent and
aij > 0. Else, aij = 0.

There exists a kind of matrices which is called Laplacian matrix in the interaction of
agents. The Laplacian matrix is defined that L = D − A, where the diagonal matrix
D = diag(din1 , . . . , d

in
N ) is the degree matrix of the graph G, and dini =

∑N
j=1 aij is the

in-degree of vertex vi. Obviously, L1N = 0 (1N is N dimension column vector whose
all elements are “1”).

We introduce a symbol “⊗”. The symbol ⊗ represents Kronecker product whose
definition and property can be seen in [12]. There are N heterogenous time-invariant
dynamic agents, which interaction topology can be described by G = (V, E ,A), and the
ith agent (vi ∈ V) at kth iteration is governed by the following linear fractional time-
invariant model:

C
0 D

α
t xk,i(t) = Aixk,i(t) +Biuk,i(t),

yk,i(t) = Cixk,i(t),
(1)

where xk,i(t) ∈ Rni , uk,i(t) ∈ Rm, and yk,i(t) ∈ Rp are the state vector, input vector,
and output vector, respectively. Ai ∈ Rni×ni ,Bi ∈ Rni×m, andCi ∈ Rp×ni are constant
matrices.

Then, the leader’s state vector xd(t) and the leader’s trajectory (the desired consen-
sus trajectory) yd(t) defined on a finite-time interval [0, T ] are resolved from following
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equation:
C
0 D

α
t xd(t) = Adxd(t) +Bdud(t),

yd(t) = Cdxd(t),
(2)

where ud(t) ∈ Rm is the continuous and unique desired control input, the xd(0) is
provided, and Ad ∈ Rnd×nd , Bd ∈ Rnd×m, Cd ∈ Rp×nd are the constant matrices.

Here, we regard the desired trajectory yd(t) as a virtual leader and index it by vertex v0
in the graph representation. Thus, the whole graph depicting the information flow among
leader and agents can be expressed G̃ = (V ∪ {v0}, Ẽ , Ã), where Ẽ and Ã are the set of
edge and the weighted adjacency matrix of G̃, respectively.

In this work, our contributions are listed as follows: (i) We consider the consen-
sus tracking problem by proposing fractional-type ILC rules with initial state error for
fractional-order homogenous and heterogenous MASs. This is a basic work for this topic
and provide a general approach to deal with the continued topic in this fields. (ii) We
establish two fractional versions of convergence results under mild assumptions by us-
ing fractional calculus techniques, which display the difference between fractional-order
MASs and first-order MASs. One has to deal with the singular kernel involving the
formula of the state function. (iii) We show that the PDα-type updating rule can adjust
the final consensus performance, which display fractional ILC law is good strategy for
fractional-order MASs. (iv) We reveal that the relationship between virtual input (output)
and desired input (output) can be displayed via an appropriate equation for homogenous
MASs but not for heterogeneous MASs.

2 Preliminary

In this paper, ρ(M) = max16j6n{|Λj |}, and Λj (j = 1, 2, . . . , n) is the eigenvalue of
the n-dimensional square matrix M . The λ-norm of vector function h: [0, T ] → Rn,
‖h‖λ = supt∈[0,T ]{eλt‖h(t)‖} (λ > 0), where ‖·‖ is a norm in Rn.

To simplify the controller design and convergence analysis, we need the following
assumptions, lemmas, and definitions.

Assumption 1. The fixed and directed communication graph G̃ involves a spanning tree,
which takes the virtual leader as the root node.

Assumption 2. The initial state of every agent is set to the same position, which is no
equal to the desired state at every iteration, that is, xk,i(0) = x1,i(0) 6= xd(0) for all
k > 2, k ∈ N .

Assumption 3. CB is of full column rank.

Lemma 1. (See [8, Lemma 2.21]) Let 0 < α < 1 and g(·) ∈ L∞(a, b) or g(·) ∈ C1[a, b],
then (

CDα
a+I

α
a+g
)
(t) = g(t),

where (Iαa+g)(t) :=
∫ t
a
g(τ)/(t−τ)1−α dτ/Γ(α), and (CDα

a+g)(t)=
∫ t
a
g′(τ)/(t−τ)α dτ/

Γ(1−α) =: (I1−αa+ Dg)(t).
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Lemma 2. Consider a positive sequence {ϕi} satisfying

ϕi+1 = c1ρ
i
0ϕ1 +

c2
q
√
q(λ− ρ1)

(
ρi−10 ϕ1 + ρi−20 ϕ2 + · · ·+ ϕi

)
for i > 1, where c1, c2, and ρ1 are positive constants, 0 < ρ0 < 1 and the q satisfied that
1/p + 1/q = 1 (p ∈ (1, 1/(1 − α), 0 < α < 1). If λ > ρ1 + (1/q)(c2/(1 − ρ0)q , then
ϕi → 0.

Proof. The proof is similar to that of Lemma 3.2 in [30].

Let Eα,α(·) be the generalized Mittag–Leffler function defined by

Eα,α(z) =

∞∑
k=0

zk

Γ(kα+ α)
, z ∈ C, Re(α) > 0.

Lemma 3. (See [23, Lemma 2], [13].) There exist constants N1, N2 > 1 such that for
any 0 < α < 1,∥∥Eα,1(Atα)∥∥ 6 N1

∥∥eAt
∥∥, ∥∥Eα,α(Atα)∥∥ 6 N2

∥∥eAt
∥∥,

where A denotes matrix, and ‖·‖ denotes any vector or induced matrix norm.

Lemma 4. (See [30, Lemma 3.1].) For a given square matrix M , if its spectral radius
ρ(M) < 1, then there exist positive constants c0 and 0 < ρ0 < 1 such that ‖Mk‖ 6 c0ρ

k
0 .

3 Main results

In this section, the learning law is first designed for MASs with identical agents in Sec-
tion 3.1. Then, the results will be extended to heterogeneous MASs in Section 3.2.

3.1 Controller design for homogeneous MASs

Assume that in (1), each agent has identical dynamics. That is, Ai = Ad = A, Bi =
Bd = B, and Ci = Cd = C. Then the dynamics model of N agents is rewritten that

C
0 D

α
t xk(t) = (IN ⊗A)xk(t) + (IN ⊗B)uk(t),

yk(t) = (IN ⊗ C)xk(t),
(3)

In this section, we design suitable protocols and analyze convergence for the fractional-
order linear MASs (3). In Section 3.1.1, the distributed Dα-type protocol is considered,
and its convergence properties are fully analyzed. To improve the final performance, we
add the P -type structure to the Dα-type protocol to analyze the convergence properties in
Section 3.1.2.
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3.1.1 Distributed Dα-type updating rule for homogenous agents

Considering the distributed construction of fractional-order MAS, we let ηk,i(t) be the
distribute error by the ith agent at the (k + 1)th iteration, which is defined as

ηk,i(t) =
∑
j∈Ni

ãi,j
(
yk,j(t)− yk,i(t)

)
+ si

(
yd(t)− yk,i(t)

)
, (4)

where si = 1 if 〈v0, vi〉 ∈ Ē (it means the ith agent directly links to the virtual leader),
and si = 0 otherwise.

The actual tracking error is defined as ek,i(t) = yd(t) − yk,i(t), which cannot be
utilized in the controller design due to two reasons. The first one is that such a tracking
error is not available for all agents because only a small number of followers can access
the leader’s trajectory. In other words, the distributed error ηk,i(t) rather than ek,i(t) is
used in the following algorithms. The other reason is that we require a suitable causality
between the input and tracking error according to (1) so that the input signals can be
updated effectively [13, 14]. In other words, it is the suitable derivation of the distributed
error rather than itself will be employed.

Hence, we first adopt the Dα-type ILC protocol:

uk+1,i(t) = uk,i(t) +WDα
C
0D

α
t ηk,i(t), u0,i(t) = 0 ∀vi ∈ V, (5)

where WDα ∈ Rm×p is the learning gain matrix.
Let the x̃v,i(t), ũv,i(t), and ỹv,i(t) = Cx̃v,i(t) satisfy the following virtual dynamics:

x̃v,i(t) = x1,i(0) +
1

Γ(α)

t∫
0

Ax̃v,i(τ) +Bũv,i(τ)

(t− τ)1−α
dτ, (6)

and
WDα

(
C
0D

α
t yd(t)− C

0D
α
t ỹv,i(t)

)
= 0. (7)

Theorem 1. The fractional-order homogeneous MAS (3), under Assumptions 1–3, the
communication graph G̃, and distributed Dα-type updating rule (5) are considered. If the
learning rule WDα is chosen such that

ρ
(
IpN − (L+ S)⊗WDαCB

)
< 1, (8)

then the control input uk,i(t) and the output yk,i(t) converge to ũv,i(t) and ỹv,i(t),
respectively, as the iteration number tends to infinity.

Proof. According to the definition of the distributed measurement ηk,i(t) in (4), condi-
tion (7), and the property of linearity in the fractional calculus, we can obtain that

WDα
C
0D

α
t ηk,i(t) =

∑
j∈Ni

ãi,j
(
WDα

C
0D

α
t ỹv,i(t)−WDαC0Dα

t yk,i(t)

−WDαC0Dα
t ỹv,j(t) +WDα

C
0D

α
t yk,j(t)

)
+ si

(
WDα

C
0D

α
t ỹv,i(t)−WDαC0Dα

t yk,i(t)
)
. (9)
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The virtual tracking error is defined as ẽk,i(t) = ỹv,i(t) − yk,i(t), then (9) can be
simplified as

WDα
C
0D

α
t ηk,i(t) = WDα

( ∑
j∈Ni

ãi,j
(
C
0D

α
t ẽk,i(t)− C

0D
α
t ẽk,j(t)

)
+ si

(
C
0D

α
t ẽk,i(t)

))
. (10)

Define the following notations: δuk,i(t) = ũv,i(t)−uk,i(t), and δxk,i(t) = x̃v,i(t)−
xk,i(t).

From (5) and (10) we have

δuk+1,i(t) = δuk,i(t)−WDα
( ∑
j∈Ni

ãi,j
(
C
0D

α
t ẽk,i(t)− C

0D
α
t ẽk,j(t)

)
+ si

(
C
0D

α
t ẽk,i(t)

))
. (11)

Thus, Eq. (11) can be rewritten in the following columnar form:

δuk+1(t) = δuk(t)−
(
(L+ S)⊗WDα

)
C
0D

α
t ẽk(t). (12)

The result, which we take the Caputo fractional calculus from both sides of (6) com-
bining with Lemma 1, does substraction with Eq. (1),

C
0D

α
t δxk,i(t) = Aδxk,i(t) +Bδuk,i(t). (13)

Thus, (13) is rewritten by the column stack vectors united from (3), and we have
C
0D

α
t δxk(t) = C

0D
α
t xv(t)− C

0D
α
t xk(t)

= (IN ⊗A)δxk(t) + (IN ⊗B)δuk(t). (14)

Note that ẽk(t) = ỹv(t)− yk(t) = (IN ⊗ C)δxk(t). For (12), we have

δuk+1(t) = Mk
1 δu1(t)−

(
Mk−1

1 M2δx1(t)

+Mk−2
1 M2δx2(t) + · · ·+M2δxk

)
, (15)

where M1 = IpN − (L + S) ⊗ WDαCB, M2 = (L + S) ⊗ WDαCA. In terms of
Assumption 1, L+ S must be a matrix of full rank.

Taking the λ-norm on (15), we have

‖δuk+1‖λ 6
∥∥M1‖k‖δu1

∥∥
λ

+ ‖M2‖
(
‖M1‖k−1‖δx1‖λ

+ ‖M1‖k−2‖δx2‖λ + · · ·+ ‖δxk‖λ
)
. (16)

Due to x̃v,i(0) = x1,i(0), from Assumption 2, δxk,i(0) = 0. Solving δxk(t) from (14),
we have (see [8])

δxk(t) =

t∫
0

(t− τ)α−1Eα,α
(
(IN ⊗A)(t− τ)α

)
(IN ⊗B)δuk(τ) dτ. (17)
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Taking any generic norm on the both side of (17) via Lemma 3, there exists a con-
stant N2 such that

∥∥δxk(t)
∥∥ 6 N2‖IN ⊗B‖

t∫
0

(t− τ)α−1e‖IN⊗A‖(t−τ)+λτ dτ‖δuk‖λ. (18)

Multiplying e−λt by the both of (18) and via the Hölder inequality, we have

∥∥δxk(t)
∥∥e−λt =

N2‖IN ⊗B
∥∥t1/p−(1−α)

p
√

1− p(1− α)

q
√

1− e−q(λ−‖IN⊗A‖)t

q
√
q(λ− ‖IN ⊗A‖)

‖δuk‖λ

6
N2‖IN ⊗B‖t1/p−(1−α)

p
√

1− p(1− α) q
√
q(λ− ‖IN ⊗A‖)

‖δuk‖λ. (19)

Taking supremum for the both side of (19) on the interval [0, T ], we have

‖δxk‖λ 6
N2‖IN ⊗B‖T 1/p−(1−α)

p
√

1− p(1− α) q
√
q(λ− ‖IN ⊗A‖)

‖δuk‖λ. (20)

Now one can substitute (20) into (16) , which yields

‖δuk+1‖λ 6 ‖M1‖k‖δu1‖λ +
N2‖M2‖‖IN ⊗B‖T 1/p−(1−α)

p
√

1− p(1− α) q
√
q(λ− ‖IN ⊗A‖)

×
(
‖M1‖k−1‖δu1‖λ + ‖M1‖k−2‖δu2‖λ + · · ·+ ‖δuk‖λ

)
. (21)

Due to Assumptions 1, 3 and condition (8), the spectral radius of M1 is less than 1.
Uniting Lemma 4 leads to ‖M1‖k 6 c1ρ

k
0 . Therefore, (21) can be rewritten as

‖δuk+1‖λ 6 c1ρ
k
0‖δu1‖λ +

c2
q
√
q(λ− ‖IN ⊗A‖)

×
(
ρk−10 ‖δu1‖λ + ρk−20 ‖δu2‖λ + · · ·+ ‖δuk‖λ

)
, (22)

where c2 = c1N2‖M2‖‖B‖T 1/p−(1−α)/ p
√

1− p(1− α).
Choosing the λ > ‖IN ⊗ A‖ + (1/q)(c2/(1 − ρ0))q and applying Lemma 2, we

can conclude that ‖δuk+1‖λ → 0 as k → ∞; that is, uk,i(t) → ũv,i(t) and yk,i(t) →
ỹv,i(t).

Remark 1. Under Assumption 3, we can take

WDα =
((CB)TCB)−1(CB)T

max(|σ(L+ S)|) + min(|σ(L+ S)|)
,

where σ(L+ S) denotes the eigenvalue of matrix (L+ S).
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Theorem 2. If theDα-type rule converges andWDαCB is nonsingular, there exist unique
ũv,i(t) and ỹv,i(t) satisfying the virtual dynamics (6) and (7). Specifically,

ũv,i(t) = ud(t) + (WDαCB)−1WDαCAEα,1(FDαt
α)
(
xd(0)− xk,i(0)

)
,

and
ỹv,i(t) = yd(t)− CEα,1(FDαt

α)
(
xd(0)− xk,i(0)

)
,

where FDα = (In −B(WDαCB)−1WDαC)A.

Proof. From (7) and the dynamics (6) and (2) we have

WDαCB
(
ud(t)− ũv,i(t)

)
= −WDαCA

(
xd(t)− x̃v,i(t)

)
.

Define δũv,i(t) = ud(t)− ũv,i(t) and δx̃v,i(t) = xd(t)− x̃v,i(t). Note that WDαCB
is nonsingular; hence, we have

δũv,i(t) = −(WDαCB)−1WDαCAδx̃v,i(t). (23)

On account of C0D
α
t δx̃v,i(t) = Aδx̃v,i(t)+Bδũv,i(t) with initial condition δx̃v,i(0) =

xd(0)− x̃v,i(0), we have
C
0D

α
t δx̃v,i(t) =

(
Ip −B(WDαCB)−1WDαC

)
Aδx̃v,i(t). (24)

The solution of (24) is

δx̃v,i(t) = Eα,1(FDαt
α)
(
xd(0)− x1,i(0)

)
,

where FDα = (Ip −B(WDαCB)−1WDαC)A.
Therefore, from (23) we have

ũv,i(t) = ud(t) + (WDαCB)−1WDαCAEα,1(FDαt
α)
(
xd(0)− x1,i(0)

)
,

and
ỹv,i(t) = yd(t)− CEα,1(FDαt

α)
(
xd(0)− x1,i(0)

)
.

Remark 2. If WDα is of full column rank, then

ỹv,i(t) = yd(t)− C
(
xd(0)− x1,i(0)

)
.

3.1.2 Distributed PDα-type updating rule for homogenous agents

In this section, the PDα-type updating rule is considered to improve the final perfor-
mance. The distributed measurement is consistent with the Dα-type case. The proposed
PDα-type updating rule for ith agent at kth iteration is

uk+1,i(t) = uk,i(t) +WDα
(
C
0D

α
t ηk,i(t) +WPDαηk,i(t)

)
, (25)

where WPDα is a learning gain matrix with suitable dimension.
The desired trajectory yd(t) and virtual output trajectory yv,i(t) satisfy the following

formula:

WDα
(
C
0D

α
t yd(t)− C

0D
α
t ỹv,i(t) +WPDα

(
yd(t)− ỹv,i(t)

))
= 0. (26)
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Remark 3. Condition (26) is inspired from [30, Chap. 4] for case of α = 1, i.e.,

WD

(
ẏd(t)− ẏv,i(t) +WPD

(
yd(t)− yv,i(t)

))
= 0.

Theorem 3. Consider the MAS (3), if the learning gain matrix WDα is chose such that

ρ
(
IpN − (L+ S)⊗WDαCB

)
< 1,

then the ILC rule is stable, and the output trajectory of any follower converges to the
virtual output trajectory as the iteration number tends to infinity. In particular,

ũv,i(t) = ud(t)

+ (WDαCB)−1WDα(CA+WPDαC)Eα,1(FPDαtα)
(
xd(0)− xk,i(0)

)
,

and

ỹv,i(t) = yd(t)− CEα,1(FPDαtα)
(
xd(0)− xk,i(0)

)
,

where FPDα = A− (WDαCB)−1WDα(CA+WPDαC).

Proof. The proof is similar to that of Theorems 1 and 2. ẽk,i(t), δuk,i(t), and δxk,i(t)
are defined as in Theorem 1, as well as δũk,i(t) and δx̃k,i(t) are defined as in Theorem 2.

According to condition (26), we have

WDα
(
C
0D

α
t yd(t) +WPDαyd(t)

)
= WDα

(
C
0D

α
t ỹv,i(t) +WPDα ỹv,i(t)

)
.

Then,

WDα
(
C
0D

α
t ηk,i(t) +WPDαηk,i(t)

)
= WDα

( ∑
j∈Ni

ãi,j
(
C
0D

α
t ẽk,i(t)− C

0D
α
t ẽk,j(t)

)
+ si

C
0D

α
t ẽk,i(t)

+WPDα

( ∑
j∈Ni

ãi,j
(
ẽk,i(t)− ẽk,j(t)

)
+ siẽk,i(t)

))
. (27)

From (25) and (27) the error of input δuk+1(t) is rewritten in the following compact
form by (13) and (14):

δuk+1(t) =
(
IpN − (L+ S)⊗WDαCB

)
δuk(t)

−
(
(L+ S)⊗WDα(CA+WPDαC)

)
δxk(t). (28)

Taking λ-norm for (28), we have

‖δuk+1‖λ 6 ‖M ′1‖k‖δu1‖λ + ‖M ′2‖
(
‖M ′1‖k−1‖δx1‖λ

+ ‖M ′1‖k−2‖δx2‖λ + · · ·+ ‖δxk‖λ
)
,

where M ′1 = IpN − (L+ S)⊗WDαCB and M ′2 = (L+ S)⊗WDα(CA+WPDαC).
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From Theorem 1, Eq. (20) still is established. Obviously, we have,

‖δuk+1‖λ 6 ‖M ′1‖k‖δu1‖λ +
N2‖M ′2‖‖B‖T 1/p−(1−α)

p
√

1− p(1− α) q
√
q(λ− ‖A‖)

×
(
‖M ′1‖k−1‖δu1‖λ + ‖M ′1‖k−2‖δu2‖λ + · · ·+ ‖δuk‖λ

)
6 c′1ρ

k
0‖δu1‖λ

+
c′2

q
√
q(λ− ‖A‖)

(
ρk−10 ‖δu1‖λ + ρk−20 ‖δu2‖λ + · · ·+ ‖δuk‖λ

)
,

where c′2 = c′1N2‖M ′2‖‖B‖T 1/p−(1−α)/ p
√

1− p(1− α).
Now one can choose λ > ‖A‖ + (c′2/(1 − ρ0))q/q and apply Lemma 2 to conclude

that ‖δuk+1‖λ → 0 as k →∞; that is, uk,i(t)→ ũv,i(t) and yk,i(t)→ ỹv,i(t).
Further, according to (26), we have

δũv,i(t) = −(WDαCB)−1WDα(CA+WPDαC)δx̃v,i(t).

This yields that

C
0D

α
t δx̃k,i(t) =

(
A−B(WDαCB)−1WDα(CA+WPDαC)

)
δx̃k,i(t). (29)

Solving (29), we have

δx̃k,i(t) = Eα,1
(
FPDαtα

)(
xd(0)− xk,i(0)

)
,

where FPDα = A− (WDαCB)−1WDα(CA+WPDαC).
Then

ũv,i(t) = ud(t) + (WDαCB)−1WDα(CA+WPDαC)Eα,1
(
FPDαtα

)
×
(
xd(0)− xk,i(0)

)
,

and
ỹv,i(t) = yd(t)− CEα,1

(
FPDαtα

)(
xd(0)− xk,i(0)

)
.

3.2 Controller design for heterogenous agents

This section is extension of Section 3.1. The model of MASs (1) consisting of N hetero-
geneous agents is rewritten as

C
0D

α
t xk(t) = Ăxk(t) + B̆uk(t),

yk(t) = C̆xk(t),
(30)

where Ă = diag{A1, A2, . . . , AN}, B̆ = diag{B1, B2, . . . , BN}, and C̆ = diag{C1, C2,
. . . , CN} are constant matrices with suitable dimensions. The definition of three column
stack vectors xk(t), yk(t), and uk(t) is consistent with the previous section.
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3.2.1 Distributed Dα-type updating rule for heterogeneous agents

The distribute measurement ηk,i(t) is the same with (4). We still apply Dα-type updating
rule for every agent but the gain matrix of each agent is different:

uk+1,i(t) = uk,i(t) +WDα,i
C
0D

α
t ηk,i(t). (31)

The P -type updating law is then added to the Dα-type updating law to improve the
final performance:

uk+1,i(t) = uk,i(t) +WDα,i
(
C
0D

α
t ηk,i(t) +WPDα,i ηk,i(t)

)
. (32)

Similarly, let the x̃v,i(t), ũv,i(t), and ỹv,i(t) = Cix̃v,i(t) satisfy the following virtual
dynamics:

x̃v,i(t) = x1,i(0) +
1

Γ(α)

t∫
0

Aixv,i(τ) +Biuv,i(τ)

(t− τ)1−α
dτ,

and
WDα,i

(
C
0D

α
t yd(t)− C

0D
α
t yv,i(t)

)
= 0. (33)

Theorem 4. Assume that Assumption 1–3 hold for the time-invariant linear MASs (30)
with the Dα-type updating law. If the learning gain matrix W̆Dα (W̆Dα = diag{WDα,1,
WDα,2, . . . ,WDα,N}) satisfies the following condition:

ρ
(
IpN − W̆Dα

(
(L+ S)⊗ Ip

)
C̆B̆

)
6 ρ̆0 < 1

for some ρ̆0 ∈ (0, 1), then there exists a positive constant λ such that

‖δuk‖λ → 0,

which indicates that limk→∞ uk,i = ũv,i(t), and then limk→∞ yk,i(t) = ỹv,i(t) for all
t ∈ [0, T ], i = 1, 2, . . . , N .

Proof. The procedure that prove this theorem is similar to that of Theorem 1.

3.2.2 Distributed PDα-type updating rule for heterogeneous agents

For the PDα-type updating rule, we have the following results.

Theorem 5. Assume that Assumptions 1–3 hold for the time-invariant linear fractional-
order MASs (30) with N heterogeneous agents and PDα-type updating law (32). If the
learning gain WDα still choose that

ρ
(
IpN − W̆Dα

(
(L+ S)⊗ Ip

)
C̆B̆

)
< 1,

then the ILC rule is stable and the output trajectory of any follower convergence.
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Proof. The steps for this theorem is omitted here because it can be derived similar to that
of Theorems 3 and 4.

Remark 4. In Theorem 5, we need the following equation, which is also motivated by
Remark 3:

WDα,i
(
C
0D

α
t yd(t)− C

0D
α
t ỹv,i(t) +WPDα,i

(
yd(t)− ỹv,i(t)

))
= 0,

i = 1, 2, . . . , N .
The relation between yd(t) and ỹv,i(t) (or between ud(t) and ũv,i(t)) cannot be

showed via an equality due to different agent submits to different fractional-order dy-
namical system in Theorems 4 and 5.

Remark 5. The explicit solution of model (1) (see (17)) can also be obtained in the form
of Mittag–Leffler functions.

Remark 6. Compared with the Chapter 4 in [30], this paper extends the integral-order
model to the fractional-order model and corrects the inappropriateness, such as expres-
sions for ui,j and yi,j in Theorem 4.3 of the original paper.

4 Simulation examples

In this section, two example are provided under uniform order and communication topol-
ogy graph.

We select an arbitrary order in (0, 1), say α = 0.7, and initial input u0(t) = 0. Firstly,
we consider the Dα-type updating rule. Next, we add P -type updating rule to adjust the
finial performance base on the example of the Dα-type updating rule.

For Fig. 1, the Laplacian for followers is

L =


0 0 0 0 0
−1 2 0 −1 0
0 0 0 0 0
−1 −1 −1 4 −1
0 0 −1 −1 2

 ,

Figure 1. Directed fixed communication topology among agents in the network.
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and S = diag(1, 0, 0, 1, 0) indicates the information flow from leader to followers and
satisfies Assumption 1.

Example 1. Consider a group of five followers at kth iteration with their dynamics gov-
erned by the following model:

C
0D

α
t xk,i(t) =

[
−0.5 0.8
0.4 −0.2

]
xk,i(t) +

[
1
2

]
uk,i(t),

yk,i(t) =

[
1 0.5

1.5 1

]
xk,i(t),

and the leader’s input is chosen as ud(t) = 0.2t + cos t for all t ∈ [0, 5], the initial
state xd(0) = 0. The initial condition for followers are xk,1(0) = [1.4, 1.2]T, xk,2(0) =
[1, 0.7]T, xk,3(0) = [0.4, 0.3]T, xk,4(0) = [−0.5, 0]T, and xk,5(0) = [−1,−0.4]T.

Obviously, the initial condition for followers satisfies Assumption 2. rank(CB) = 1
satisfies Assumption 3.

We apply the updating rules (5) and (25) with learning gains matrix WDα = [0.0215,
0.0376], which is provide by Remark 1, and WPDα = diag(3, 3) is chose correctly by
many tests. Then the convergence condition is calculated:

ρ(I10 − (L+ S)⊗WDαCB) = 0.8255 < 1,

which satisfies the convergence requirement in Theorems 1 and 2.
Figure 2 shows the output profiles of all agents at the 50th iteration underDα-type up-

dating rule. The output of followers is capable to track the general trend of the leader. Ac-
cording to the property of linearity in fractional calculus, (7) is rewritten thatWDαC0D

α
t (yd(t)−

yv,i(t)) = 0. Equation (7) is easily demonstrated by it. But the deviations between the
followers and the leader is large. Simple calculation shows that the characteristic value of
FDα is σ(FDα) = {0,−1.1908}.

Figure 2. Output trajectories at 50th iteration under Dα-type ILC learning rule Example 1.
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Figure 3. Output trajectories at 100th iteration under PDα-type ILC learning rule in Example 1.

Figure 4. The error value between yd(t) and y50(t) under PDα-type ILC learning rule in Example 1.

Figure 3 shows the output profiles of all agents at the 50th iteration under a PDα-type
updating rule. Different with the Fig. 2, we add the P -type updating rule to adjust the
output profiles. It can be seen that the tracking error becomes smaller and smaller. The
characteristic value of FPDα is σ(FPDα) = {−1.1908,−4}. Due to the memorability of
fractional calculus, the tracking trajectory of followers can roughly approach the leader’s
tracking trajectory with the growth of the iteration, but the deviation still exists.

Figure 4 shows the error value between yd(t) and y50(t) under PDα-type updating
rule. Obviously, the error value becomes smaller and smaller with the change of time.
These pictures illustrate the PDα-type updating rule can improve the finial tracking tra-
jectory from Figs. 3 and 4.

Example 2. In this example, we consider a network consisting of one leader and five
heterogeneous follower agents, which communication topology is showed by Fig. 1.
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The model of the first agent at kth iteration is governed by

C
0D

α
t xk,1(t) =

[
0.4 0
0 0.6

]
xk,1(t) +

[
1
2

]
uk,1(t),

yk,1(t) =
[
0.2 0.6

]
xk,1(t);

the model of the second agent at kth iteration is governed by

C
0D

α
t xk,2(t) =

[
0.5
]
xk,2(t) +

[
0.8
]
uk,2(t),

yk,2(t) =
[
0.7
]
xk,2(t);

the model of the third agent at kth iteration is governed by

C
0D

α
t xk,3(t) =

[
0.1 0.2
0 0.9

]
xk,3(t) +

[
1
−1

]
uk,3(t),

yk,3(t) =
[
0.4 0.8

]
xk,3(t);

the model of the fourth agent at kth iteration is governed by

C
0D

α
t xk,4(t) =

[
0.1 0
0 0.2

]
xk,4(t) +

[
1.5
−1.2

]
uk,4(t),

yk,4(t) =
[
0.5 0.7

]
xk,4(t);

the model of the fifth agent at kth iteration is governed by

C
0D

α
t xk,5(t) =

0.5 0.7 0.8
0 0.4 1

0.3 0.8 0.2

xk,5(t) +

 1.1
−0.8
0.6

uk,5(t),

yk,5(t) =
[
0.6 0.5 0.9

]
xk,5(t).

The model of desired reference trajectory is governed that

C
0D

α
t xd(t) =

[
0.2 0
0 0.1

]
xd(t) +

[
0.5
0.7

]
ud(t),

yd(t) =
[
0.1 0.5

]
xd(t).

The leader’s input ud(t) is still chosen as in Example 1, and the initial state xd(0) = 0.
The initial conditions for followers are xk,1(0) = [−2, 0]T, xk,2(0) = [0.2]T, xk,3(0) =
[3,−1]T, xk,4(0) = [2,−1]T, and xk,5(0) = [0.6,−3, 1]T.

Evidently, the initial . . . satisfies Assumption 2. The rank(C̆B̆) = 5 satisfies Assump-
tion 3. The updating rules (31) and (32) with learning gains matrix W̆Dα = diag(0.1246,
0.3115,−0.4361,−1.9384, 0.2181) are applied, and W̆PDα = diag(3, 3, 3, 3, 3) chose
correctly by many tests. Then the convergence condition is calculated as

ρ
(
I5 − W̆Dα(L+ S)C̆B̆

)
= 0.8255 < 1,

which satisfies the convergence requirement in Theorems 4 and 5.
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(a) (b)

Figure 5. Output trajectories at 100th iteration in Example 2 under: (a) Dα-type ILC learning rule; (b) PDα-
type ILC learning rule.

Figure 6. The error value between yd(t) and y100(t) under PDα-type ILC learning rule in Example 2.

Figure 5(a) shows the output trajectory of heterogeneous agents at the 100th iteration
under the Dα-type updating rule (31). Even though every agent is governed by different
fractional-order model with larger the error, the output of followers is able to track the
general trend of the leader. It easily shows that the formula (33) is equalled.

Figure 5(b) shows the output profiles of all agent at the 100th iteration under PDα-
type updating rule (32). Obviously, the tracking error which is adjusted by adding P -type
updating rule becomes small and small. Similarly, in consider of the memorability of the
fractional-order model, the error between the leader’s tracking trajectory yd(t), and the
followers’ tracking trajectory yk(t) still is occurred.

Figure 6 shows the error of tracking trajectory between the leader’s trajectory yd(t),
and the followers’ trajectory y100(t) becomes smaller and smaller.
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Evidently, the PDα-type updating rule which is introduced can adjust the final track-
ing performance than the Dα updating rule from Figs. 5(a), 5(b).

5 Conclusion

This paper studies the learning consensus problem for both fractional-order homogeneous
and heterogeneous multi-agent systems, where the initialization position of each agent is
fixed away from the desired one for all iterations. This condition implies an imperfect state
resetting. It is proved that theDα-type updating rule is convergent but the final trajectories
are not the desired reference. To further improve tracking performance, the PDα-type
updating rule is then proposed, which provides the designer more freedom to tune the final
performance. The theoretical results are verified by two numerical simulations. For fur-
ther research, it is of interest to consider the fractional-order nonlinear MASs. In addition
to fractional-order differential equations to describe engineering systems under complex
environments, fuzzy differential equations are also suitable to simulate the process of
change under uncertain conditions which can more accurately reflect the reality. Multi-
agent systems using the fuzzy differential equation will be explored in the future.

Acknowledgment. The authors thank the referees for their careful reading of the article
and insightful comments.
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