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Abstract. In this paper, we consider a nonautonomous piecewise linear difference equation that
describes a discrete version of a single neuron model with a periodic (period two and period
three) internal decay rate. We investigated the periodic behavior of solutions relative to the periodic
internal decay rate in our previous papers. Our goal is to prove that this model contains a large
quantity of initial conditions that generate eventually periodic solutions. We will show that only
periodic solutions and eventually periodic solutions exist in several cases.
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1 Introduction

In [18], the authors investigated the delayed differential equation

x′(t) = −g
(
x(t− τ)

)
(1)

that is used to model a single neuron with no internal decay, where g : R → R is either
a sigmoid function or a piecewise linear signal function, and τ 6 0 is a synaptic trans-
mission delay. From (1) the corresponding difference equation was obtained as a discrete-
time network of a single neuron model [8]:

xn+1 = βxn − g(xn), n = 0, 1, 2, . . . , (2)

where β > 0 is an internal decay rate and g is a signal function. Several authors in-
vestigated Eq. (2) (e.g., [5, 8, 17, 20–25]). In addition, Eq. (2) have been investigated as
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a single neuron model, where the signal function g is the following piecewise constant
function with McCulloch–Pitts nonlinearity:

g(x) =

{
1, x > 0,

−1, x < 0.
(3)

In [2, 3], the authors studied models by applying a different signal function (with more
than one threshold). In [14], the authors investigated a discrete neuron model with pe-
riodic solutions. Piecewise difference equations have been used as mathematical models
for various applications including neurons (see [13]).

Furthermore, in [6, 7], we studied the periodic character of the following nonautono-
mous piecewise linear difference equation:

xn+1 = βnxn − g(xn), (4)

where

βn =

{
β0 if n = 2k,

β1 if n = 2k + 1,
k = 0, 1, 2, . . . , β0 6= β1, (5)

and

βn =


β0 if n = 3k,

β1 if n = 3k + 1,

β2 if n = 3k + 2,

k = 0, 1, 2, . . . , β0 6= β1 or β0 6= β2, (6)

where βn > 0 for all n > 0, and g is in the form (3).
In [6], the coefficient (βn)∞n=0 is a period two sequence (5), and in [7], (βn)∞n=0 is

a period three sequence (6). In [6], we showed that periodic cycles can exist only with
even periods and investigated the stability character of these cycles. In addition, in [7],
we proved that periodic solutions can exist only with period 3k, k = 1, 2, 3, . . . , and
examined their stability character.

While studying Eq. (4) with (5) or (6), we observed that cases appear only when
periodic and eventually periodic solutions exist. The goal of this paper is to analytically
investigate the existence of eventually periodic solutions of (4) together with (5) and (6).

We give the necessary definitions about stable and unstable periodic orbits (see [10]
or [11]). Let

xn+1 = f(xn), (7)

where f : R→ R. Then the orbit of a point x0 ∈ R is defined to be the set of points{
x0, x1 = f(x0), x2 = f

(
f(x0)

)
= f2(x0), . . . , xn = fn(x0), . . .

}
.

Definition 1. A point x∗ is said to be a fixed point of the map f or an equilibrium point
of Eq. (7) if f(x∗) = x∗.

For an equilibrium point x∗, the orbit consists of only the point x∗. Closely related to
fixed points are the eventually fixed points.
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Definition 2. A point x is said to be an eventually fixed point of the map f if there exists
a positive integer r and a fixed point x∗ of f such that fr(x) = x∗, but fr−1(x) 6= x∗.

If x is an eventually fixed point, then the orbit is{
x, x1 = f(x), . . . , xr−1 = fr−1(x), xr = fr(x) = x∗, x∗, x∗, . . .

}
.

Definition 3. The equilibrium point x∗ of (7) is stable if for any ε > 0, there exists δ > 0
such that |x0 − x∗| < δ implies |fn(x0)− x∗| < ε for all n > 0. If x∗ is not stable, then
it is called unstable.

The stability of an equilibrium x∗ means that initial condition x0 slightly different
from x∗ generate an orbit that remains close to the equilibrium.

In this paper, our goal is not to investigate the stability of Eq. (4), however the stability
is one of the main objectives in the theory of dynamical systems. In many studies on
solutions of difference schemes, the stability is established under the assumption that the
magnitude of the grid steps τ and h with respect to time and space variables is connected.
Of growing interest is the study of absolutely stable difference schemes in which the
stability is established without any assumptions with respect to the grid steps τ and h
(see, for example, [19] and [4]).

The concept of periodicity is one of the most important notion in the field of dynamical
systems. Its importance follows from the fact that many physical phenomena have certain
patterns that repeat themselves (for example, the motion of a pendulum, the motion of
planets, the population size of blowflies or other insects at time n, the price of commodity
at time n).

Let x be in the domain of a mapping f .

Definition 4. A point x is said to be a periodic point of f with period k if fk(x) = x for
some positive integer k. Note that x is a periodic point with period k if it is a fixed point
of the map fk.

For the periodic point x, the orbit consists of k points that repeat infinitely many times{
x, x1 = f(x), . . . , xk−1 = fk−1(x)

}
.

Definition 5. A point x is said to be an eventually periodic point with period k if x is not
periodic, but there exists m > 0 such that fk+i(x) = f i(x) for all i > m. That is, f i(x)
is periodic for i > m.

For an eventually periodic point with period k, the orbit consists of m points in the
beginning and k points, which are repeated infinitely many times.

Definition 6. The periodic point x with period k of f is stable if it is a stable fixed point
of fk. If x is an unstable fixed point of fk, then it is called unstable.

The goal of dynamical systems is to understand the nature of all orbits and to identify
the set of orbits, which are periodic, eventually periodic, etc. Generally, this is an impos-
sible task. But for some mappings, we can obtain more precise information about the
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behavior of solutions than for others. For example, in our case, we can find analytically
periodic and eventually periodic solutions.

The existence of eventually periodic solutions of (2) was investigated in [8,12]. Addi-
tional literature about difference equations with eventually periodic solutions is available
on max-type difference equations and their periodic character [1, 9, 15, 16].

2 Existence of eventually periodic solutions if the internal decay rate
is periodic with period two

In this section, we consider a difference equation (4) with a sequence of periodic coeffi-
cients (βn)∞n=0 that are periodic with period two.

In [6], we proved that Eq. (4) with (5) has no periodic orbits of odd period and that
there exist solutions only with an even period. More precisely, we showed that if the
coefficients 0 < β0 6 1 and 0 < β1 6 1, that is, coefficients are in the region I
(see Fig. 1), then there exist solutions only with period two. If coefficients belong to
the region II , then exist solutions only with period four. If the coefficients belong to
the region III , then exist solutions with period two, but in this case, also exist solutions
with an arbitrary even period. The surprising situation is in the case when β1 = 1/β0
(except for β1 = β0 = 1). In this situation, there exist segments of initial conditions from
which period four solutions arise. In [6], it has not been proved that for all other initial
conditions, solutions are eventually periodic with period four.

The first result in [6] is the following theorem.

Theorem 1. (See [6].) If 0 < β0 < 1 and 0 < β1 < 1 (one of two coefficients is possible
to be 1), then the periodic orbits{

1− β1
1− β0β1

,
β0 − 1

1− β0β1

}
and

{
β1 − 1

1− β0β1
,

1− β0
1− β0β1

}
are stable periodic orbits with period two.

-

6

β0

β1

1

1

β1 = 1
β0

r
I

II

II

III

Figure 1. Existence of cycles depending on coefficients β0 > 0 and β1 > 0.
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Now the following theorem will address the question regarding the existence of even-
tually periodic solutions.

Theorem 2. If 0 < β0 < 1 and 0 < β1 < 1, then the initial conditions

x0 =
2− βk0βk1 (1 + β1)

βk0β
k
1 (1− β0β1)

> 0, k = 1, 2, . . . ,

x0 =
βk0β

k
1 (1 + β1)− 2β1

βk0β
k
1 (1− β0β1)

< 0, k = 1, 2, . . . ,

produce eventually periodic solutions; precisely, x2k = (1− β1)/(1− β0β1).
Also the initial conditions

x0 =
2β1 − βk0βk1 (1 + β1)

βk0β
k
1 (1− β0β1)

> 0, k = 1, 2, . . . ,

x0 =
βk0β

k
1 (1 + β1)− 2

βk0β
k
1 (1− β0β1)

< 0, k = 1, 2, . . . ,

produce eventually periodic solutions; precisely, x2k = (β1 − 1)/(1− β0β1).

Proof. We will only prove the first case when x0 = (2 − βk0β
k
1 (1 + β1))/(β

k
0β

k
1 ×

(1− β0β1)). The second case is symmetric as g is an odd function.
Let k = 1. Then x0 = (2− β0β1(1 + β1))/(β0β1(1− β0β1)). Therefore we get

x1 = β0x0 − 1 =
2− β0β1(1 + β1)

β1(1− β0β1)
− 1 =

2− β0β1 − β1
β1(1− β0β1)

> 0,

x2 = β1x1 − 1 =
2− β0β1 − β1

1− β0β1
− 1 =

1− β1
1− β0β1

.

We will assume that the initial condition x0 = (2 − βk0βk1 (1 + β1))/(β
k
0β

k
1 (1 − β0β1))

produces an eventually periodic solution and x2k = (1− β1)/(1− β0β1).
Now we consider the initial condition x0 = (2−βk+1

0 βk+1
1 (1+β1))/(β

k+1
0 βk+1

1 (1−
β0β1)) > 0. We see that

x1 = β0x0 − 1 =
2− βk+1

0 βk+1
1 (1 + β1)

βk0β
k+1
1 (1− β0β1)

− 1 =
2− βk+1

0 βk+1
1 − βk0βk+1

1

βk0β
k+1
1 (1− β0β1)

> 0,

x2 = β1x1 − 1 =
2− βk+1

0 βk+1
1 − βk0βk1

βk0β
k
1 (1− β0β1)

− 1 =
2− βk0βk1 (1 + β1)

βk0β
k
1 (1− β0β1)

,

and hence by induction we see that it is an eventually periodic solution and therefore
x2k+2 = (1− β1)/(1− β0β1).

The proof for other cases is similar and is omitted.

In [6], we proved the theorem, which shows that there exist segments of initial condi-
tions from which period four solutions arise.
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Theorem 3. (See [6].) Suppose that 0 < β0 < 1, β1 > 1 and β0β1 = 1, then every
initial condition in the following two intervals generates a period 4 cycle. In fact, if x0 ∈
[0, 1/β0 − 1[, then we get the following period 4 cycle:{

x0, β0x0 − 1, x0 − β1 + 1, β0x0 + β0
}
.

If x0 ∈ [−1/β0 + 1, 0[, then we get the following period 4 cycle:{
x0, β0x0 + 1, x0 + β1 − 1, β0x0 − β0

}
.

In both cases, the periodic orbits are stable except when x0 = 0 and x0 = −1/β0 + 1.

The case where β0 > 1, 0 < β1 < 1 and β0β1 = 1 is formulated in a similar
result. Now we will show that all initial conditions that are not in the segments that are
considered in Theorem 3 produce eventually periodic solutions.

Theorem 4. Suppose that 0 < β0 < 1 and β1 = 1/β0, then every initial condition

x0 /∈
[
− 1

β0
+ 1,

1

β0
− 1

[
produces eventually periodic solution with period four.

Proof. We denote the following interval I = [−1/β0 + 1, 1/β0 − 1[.
First, we consider case where 0 < β0 6 1/2. Then it follows that β1 = 1/β0 > 2 and

[−1, 1[∈ I .
Our objective is to show that there exists k ∈ N such that x2k ∈ I .
We assume that x0 > 1/β0−1. We divide the segment [−1/β0+1, +∞[ into smaller

segments [
1

β0
− 1,

1

β0

[
,

[
1

β0
,
2

β0

[
, . . . ,

[
n+

n+ 1

β0
, n+

n+ 2

β0

[
,[

n+
n+ 2

β0
, n+ 1 +

n+ 2

β0

[
, . . . .

(see Fig. 2). Then there exists a segment such that x0 belongs to this segment.
Now we show that

(i) if x0 ∈ [n + (n + 1)/β0, n + (n + 2)/β0[, then x2 ∈ [n − 1 + n/β0, n − 1 +
(n+ 1)/β0[, n = 1, 2, . . . , and x2(n+1) ∈ I ,

(ii) if x0 ∈ [n+(n+2)/β0, n+1+(n+2)β0[, then x2 ∈ [n−1+(n+1)/β0, n+
(n+ 1)/β0[,n = 0, 1, 2, . . . , and x2(n+1) ∈ I .

In case (i), we see that

x1 = β0x0 − 1 > β0

(
n+

n+ 1

β0

)
− 1 = nβ0 + n > 0,
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1− 1
β0

−1 0 1

1
β0
−1

1
β0

2
β0

1+ 2
β0

1+ 3
β0

2+ 3
β0

2+ 4
β0

3+ 4
β0

3+ 5
β0

///�

IIIII

Figure 2. Partition of segment [1− 1/β0, +∞[ if 0 < β0 6 1/2.

x2 = (β0x0 − 1)/β0 − 1 = x0 − 1/β0 − 1 and therefore

n− 1 +
n

β0
= n+

n+ 1

β0
− 1

β0
− 1 6 x2 < n+

n+ 2

β0
− 1

β0
− 1 = n− 1 +

n+ 1

β0
.

Now we assume that x0 ∈ [1/β0, 2/β0[. Then we see that x1 = β0x0− 1 > β0(1/β0)−
1 = 0. Thus we get

−1 =
1

β0
− 1

β0
−1 6 x2 =

1

β0
(β0x0−1)−1 = x0−

1

β0
−1 <

2

β0
− 1

β0
−1 =

1

β0
−1

and, consequently, x2 ∈ [−1, 1/β0 − 1[⊂ I . This means that if we start with x0 ∈
[n+ (n+ 1)/β0, n+ (n+ 2)/β0[, then x2(n+1) ∈ I .

Now in case (ii), we see that

x1 = β0x0 − 1 > β0

(
n+

n+ 2

β0

)
− 1 = nβ0 + n+ 1 > 0,

x2 = (β0x0 − 1)/β0 − 1 = x0 − 1/β0 − 1 and therefore

n− 1 +
n+ 1

β0
= n+

n+ 2

β0
− 1

β0
− 1 6 x2 < n+ 1+

n+ 2

β0
− 1

β0
− 1 = n+

n+ 1

β0
.

Now we assume that x0 ∈ [−1 + 1/β0, 1/β0[. Then it follows that x1 = β0x0 − 1
and

−β0 = β0

(
−1 + 1

β0

)
− 1 6 x1 < β0

1

β0
− 1 = 0,

x1 < 0, x2 = (β0x0 − 1)/β0 + 1 = x0 − 1/β0 + 1 and hence

0 = −1 + 1

β0
− 1

β0
+ 1 6 x2 <

1

β0
− 1

β0
+ 1 = 1.

Consequently, we get x2 ∈ [0, 1[⊂ I . This implies that if x0 ∈ [n+(n+2)/β0, n+1+
(n+ 2)/β0[, then x2(n+1) ∈ I .

The case where x0 < 1− 1/β0 is similar and will be omitted.
Now we consider the case where 1/2 < β0 < 1. Then 1 < β1 = 1/β0 < 2 and

0 < 1/β0 − 1 < 1 (therefore this situation is different from the previous where 0 < β 6
1/2). In this case, we have I = [−1/β0 + 1, 1/β0 − 1[⊂ [−1, 1[.
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− 2
β0

I2−

−2 2− 2
β0

I1−

1− 1
β0

0

I

1
β0
−1

I1+

2
β0
−2 2

2
β0

I2+

Figure 3. If x0 ∈ I2− ∪ I1− ∪ I1+ ∪ I2+, then x2 ∈ I ( 1
2
< β0 < 1).

Now we let x0 ∈ I1+ = [1/β0 − 1, 2/β0 − 2[, then

x1 = β0x0 − 1 < β0(
2

β0
− 2)− 1 = 1− 2β0 < 0

(
since β0 >

1

2

)
.

In addition, we acquire x2 = 1/β0(β0x0 − 1) + 1 = x0 − 1/β0 + 1 and it follows that

0 =
1

β0
− 1− 1

β0
+ 1 6 x0 −

1

β0
+ 1 <

2

β0
− 2− 1

β0
+ 1 =

1

β0
− 1,

and, consequently, we see that x2 ∈ I . Furthermore, if x0 ∈ I2+ = [2, 2/β0[ then
x2 ∈ I . Moreover, in similar symmetric cases where x0 ∈ [2− 2/β0, 1− 1/β0[= I1− or
x0 ∈ [−2/β0, −2[= I2−, then x2 ∈ I (see Fig. 3).

Now let 2/β0 − 2 6 x0 < 2. Then

1− 2β0 = β0

(
2

β0
− 2

)
− 1 6 x1 = β0x0 − 1 < 2β0 − 1.

If 2/β0 − 2 6 x0 < 1/β0, then x1 < 0. Hence we see that x2 = x0 − 1/β0 + 1 and it
follows that

1

β0
− 1 =

2

β0
− 2− 1

β0
+ 1 6 x2 <

1

β0
− 1

β0
+ 1 = 1.

Since I1+ = [1/β0 − 1, 2/β0 − 2[ and 1/β0 − 1 6 x2 < 1, then x2 ∈ I1+ only if
1 6 2/β0 − 2 or β0 6 2/3. In this case, x4 ∈ I . If, on the other hand β0 > 2/3, then
for all x0 ∈ [2/β0 − 2, 3/β0 − 3[= I3+ corresponding x2 ∈ I1+ (consequently x4 ∈ I).
However, if we continue further with β0 > 2/3 and 3/β0 − 3 6 x0 < 1/β0, then we
obtain

x3 = β0

(
x0 −

1

β0
+ 1

)
− 1 = β0(x0 + 1)− 2 < β0

(
1

β0
+ 1

)
− 2

= β0 − 1 < 0,

x4 =
1

β0

(
β0(x0 + 1)− 2

)
+ 1 = x0 + 2− 2

β0
,

and we get

1

β0
− 1 =

3

β0
− 3 + 2− 2

β0
6 x4 <

1

β0
+ 2− 2

β0
= 2− 1

β0
.
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Now note that if

2− 1

β0
6

3

β0
− 3 or, equivalently, β0 6

4

5
,

then x4 ∈ I1+ ∪ I3+ and all the initial conditions from the segment [3/β0− 3, 1/β0[ pro-
duce eventually periodic solutions. However, if β0 > 4/5, then only the initial condition
x0 ∈ [3/β0 − 3, 4/β0 − 4[= I4+ produces eventually periodic solutions, and we can
continue further with β0 > 4/5 and

4

β0
− 4 6 x0 <

1

β0
.

Since β0 is fixed, then there exists n ∈ {2, 3, 4, . . . } such that (n−1)− (n−2)/β0 6
n/β0 − n holds or, equivalently, β0 6 (2n− 2)/(2n− 1). This implies that all the initial
conditions x0 from the segment [1/β0 − 1, 1/β0[ produce eventually periodic solutions.

The case where x1 > 0 (that is, 1/β0 6 x0 < 2) is similar and is omitted.
We can obtain very similar results if we start with x0 ∈ [−2, 2 − 2/β0[, and we can

conclude that all the solutions with x0 from the previously mentioned segment become
eventually periodic.

Moreover, we remark that if x2n − x2n+2 = 1 + 1/β0, x2n > 2/β0, x2n+2 >
2/β0, then the sequence (x2n)N∈N is strictly decreasing and there exists k such that
x2k ∈ [−2/β0, 2/β0[ and therefore for all the initial conditions x0 /∈ [−2/β0, 2/β0[,
the corresponding solutions are eventually periodic.

If both periodic coefficients β0 and β1 are greater than 1, then there exist periodic
solutions with period two and other periodic solutions with even periods. For example,
in [6], the authors proved the following result.

Theorem 5. (See [6].) If β0 > 1 and β1 > 1, then the periodic orbit{
β1 − 1

β0β1 − 1
,

1− β0
β0β1 − 1

}
of Eq. (4) with (5) is an unstable periodic orbit with period two.

Now we formulate the corresponding result about the eventually periodic solutions.

Theorem 6. If β0 > 1 and β1 > 1, then the initial conditions

x0 =
βk0β

k
1 (1 + β1)− 2

βk0β
k
1 (β0β1 − 1)

> 0, k = 1, 2, . . . ,

produce eventually periodic solutions; precisely, x2k = (β1 − 1)/(β0β1 − 1).

Proof. The proof is similar as in Theorem 2.

Figure 4 is an illustration of Theorem 6 with k = 4. If β0 = 1.4 and β1 = 3, then
x0 ≈ 1.247991449 and x8 = 0.625 that is the first point of cycle {0.625,−0.125}.

Nonlinear Anal. Model. Control, 25(6):903–918
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Figure 4. Solution of difference equation (4) if β0 = 1.4, β1 = 3 and x0 ≈ 1.247991449.

3 Existence of eventually periodic solutions if the internal decay rate
is periodic with period three

In this section, we consider a difference equation (4) with a sequence of periodic coeffi-
cients (βn)∞n=0 that are periodic with period three.

If the internal decay rate (βn)n∈N is a periodic with period three, then we obtain some
similar properties of solutions as in Section 2. However, different properties emerge as
well.

First of all, if all three periodic coefficients are less than 1, then there are no periodic
solutions with period three, and we acquire periodic solutions with period six instead.
However, if β0β1β2 > 1, then we obtain a different result.

Theorem 7. (See [7].) If β0β1β2 > 1, then initial conditions

x0 =
β1β2 + β2 + 1

β0β1β2 − 1
and x0 = −β1β2 + β2 + 1

β0β1β2 − 1

form periodic solutions of Eq. (4) with period three; in fact, all points of the orbit are
positive in first case, are negative in the second case, and both orbits are unstable.

In [7], it is shown that if β0β1β2 > 1 and x0 > (β1β2 + β2 + 1)/(β0β1β2 − 1), then
the solution is unbounded going to +∞ (in negative case, similar).

This means that in Theorem 7, we cannot find an initial condition, which is greater
than the first point of cycle, which forms an eventually periodic solution. Furthermore, in
this situation, eventually periodic solutions exist. For instance, see Fig. 5. In fact, in this
case, we have β0 = 1.5, β1 = 4, β2 = 3, and x0 is determined by the following formula:

x0 =
2 + 2β2 + β0β1β2(β1β2 − β2 − 1)

β0β1β2(β0β1β2 − 1)
.

Then x3 is the starting point of the period three cycle. This formula, however, does not
always work. In fact, the coefficients β0, β1 and β2 > 1 must satisfy particular conditions.

Now we will focus our attention on the case when there exists a segment of initial
points such that all points are periodic points with period three.
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Figure 5. Solution of difference equation (4) with (6) if β0 = 1.5, β1 = 4, β2 = 3 and x0 ≈ 0, 496732026.

Theorem 8. (See [7].) Let β0β1β2 = 1. Then the following statements are true:

(i) if 1 − β1β2 − β2 = 0 (this equality holds when β0 > 1, β1 = 1/(β0 − 1) and
β2 = (β0 − 1)/β0), then every initial condition x0 ∈ [−1,−1/β0[∪[1/β0, 1[
produces cycles with period three, which are stable periodic orbits except when
x0 = 1/β0 and x0 = −1;

(ii) if β2 − β1β2 − 1 = 0 (this equality holds when β0 > 0, β1 = 1/(β0 + 1) and
β2 = (β0 + 1)/β0), then every initial condition x0 ∈ [−1/β0, 1/β0[ produces
cycles with period three, which are stable periodic orbits except when x0 = 0
and x0 = −1/β0;

(iii) if 1 + β2 − β1β2 = 0 (this equality holds when 0 < β0 < 1, β1 = 1/(1 − β0)
and β2 = (1−β0)/β0), then every initial condition x0 ∈ [−1, 1[ produces cycles
with period three, which are stable periodic orbits except x0 = 0 and x0 = −1.

The vital question to address: what will occur with the solution when x0 does not be-
long to the designated segment of Theorem 8? Here we will analyze only case (i) of The-
orem 8 and show that all solutions that start outside the segment [−1,−1/β0[∪[1/β0, 1[
become eventually periodic with period three.

Theorem 9. Let β0β1β2 = 1. If β0 > 1, β1 = 1/(β0 − 1) and β2 = (β0 − 1)/β0, then
every initial condition

x0 /∈
[
−1,−1/β0

[
∪
[
1

β0
, 1

[
produces eventually periodic solution with period three.

Proof. First, we start with x0 > 1. We denote I1 = [−1,−1/β0[, I2 = [1/β0, 1[ and
I = I1 ∪ I2. Our goal is to show that there exists k ∈ N such that x3k ∈ I . Since β0 > 1
and x0 > 1, then it follows that

x1 = β0x0 − 1 > 0,

x2 = β1x1 − 1 =
1

β0 − 1
(β0x0 − 1)− 1 =

β0(x0 − 1)

β0 − 1
> 0,

x3 = β2x2 − 1 =
β0 − 1

β0

β0(x0 − 1)

β0 − 1
− 1 = x0 − 2.
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Note that if x0 ∈ [1, 2 − 1/β0[∪ [2 + 1/β0, 3[, then x3 ∈ I . Also if x0 ∈ [2 − 1/β0,
2 + 1/β0[, then x3 ∈ [−1/β0, 1/β0[.

Now observe that if x0 > 3, then we determine the next iterations of our solution

x4 = β0(x0 − 2)− 1 > 0,

x5 =
1

β0 − 1

(
β0(x0 − 2)− 1

)
− 1 =

β0(x0 − 3)

β0 − 1
> 0,

x6 =
β0 − 1

β0

β0(x0 − 3)

β0 − 1
− 1 = x0 − 4.

Hence we conclude that if x0 ∈ [3, 4− 1/β0[∪ [4 + 1/β0, 5[, then x6 ∈ I; furthermore,
if x0 ∈ [4− 1/β0, 4 + 1/β0[, then x6 ∈ [−1/β0, 1/β0[. Now note that it is possible that
x0 > 5.

Inductively, we conclude that there exists k ∈ N such that

x0 ∈
[
2k − 1, 2k − 1

β0

[
∪
[
2k +

1

β0
, 2k + 1

[
and then x3k ∈ I

or

x0 ∈
[
2k − 1

β0
, 2k +

1

β0

[
and then x3k ∈

[
− 1

β0
,
1

β0

[
, k = 1, 2, 3, . . . .

Similarly, if we start with x0 < −1, we conclude that there exists k ∈ N such that
x0 ∈ [−2k − 1, −2k − 1/β0[∪ [−2k + 1/β0, −2k + 1[ and then x3k ∈ I or x0 ∈
[−2k − 1/β0, −2k + 1/β0[ and then x3k ∈ [−1/β0, 1/β0[, k = 1, 2, 3, . . . .

This means that all initial conditions

x0 ∈
−∞⋃
i=−1

[
2i+

1

β0
, 2i+ 2− 1

β0

[
∪

+∞⋃
i=1

[
2i+

1

β0
, 2i+ 2− 1

β0

[
∪
[
−2 + 1

β0
, −1

[
∪
[
1, 2− 1

β0

[
produce eventually periodic solutions.

Now our problem is with the initial conditions that are in the segment [−1/β0, 1/β0[.
So let 0 6 x0 < 1/β0. Then we see that

x1 = β0x0 − 1 < 0,

x2 =
1

β0 − 1
(β0x0 − 1) + 1 =

β0(x0 + 1)− 2

β0 − 1
.

Notice that the inequality β0(x0+1)−2 > 0 holds if x0 > 2/β0−1. Also if β0 > 2, then
0 > 2/β0−1, and the last inequality is always true. Therefore, if 2/β0−1 6 x0 < 1/β0,
then x2 > 0. In addition, we see that

x3 =
β0 − 1

β0

β0(x0 + 1)− 2

β0 − 1
− 1 = x0 −

2

β0
,

−1 < x3 = x0 − 2/β0 < −1/β0 and therefore x3 ∈ I1.
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Furthermore, if 0 6 x0 < 2/β0 − 1 (it is possible only if 1 < β0 < 2!), then x2 < 0
and

x3 =
β0 − 1

β0

β0(x0 + 1)− 2

β0 − 1
+ 1 = x0 + 2− 2

β0
.

We now conclude that

0 < 2− 2

β0
6 x3 = x0 + 2− 2

β0
<

2

β0
− 1 + 2− 2

β0
= 1.

Moreover, if x0 + 2− 2/β0 > 1/β0, then x3 ∈ I2. Otherwise, if 0 6 x0 < 3/β0 − 2 (it
is possible only when 1 < β0 < 3/2!), then x3 /∈ I . In this case, we continue with this
iterative and inductive process by determining the next three iterations of the solution

x4 = β0
β0(x0 + 2)− 2

β0
− 1 = β0(x0 + 2)− 3 < β0

(
3

β0
− 2 + 2

)
− 3 = 0,

x5 =
1

β0 − 1

(
β0(x0 + 2)− 3

)
+ 1 =

β0(x0 + 3)− 4

β0 − 1
<
β0(

3
β0
− 2 + 3)− 4

β0 − 1
= 1.

Now we see that only two cases are possible. In the first case, if we let 4/β0 − 3 6 x0 <
3/β0 − 2, then x5 > 0 and

x6 =
β0 − 1

β0

β0(x0 + 3)− 4

β0 − 1
− 1 = x0 + 2− 4

β0
.

Therefore−1 = 4/β0−3+2−4/β0 6 x0+2−4/β0 < 3/β0−2+2−4/β0 = −1/β0
and x6 ∈ I1.

In the second case, 0 6 x0 < 4/β0 − 3 (it is possible only when 1 < β0 < 4/3!) and
x5 < 0. Therefore

x6 =
β0 − 1

β0

β0(x0 + 3)− 4

β0 − 1
+ 1 = x0 + 4− 4

β0
.

From the restriction of x0 we obtain that 0 6 x6 < 1. This means that if x6 > 1/β0
or x0 > 5/β0 − 4, then x6 ∈ I2. However, if x6 < 1/β0 or 0 6 x0 < 5/β0 − 4 (it is
possible only when 1 < β0 < 5/4!), then x6 /∈ I .

Inductively, we conclude that for every fixed 1 < β0 < 2 and every fixed 0 6 x0 <
1/β0, there exists M ∈ N, M > 2, such that

2M + 1

2M
6 β0 <

2M

2M − 1
or

2M

2M − 1
6 β0 <

2M − 1

2M − 2

(this means that (2M + 1)/β0 − 2M 6 0 or 2M/β0 − (2M − 1) 6 0), and there exists
n ∈ {1, 2, . . . ,M} such that

2n

β0
− (2n− 1) 6 x0 <

2n− 1

β0
− (2n− 2) and then x3n ∈ I1

Nonlinear Anal. Model. Control, 25(6):903–918
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Figure 6. Solution of difference equation (4) if β0 = 1.05 and x0 = 0.05.

or
2n+ 1

β0
− 2n 6 x0 <

2n

β0
− (2n− 1) and then x3n ∈ I2.

The case where −1/β0 6 x0 < 0 is similar.

The last part of proof shows that if β0 is very close to 1 and the corresponding x0 is
close to 0, then it will require many more iterations until xn belongs to I as β0 is not so
close to 1.

Example. For instance, if we let M = 10, then (2M + 1)/(2M) = 21/20 = 1.05 and
2M/(2M − 1) = 20/19 ≈ 1.0526. Let β0 = 1.05. Then (2M − 1)/β0 − (2M − 2) =
19/1.05−18 ≈ 0.0952 and 2M/β0−(2M−1) = 20/1.05−19 ≈ 0.0476. If x0 = 0.05,
then x30 ≈ −0.99761 ∈ I1, and if x0 = 0.03, then x30 ≈ 0.98238 ∈ I2. See Fig. 6 with
x0 = 0.05.

4 Conclusion

Our main goal of this paper was to show the existence of eventually periodic solutions for
the single neuron model (4). However, we did not consider all the possible cases. In fact,
the most challenging cases emerge in Theorems 4 and 9, where the solutions of (4) are
either periodic or eventually periodic.

In [18], x denotes the activation level of a neuron. First of all, if one neuron works as
the proposed model suggests, we can then interpret a stationary state as an equilibrium
state, where the activation level is constant. Second of all, the periodic orbit indicates
the periodic changes of the activation level. On one hand, a chaotic orbit implies unpre-
dictable changes of the activation level. On the other hand, we cannot provide an accurate
interpretation of the unstable orbit that gradually diverges to infinity, where the activation
level increases without restriction. In this paper, we studied the existence and patterns of
eventually periodic solutions; in particular, we examined the stability character of periodic
orbits, where the activation level is bounded.

Finally, we conclude that our model (4) with the signal function (3) and an internal
periodic decay rate (with period two and period three) describe a substantially different
situation in comparison to [5, 8, 17, 18, 20–25]. In the mentioned papers, the model has
not been studied with a periodic coefficient.
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