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Abstract. In this paper, we consider a diffusive predator–prey system with strong Allee effect and
two delays. First, we explore the stability region of the positive constant steady state by calculating
the stability switching curves. Then we derive the Hopf and double Hopf bifurcation theorem
via the crossing directions of the stability switching curves. Moreover, we calculate the normal
forms near the double Hopf singularities by taking two delays as parameters. We carry out some
numerical simulations for illustrating the theoretical results. Both theoretical analysis and numerical
simulation show that the system near double Hopf singularity has rich dynamics, including stable
spatially homogeneous and inhomogeneous periodic solutions. Finally, we evaluate the influence of
two parameters on the existence of double Hopf bifurcation.

Keywords: predator–prey, strong Allee effect, double Hopf bifurcation, two delays, stability
switching curves.

1 Introduction

In nature, population growth is limited by environmental resources, this explains why
the population cannot grow indefinitely. A proper population growth rate is crucial in
describing the population dynamics. The logistic growth proposed by Pearl and Reed
in 1920 [18] has been studied by many scholars since then. It assumes that per capita
growth rate is a monotonically decreasing function of the population density. The logistic
growth considers the intraspecific competition among individuals for limited resources.
In ecology, intraspecific competition involves competition for food, mates, shelters, and
so on. However, for many social animals, the individual can benefit from the presence of
conspecifics, the intraspecific cooperation cannot be ignored. Behaviours of intraspecific
cooperation include cooperative predation, cooperative defense against enemies, etc.
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The strong Allee effect growth characterizes the population growth of both intraspe-
cific cooperation and intraspecific competition [1, 8, 13], which means the growth rate
would be negative when the population density is below a threshold [15, 19]. For the
strong Allee effect, the most commonly used expression is

f(u) = ru(u− β)

(
1− u

K

)
,

where 0 < β < K is the Allee threshold. Obviously, when u < β, the growth is
negative, and the population will eventually die out. This phenomenon is abundant in
ecology [4, 13], include inbreeding depression, failure to satiate natural enemies, failure
in mate finding, and so on.

In population dynamics, delay occurs in almost every situation, and its effect cannot be
neglected [14]. Time delays tend to destabilize the system and lead to oscillatory behavior.
Indeed, population densities of many species are known to fluctuate nearly periodically
over time [20], a phenomenon to which the delay may provide an explanation. Notice
that both the positive feedback of intraspecific cooperation and the negative feedback
of intraspecific competition can have delay to the growth of the population. Chang et
al. [5] investigated the dynamics of a scalar population model with delayed Allee effect
as follows:

u′(t) = ru(t)
[
u(t− τ)− 1

][
u(t− τ)− θ

]
.

They obtained rigorous stability and Hopf bifurcation results for the above model. They
showed that the increasing of τ may enlarge the basin of attraction of u = 0 and lessen
the basin of attraction of u = 1. Besides, they showed that large delay may devote to the
extinction of the population.

For many species, the delay feedback in intraspecific cooperation is not necessarily
the same as that in intraspecific competition. Jankovic and Petrovskii investigated two
models as follows [13]:

U̇(t) = γU(t)
[
U(t)− β

][
K − U(t− τ)

]
,

U̇(t) = γU(t)
[
U(t− τ)− β

][
K − U(t)

]
.

They found that the inclusion of delay in intraspecific cooperation term does not necessar-
ily confer instability, but a delay in intraspecific competition always results in instability,
thus leads to population cycles or even extinction. Besides, they obtained that delay in
competition term has more dominant effects on population dynamics compared to the
delay in cooperation term.

Besides, the digestion or gestation delay plays an important role in characterizing the
increase of the predator growth. Recently, many researchers consider the digestion delay
in their models [3, 6, 7, 17, 23]. Chen et al. [6] proposed a diffusive predator–prey model
with digestion delay. They investigated the effect of the digestion delay on the system and
obtained the stability of the equilibria and the existence of Hopf bifurcation.

Motivated by the previous works, we introduce a delay in intraspecific competition
in prey, consider the digestion delay in predator, and conclude a diffusive predator–prey
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system with strong Allee effect with two delays as follows:

∂u

∂t
= d1∆u+ ru(u− c)

(
1− u(t− τ1)

K

)
− muv

b+ u
, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v +

mu(t− τ2)v

b+ u(t− τ2)
− dv, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

(1)

where u = u(x, t), v = v(x, t) denote the density of the prey and predator at location
x and time t, respectively; d1, d2 mean the diffusion coefficients; τ1, τ2 denote the
delay feedback of intraspecific competition in prey and the digestion delay in predator,
respectively; c denotes the Allee threshold, and K is the carrying capacity; m represents
the modified capture rate; b denotes the semi-saturation coefficient, and d the death rate
of predator. The homogeneous Neumann boundary condition is imposed so that there is
no population flow across the boundary, ν denotes the outward normal to the boundary
∂Ω. For simplicity, we choose Ω as a spatial interval [0, lπ].

Our purpose is to explore the joint effect of two delays on the dynamics of system (1).
The introduction of one delay may unstabilize the equilibria, lead to the occurrence
of Hopf bifurcation [24]. The dynamics of the system with two delays would be more
complex. There are several related studies on systems with two delays [2,21,22]. Most of
the works regard one delay as a constant and the other as variable. To evaluate the joint
effect of two delays, it is necessary to take two delays as variables. Gu et al. [11] and
Wang et al. [16] provide methods in studying the stability of a system with two delays
vary simultaneously. Du et al. investigated a diffusive Leslie–Gower model with two
delays [10], they performed the stability analysis and explored the existence of double
Hopf bifurcation.

The highlights of this paper are as follows. For one thing, the Hopf bifurcation curves
and double Hopf bifurcation curves on a two-parameter plane are given. For another, the
calculation of the norm forms near the double Hopf singularity need subtle analysis, since
two simultaneously varying delays make the calculation process more complex. Besides,
the stable spatially homogeneous and inhomogeneous periodic solutions are theoretically
proved and illustrated near the double Hopf singularities.

Our paper is organized as follows. In Section 2, we obtain the stability switching
curves of the positive equilibrium and present the Hopf and double Hopf bifurcation
theorem. In Section 3, we calculate the normal forms on the center manifold near the
double Hopf singularity. In Section 4, we carry out some numerical simulations for
illustrating the theoretical results. Finally, conclusions are made to sum up the paper.

2 Stability switching curves and the existence of double Hopf
bifurcation

In this section, we perform the stability and bifurcation analysis of the system.
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2.1 Stability switching curves

By direct calculation, system (1) has three constant steady states E0(0, 0), E1(c, 0),
E2(K, 0) and a possible positive constant steady stateE∗(u∗, v∗), where u∗=bd/(m−d),
v∗ = r(u∗ − c)(u∗ + b)(1 − u∗/K)/m. To guarantee the existence of E∗, we make the
following assumption:

(H0) c < bd/(m− d) < K.

Since the study of boundary equilibria is of little biological significance, in this paper, we
focus on the study of E∗ and assume that (H0) is always true.

The linearization of system (1) at E∗ is

∂

∂t

(
u(x, t)
v(x, t)

)
= (D∆ +A)

(
u(x, t)
v(x, t)

)
+B

(
u(x, t− τ1)
v(x, t− τ1)

)
+ C

(
u(x, t− τ2)
v(x, t− τ2)

)
,

where

D =

(
d1 0
0 d2

)
, A =

(
ru∗(1− u∗

K )
(
2u∗+b−c
b+u∗

)
−d

0 0

)
,

B =

(
− r
Ku∗(u∗ − c) 0

0 0

)
, C =

(
0 0

mbv∗
(b+u∗)2

0

)
.

Then the characteristic equation of E∗ is

det
(
λI2 −Mn −A−Be−λτ1 − Ce−λτ2

)
= 0, (2)

where I2 is the 2× 2 identity matrix, and Mn = −(n2/l2)D. For simplicity, denote

a11 = ru∗

(
1− u∗

K

)(
2u∗ + b− c
b+ u∗

)
,

b̌11 = − r

K
u∗(u∗ − c), c21 =

mbv∗
(b+ u∗)2

.

Then (2) is equivalent to

Dn(λ; τ1, τ2) := P0,n(λ) + P1,n(λ)e−λτ1 + P2,n(λ)e−λτ2 = 0, n ∈ N0, (3)

where

P0,n(λ) =

(
λ+ d1

n2

l2
− a11

)(
λ+ d2

n2

l2

)
,

P1,n(λ) = −b11
(
λ+ d2

n2

l2

)
, P2,n(λ) = dc21.

(4)

To maintain the stability of E∗ at τ1 = τ2 = 0, we further make the hypothesis

(H1) (K − u∗)(2u∗ + b− c)/(b+ u∗) < u∗ − c.

Then we can easily get the following theorem.
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Theorem 1. If (H0) and (H1) hold, E∗ is locally asymptotically stable for τ1 = τ2 = 0.

Now we will investigate the joint effect of τ1 and τ2 on the stability of E∗ under
(H0) and (H1). To apply the method of the stability switching curves, we first check
assumptions (I)–(IV) in [16] for all n ∈ N0. Obviously, (I)–(IV) are true for P0,n(λ),
P1,n(λ) and P2,n(λ) in Eq. (4). Particularly, assumption (IV) maintains feasible ω′s to
be bounded.

To proceed the analysis, we introduce the following lemma [21].

Lemma 1. As (τ1, τ2) varies continuously in R2
+, the number of zeros (with multiplicity

counted) ofDn(λ; τ1, τ2) on C+ can change only if a zero appears or cross the imaginary
axis.

Since λ = 0 is not a zero of (3), we will seek purely imaginary zeros of (3) to explore
the stability switching curves. Assume λ = iω (ω > 0) is a zero of (3), then

P0,n(iω) + P1,n(iω)e−iωτ1 = −P2,n(iω)e−iωτ2 .

Since |e−iωτ2 | = 1, after simplification, we obtain∣∣P0,n(iω)
∣∣2 +

∣∣P1,n(iω)
∣∣2 − ∣∣P2,n(iω)

∣∣2
= 2
[
A1,n(ω) cos(ωτ1)−B1,n(ω) sin(ωτ1)

]
, (5)

where A1,n(ω) = Re(−P0,n(iω)P 1,n(iω)), B1,n(ω) = Im(−P0,n(iω)P 1,n(iω)).
Without loss of generality, assume A2

1,n(ω) + B2
1,n(ω) > 0, then there exists some

continuous function φ1,n(ω) ∈ Arg{−P0,n(iω)P 1,n(iω)} ∩ (−π, 2π] such that (5) be-
comes ∣∣P0,n(iω)

∣∣2 +
∣∣P1,n(iω)

∣∣2 − ∣∣P2,n(iω)
∣∣2

= 2
√
A2

1,n(ω) +B2
1,n(ω) cos(ωτ1 + φ1,n(ω)), (6)

then the existence of τ1 ∈ R+ in (6) equals∣∣∣∣P0,n(iω)
∣∣2 +

∣∣P1,n(iω)
∣∣2 − ∣∣P2,n(iω)

∣∣2∣∣ 6 2
√
A2

1,n(ω) +B2
1,n(ω). (7)

Obviously, Eq. (7) contains the special case A2
1(ω) + B2

1(ω) = 0. We denote Ω1
n to be

the collection of positive ω’s such that (7) hold. Let ψ1,n(ω) ∈ [0, π] satisfies

cos
(
ψ1,n(ω)

)
= cos

(
ωτ1 + φ1,n(ω)

)
=
|P0,n(iω)|2 + |P1,n(iω)|2 − |P2,n(iω)|2

2
√
A2

1,n(ω) +B2
1,n(ω)

,

then we have

τ±1,j1,n =
±ψ1,n(ω)− φ1,n(ω) + 2j1π

ω
, j1 ∈ Z. (8)
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Similarly, we can get that

τ±2,j2,n =
±ψ2,n(ω)− φ2,n(ω) + 2j2π

ω
, j2 ∈ Z,

cos
(
ψ2,n(ω)

)
=
|P0,n(iω)|2 − |P1,n(iω)|2 + |P2,n(iω)|2

2
√
A2

2n(ω) +B2
2n(ω)

,

A2,n(ω) = Re
(
−P0,n(iω)P 2,n(iω)

)
, B2,n(ω) = Im

(
−P0,n(iω)P 2,n(iω)

)
,

φ2,n(ω) ∈ Arg
{
−P0,n(iω)P 2,n(iω)

}
∩ (−π, 2π],

(9)

where ω satisfies the following condition:∣∣∣∣P0,n(iω)
∣∣2 − |P1,n(iω)|2 + |P2,n(iω)|2

∣∣ 6 2
√
A2,n(ω)2 +B2,n(ω)2. (10)

Denote Ω2
n as the collection of all ω’s such that (10) hold, by squaring both side of (7)

and (10), we can get that Ω1
n = Ω2

n. For simplicity, denote Ωn := Ω1
n = Ω2

n.
To clarify that the stability switching curves of a finite region contains all the stability

switching curves in that region, we present the following lemma.

Lemma 2. Ωn consists of a finite number of intervals of finite length.

The above lemma can be easily proved, here we omit the proof.
In the following, we will investigate the relationship between different stability switch-

ing curves. From Eqs. (8) and (9), for any ω ∈ Ωn, on the corresponding stability
switching curves, one can obtain either τ+2,j2,n or τ−2,j2,n for a given τ+1,j1,n. With the aid of
MATLAB, we verify that when τ1 = τ+1,j1,n, τ2 = τ−2,j2,n; similarly, when τ1 = τ−1,j1,n,
τ2 = τ+2,j2,n. Therefore,

T ±kj1,j2,n
=
{(
τ±1 (ω), τ∓2 (ω)

)
, ω ∈ Ωk,n

}
=

{(
±ψ1,n(ω)−φ1,n(ω)+2j1π

ω
,
∓ψ2,n(ω)−φ2,n(ω)+2j2π

ω

)
, ω ∈ Ωk,n

}
,

and
Tn =

⋃
j1,j2∈Z

⋃
k=1,2,...,rn

(
T ±kj1,j2,n

∩ R2
+

)
.

Proposition 1. Tn is the set of all stability crossing curves on τ1,τ2-plane for Dn(λ;
τ1, τ2) = 0. For any (τ1, τ2) ∈ Tn, Dn(λ; τ1, τ2) = 0 has at least one root iω with
ω ∈ Ωn.

Notice that Fn(ak,n) = Fn(bk,n) = 0, then ψi,n(ak,n) = δ
ak,n

i π, ψi,n(bk,n) =

δ
bk,n

i π, where δak,n

i , δ
bk,n

i = 0, 1 (i = 1, 2). By direct calculation, we can get that(
τ+k1,j1,n

(ak,n), τ−k2,j2,n
(ak,n)

)
=
(
τ−k1,(j1+δa1 ),n

(ak,n), τ+k2,(j2−δa2 ),n
(ak,n)

)
,(

τ+k1,j1,n
(bk,n), τ−k2,j2,n

(bk,n)
)

=
(
τ−k
1,(j1+δb1),n

(bk,n), τ+k
2,(j2−δb2),n

(bk,n)
)
.

(11)
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Obviously, (11) means T +k
j1,j2,n

connects with T −kj1+δa1 ,j2−δa2 ,n
and T −k

j1+δb1,j2−δb2,n
at its two

ends. In (11), we denote δai , δ
b
i instead of δak,n

i , δ
bk,n

i , one should in mind that the values
of δak,n

i or δbk,n

i might be different for different k, n and i.

2.2 Crossing directions

To present the Hopf bifurcation and double Hopf bifurcation theorem, we define the
crossing directions of the points on the stability switching curves in this subsection.

Let λ = σ+iω. By the implicit function theorem, τ1, τ2 can be expressed as functions
of σ and ω under some non-singular condition. For convenience, denote

R0 :=
Re(∂D(λ; τ1, τ2))

∂σ

∣∣∣∣
λ=iω

, I0 :=
Im(∂D(λ; τ1, τ2))

∂σ

∣∣∣∣
λ=iω

,

and for l = 1 and 2,

Rl :=
Re(∂D(λ; τ1, τ2))

∂τl

∣∣∣∣
λ=iω

, Il :=
Im(∂D(λ; τ1, τ2))

∂τl

∣∣∣∣
λ=iω

.

We can easily verify that

Re(∂D(λ; τ1, τ2))

∂ω

∣∣∣∣
λ=iω

= −I0,
Im(∂D(λ; τ1, τ2))

∂ω

∣∣∣∣
λ=iω

= R0.

Since T ±kj1,j2,n
are piecewise differentiable, by the implicit function theory, we have

∆(ω) :=

(
∂τ1
∂σ

∂τ1
∂ω

∂τ2
∂σ

∂τ2
∂ω

)
σ=0
ω∈Ωn,k

=

(
R1 R2

I1 I2

)−1(
R0 −I0
I0 R0

)

as long as the nonsingular condition R1I2 −R2I1 6= 0 holds.
For any crossing curve T ±kj1,j2,n

, we define the direction of the curve corresponding
to the increasing ω ∈ Ωn,k the positive direction. The region on the left-hand (right-
hand) side when we move in the positive direction of the curve the region on the left
(right). By direct calculation, we get that the tangent vector of T ±kj1,j2,n

along the positive
direction is (∂τ1/∂ω, ∂τ2/∂ω), the normal vector of T ±kj1,j2,n

pointing to the right region is
(∂τ2/∂ω,−∂τ1/∂ω). Besides, a pair of complex characteristic roots across the imaginary
axis from the left to the right of the complex plane as σ increases from negative to positive,
thus (τ1, τ2) moves along (∂τ1/∂σ, ∂τ2/∂σ). We can deduce that if

δ(ω) :=

(
∂τ1
∂σ

,
∂τ2
∂σ

)
·
(
∂τ2
∂ω

,−∂τ1
∂ω

)
=
∂τ1
∂σ

∂τ2
∂ω
− ∂τ2
∂σ

∂τ1
∂ω

= det ∆(ω) > 0,

then the region on the right of T ±kj1,j2,n
has two more characteristic roots with positive real

parts. If δ(ω) < 0, then the left region of T ±kj1,j2,n
has two more characteristic roots with
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positive real parts. Since det
(
R0 −I0
I0 R0

)
= R2

0 + I20 > 0, we get that if R2
0 + I20 6= 0,

sign δ(ω) = sign{R1I2 −R2I1}. One can also verify that

R1I2 −R2I1 = ±ω2|P2P̄3 − P0P̄1| sin(ψ1,n).

Hence, sign δ(ω ∈ Ω̊k,n) = ± sign(ω2|P2P̄3 − P0P̄1| sin(ψ1,n)), where Ω̊k,n denotes
the interior of Ωk,n.

Lemma 3. For any k = 1, 2 . . . , rn, we have

δ(ω ∈ Ω̊k,n) > 0 (< 0) ∀
[
τ1(ω), τ2(ω)

]
∈ T +k

j1,j2,n

([
τ1(ω), τ2(ω)

]
∈ T −kj1,j2,n

)
.

Therefore, the region on the right (left) of the crossing curve T +k
j1,j2,n

(T −kj1,j2,n
) has two

more characteristic roots with positive real parts.

2.3 Hopf and double Hopf bifurcation theorem

Now we introduce the Hopf bifurcation theorem [10] and conclude the double Hopf
bifurcation theorem.

Theorem 2. For any j = 1, 2 . . . , rn, T jn is a Hopf bifurcation curve in the following
sense: for any p ∈ T jn and for any smooth curve Γ intersecting with T jn transversely at p,
we define the tangent of Γ at p by ~l. If ∂ Reλ/∂~l|p 6= 0 and the other eigenvalues of (3)
at p have nonzero real parts, then system (1) undergoes a Hopf bifurcation at p when
parameters (τ1, τ2) cross T jn at p along Γ .

If there exist ωj1,k1 and ωj2,k2 such that T j1k1 and T j2k2 intersect, then there are two
pairs of pure imaginary roots of (3) at the intersection. Thus, system (1) may undergoes
double Hopf bifurcation at this intersection under certain conditions. Here we summarize
the following double Hopf bifurcation theorem.

Theorem 3. If two Hopf bifurcation curves T j1k1 and T j2k2 intersect at q, we define the
tangent of T j1k1 and T j2k2 at q by~l1 and~l2, respectively. In addition, if~l1 and~l2 are linearly
independant, namely, for α1, α2 ∈ R, α1

~l1 + α2
~l2 = 0 can only arrive at α1 = α2 = 0,

then system (1) undergoes a double Hopf bifurcation at q.

Now we can summarize the following theorem about the stability of E∗.

Theorem 4. Assume that (H0) and (H1) are true. For any point P̃ (τ̄1, τ̄2) on the τ1,τ2-
plane, if there exists a curve segment l̃ connecting P̃ and the origin such that l̃ does not
intersect any stability switching curves, then E∗ is stable when τ1 = τ̄1, τ2 = τ̄2.

This theorem can be easily proved with the aid of Lemma 1. For a better understanding
of this theorem, please refer to Fig. 7(a).
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3 Normal form of double Hopf bifurcation

From Section 2 we get that system (1) may undergo double Hopf bifurcations near
E∗(u∗, v∗). To investigate the dynamics near the double Hopf singularity, we will cal-
culate the normal forms on the center manifold near the double Hopf singularity by the
method derived in [9].

Assume that τ2 > τ1, let ū(x, t) = u(x, τ2t)− u∗, v̄(x, t) = v(x, τ2t)− v∗ and drop
the bars. System (1) can be written as

∂

∂t

(
u(x, t)
v(x, t)

)
= τ2(D∆ +A)

(
u(x, t)
v(x, t)

)
+ τ2B

(
u(x, t− τ1

τ2
)

v(x, t− τ1
τ2

)

)
+ τ2C

(
u(x, t− 1)
v(x, t− 1)

)
+ τ2

(
f1
f2

)
, (12)

where

f1 = f11u
2(x, t) + f12u(x, t)v(x, t) + f13u(x, t)u

(
x, t− τ1

τ2

)
+ f14u

2(x, t)u

(
x, t− τ1

τ2

)
+ f15u

2(x, t)v(x, t) + f16u
3(x, t) +O(4),

f2 = f21u
2(x, t− 1) + f22u(x, t− 1)v(x, t) + f23u

3(x, t− 1)

+ f24u
2(x, t− 1)v(x, t) +O(4),

and

f11 = r

(
1− u∗

K

)
+

mbv∗
(b+ u∗)3

, f12 = − mb

(b+ u∗)2
, f13 = −r(2u∗ − c)

K
,

f14 = − r

K
, f15 =

mb

(b+ u∗)3
, f16 = − mbv∗

(b+ u∗)4
,

f21 = − mbv∗
(b+ u∗)3

, f22 =
mb

(b+ u∗)2
, f23 =

mbv∗
(b+ u∗)4

, f24 = − mb

(b+ u∗)3
.

Define the real-valued Hilbert space

X =

{
(u, v)T ∈ H2(0, lπ)×H2(0, lπ),

∂u

∂x
=
∂v

∂x
= 0 at x = 0, lπ

}
and the complexfication space of X by XC := X ⊕ iX = {U1 + iU2, U1, U2 ∈ X}
with the general complex-value L2 inner product 〈U, V 〉 =

∫ lπ
0

(u1v1 + u2v2) dx for
U = (u1, u2)T, V = (v1, v2)T ∈ XC. Let C := C([−1, 0], XC) denote the phase space
with the sup norm. We write ut(θ) = u(t+ θ), −1 6 θ 6 0.

Denote the double Hopf singularity by (τ∗1 , τ
∗
2 ), introduce two parameters σ = (σ1, σ2)

with σ1 = τ1 − τ∗1 and σ2 = τ2 − τ∗2 , denote U(t) = [u(t), v(t)]T, then system (12) can
be written as

dU(t)

dt
= D(τ∗1 + σ1, τ

∗
2 + σ2)∆U(t) + L(τ∗1 + σ1, τ

∗
2 + σ2)

(
U t
)

+ F
(
τ∗1 + σ1, τ

∗
2 + σ2, U

t
)
, (13)
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where

D
(
τ∗1 + σ1, τ

∗
2 + σ2

)
= τ∗2D + σ2D,

L
(
τ∗1 + σ1, τ

∗
2 + σ2

)
= (τ∗2 + σ∗2)

(
AU t(0) + CU t(−1) +BU t

(
−τ
∗
1

τ∗2

))
+ (τ∗2 + σ∗2)

(
BU t

(
−τ
∗
1 + σ1
τ∗2 + σ2

)
−BU t

(
−τ
∗
1

τ∗2

))
.

Linearizing system (13) at (0, 0), we have

dU(t)

dt
= τ∗2

[
D∆U(t) +AU t(0) + CU t(−1) +BU t

(
−τ
∗
1

τ∗2

)]
, D0∆U(t) + L0(U t), (14)

It is well known that the eigenvalues of D∆ on X are −d1n2/l2 and −d2n2/l2 with cor-
responding normalized eigenfunctions β(1)

n (x) = γn(x)(1, 0)T, β(2)
n (x) = γn(x)(0, 1)T

with γn(x) = cos((n/l)x)/‖ cos((n/l)x)‖L2 . Define the subspace of C as Bn, where Bn
is defined by Bn := span{〈v(·), β(j)

n 〉β(j)
n , v ∈ C, j = 1, 2, . . . , n, }. System (13) can be

written as
dU(t)

dt
= D0∆U(t) + L0

(
U t
)

+G
(
σ, U t

)
, (15)

where

G
(
σ, U t

)
= σ2

[
D∆U t(0) +AU t(0) + CU t(−1) +BU t

(
−τ∗1
τ∗2

)]
+ (τ∗2 + σ2)B

{
U t
(
−τ
∗
1 + σ1
τ∗2 + σ2

)
− U t

(
−τ
∗
1

τ∗2

)}
+ F

(
τ∗1 + σ1, τ

∗
2 + σ2, U

t
)
.

Formulating (15) in the extended Banach space:

BC :=
{
ψ : [−1, 0]→ XC, ψ is continuous on [−1, 0),∃ lim

θ→0−
ψ(θ) ∈ XC

}
,

rewrite (15) as an abstract ordinary differential equations on BC, then

d

dt
U t = AU t +X0G

(
σ, U t

)
, (16)

where A is the infinitesimal generator of the C0-semigroup of solution maps of the linear
equation (14) defined by

A : C1
0 ∩ BC → BC, Aφ = φ̇+X0

[
D0∆φ(0) + L0(φ)− φ̇

]
,

with dom(A) = {φ ∈ BC: φ̇ ∈ BC, φ(0) ∈ dom(∆)} with X0(θ) = 0 for θ ∈ [−1, 0)
and X0(0) = I . On Bn, system (14) is equivalent to the retarded functional differential
equation

ż(t) = −k
2
m

l2
D0z(t) + L0z

t (17)
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on R2. Thus, there exist matrix functions ηm ∈ BV([−1, 0],R) such that −(k2m/l
2) ×

D0ϕ(0) + L0(ϕ) =
∫ 0

−1 dηm(θ)ϕ(θ). Let An denote the infinitesimal generator of the
semigroup generated by (17),A∗n denote the formal adjoint ofAn under the bilinear form

(α, β)m = α(0)β(0)−
0∫
−1

θ∫
0

α(ξ − θ) dηm(θ)β(ξ) dξ.

System (14) has two pairs of pure imaginary eigenvalues ±iω1τ
∗
2 and ±iω2τ

∗
2 at the

double Hopf singularity and the other eigenvalues with nonzero real parts. Here we do
not consider the strongly resonant cases, i.e., ω1 :ω2 6= p : q for p, q ∈ N and 1 6
p, q 6 3. Let φ1(θ) = (1, p12)Teiω1τ

∗
2 θ, φ3(θ) = (1, p32)T eiω2τ

∗
2 θ (θ ∈ [−1, 0])

are the eigenvectors of Am (m = 1, 2) corresponding to the eigenvalue iω1τ
∗
2 , iω2τ

∗
2 ,

respectively. Let ψ1(s) = D1(1, p∗12)e−iω1τ
∗
2 s, ψ3(s) = D3(1, p∗32)e−iω2τ

∗
2 s (s ∈ [0, 1])

are the eigenvectors of A∗m (m = 1, 2) corresponding to the eigenvalue iω1τ
∗
2 , iω2τ

∗
2 ,

respectively. Choose Pm and Q∗m as the basis of the generalized eigenspace of Am, A∗m
corresponding the the eigenvalues {±iω1τ

∗
2 ,±iω2τ

∗
2 }, respectively, which

Φ1(θ) =
(
φ1(θ), φ2(θ)

)
, Φ2(θ) =

(
φ3(θ), φ4(θ)

)
, Φ(θ) =

(
Φ1(θ), Φ2(θ)

)
,

Ψ1(s) =
(
ψ1(s), ψ2(s)

)T
, Ψ2(s) =

(
ψ3(s), ψ4(s)

)T
, Ψ(s) =

(
Ψ1(s), Ψ2(s)

)T
,

with φ2(θ) = φ1(θ), φ4(θ) = φ3(θ), ψ2(s) = ψ1(s), ψ4(s) = ψ3(s) and satisfy
AmΦm = ΦmBk1 ,A∗mΨm = Bk2Ψm, (Ψm, Φm)m = I withBk1 = diag(iω1τ

∗
2 ,−iω1τ

∗
2 )

and Bk2 = diag(iω2τ
∗
2 ,−iω2τ

∗
2 ). By direct calculations, we get that

p12 =
c21e−iω1τ

∗
2

iω1 + d2
n2

l2

, p∗12 =
−d

iω1 + d2
n2

l2

, p32 =
c21e−iω2τ

∗
2

iω2 + d2
n2

l2

, p∗32 =
−d

iω2 + d2
n2

l2

,

D1 =
1

1 + p∗12p12 + τ∗2 c21p
∗
12e−iω1τ∗

2 + τ∗1 b11e−iω1τ∗
1
,

D2 =
1

1 + p∗32p32 + τ∗2 c21p
∗
32e−iω2τ∗

2 + τ∗1 b11e−iω2τ∗
1
.

Now decompose BC into a direct sum of center subspace and its complementary space:
BC = P⊕Kerπ, where π : BC → P is the projection defined by π(ϕ) =

∑2
m=1 Φm(Ψm,

〈ϕ(·), βkm〉)m · βkm . Then we decompose U t(θ) ∈ C10 into U t(θ) = φ1(θ)z1γk1 +
φ1(θ)z2γk1 + φ3(θ)z3γk2 + φ3(θ)z4γk2 + w(θ) , Φ(θ)zx + w(θ), where w(θ) ∈ C10 ∩
Kerπ := Q1 for any t. Then in BC, system (16) is equivalent to

ż1 = iω1τ
∗
2 z1 + ψ1(0)

〈
G
[
σ, Φ(θ)zx + w(θ)

]
, βk1

〉
,

ż2 = −iω1τ
∗
2 z2 + ψ1(0)

〈
G
[
σ, Φ(θ)zx + w(θ)

]
, βk1

〉
,

ż3 = iω2τ
∗
2 z3 + ψ3(0)

〈
G
[
σ, Φ(θ)zx + w(θ)

]
, βk2

〉
,

ż4 = −iω2τ
∗
2 z4 + ψ3(0)

〈
G
[
σ, Φ(θ)zx + w(θ)

]
, βk2

〉
,

ẇ = A1w + (I − π)X0G
[
σ, Φ(θ)zx + w(θ)

]
,

(18)

where A1 is the restriction of A on Q1 ⊂ Kerπ → Kerπ, A1φ = Aφ for φ ∈ Q1.
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Consider the formal Taylor expansion G(σ, ϕ) =
∑∞
j=2(1/j!)Gj(σ, ϕ), where Gj is

the jth Fréchet derivation of G. Then we can rewrite (18) as

ż = Bz +

∞∑
j=2

1

j!
f1j (z, w, σ), ẇ = A1w +

∞∑
j=2

1

j!
f2j (z, w, σ), (19)

where z = (z1, z2, z3, z4)T ∈ C4, w ∈ Q1, and fj = (f1j , f
2
j ), j > 2, are given by

f1j (z, w, σ) =


ψ1(0)〈Gj(σ, Φ(θ)zx + w(θ)), βk1〉
ψ1(0)〈Gj(σ, Φ(θ)zx + w(θ)), βk1〉
ψ3(0)〈Gj(σ, Φ(θ)zx + w(θ)), βk2〉
ψ3(0)〈Gj(σ, Φ(θ)zx + w(θ)), βk2〉

 ,

f2j (z, w, σ) = (I− π)X0Gj

[
σ, Φ(θ)zx + w(θ)

]
.

For a normed space Y , V 4+2
j (Y ) denotes the space of homogeneous polynomials of

degree j in z ∈ C4, σ = (σ1, σ2) with coefficients in Y , we have

V 4+2
j (Y ) =

{ ∑
|(q,l)|=j

c(q,l)z
qσl, (q, l) ∈ N4+2

0 , c(q,l) ∈ Y
}

and the norm |
∑
|(q,l)|=j c(q,l)z

qσl| =
∑
|(q,l)|=j |c(q,l)|Y . Define the operator Mj =

(M1
j ,M

2
j ), j > 2, by

M1
j : V 4+2

j

(
C4
)
→ V 4+2

j

(
C4
)
,(

M1
j p
)
(z, σ) = Dzp(z, σ)Bz −Bp(z, σ),

M2
j : V 4+2

j

(
Q1
)
⊂ V 4+2

j (Kerπ)→ V 4+2
j (Kerπ),(

M2
j h
)
(z, σ) = Dzh(z, σ)Bz −A1h(z, σ).

By a recursive transformations of variables (z, w, σ) = (ẑ, ŵ, σ) + (1/j!)(U1
j (ẑ, σ),

U2
j (ẑ, σ), 0) with Uj = (U1

j , U
2
j ) ∈ V 4+2

j (C4) × V 4+2
j (Q1), we can obtain the normal

forms of (19). We conclude that this recursive process transforms (19) into the following
equation:

ż = Bz +

∞∑
j=2

1

j!
g1j (z, w, σ), ẇ = A1w +

∞∑
j=2

1

j!
g2j (z, w, σ),

where gj = (g1j , g
2
j ) have the following form gj(z, w, σ) = f j(z, w, σ) −MjUj(z, σ),

and Uj ∈ V 4+2
j (C4) × V 4+2

j (Q1) satisfying Uj(z, σ) = (Mj)
−1 ProjIm(M1

j )×Im(M2
j )
◦

f j(z, 0, σ), where f j = (f
1

j , f
2

j ) stand for the terms of order j in (z, w), which are
obtained after the computation of normal forms up to order j − 1. The normal form
truncated to the third order has the form

ż = Bz +
1

2!
g12(z, 0, σ) +

1

3!
g13(z, 0, 0) + h.o.t.
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Here, g13(z, 0, 0) = ProjKer(M1
3 )
f
1

3(z, 0, 0) and f
1

3(z, 0, 0) = f13 (z, 0, 0) + (3/2) ×
[Dzf

1
2 (z, 0, 0)U1

2 (z, 0)] + Dwf
1
2 (z, 0, 0)U2

2 (Z, 0) −DzU
1
2 (z, 0)g12(z, 0, 0)]. The calcu-

lations of g12(z, 0, σ) and g13(z, 0, 0) are the same as the calculation in [10]. After the
calculations, the normal form truncated to the third order on the center manifold for
double Hopf bifurcation can be obtained. By making the polar coordinate transformation

z1 = ρ1 cos θ1 + iρ1 sin θ1, z2 = ρ1 cos θ1 − iρ1 sin θ1,

z3 = ρ2 cos θ2 + iρ2 sin θ2, z4 = ρ2 cos θ2 − iρ2 sin θ2,

where ρ1, ρ2 > 0. Take ρ̂1 = ρ1
√
|K2100|, ρ̂2 = ρ2

√
|K0021|, ε1 = sign(ReK2100),

ε2 = sign(ReK0021), t̂ = tε1 and drop the hats. We obtain the simplified system

ρ̇1 = ρ1
(
v1 + ρ21 + b0ρ

2
2

)
, ρ̇2 = ρ2

(
v2 + c0ρ

2
1 + d0ρ

2
2

)
, (20)

where v1 = ε1(ReK11σ1 + ReK21σ2), v2 = ε1(ReK13σ1 + ReK23σ2), b0 = ε1ε2 ×
ReK1011/ReK0021, c0 = ReK1110/ReK2100 and d0 = ε1ε2.

As was discussed in [12, Chap. 7.5], there are 12 distinct kinds of unfoldings for (20).
In Section 4.1, three cases arise, thus we will draw the bifurcation sets and phase portraits
for the unfoldings of case VIII and VIb for illustration.

4 Numerical simulations

In this section, we will do some numerical simulations to check the previous theoretical
results. Besides, we will qualitatively analyze the influence of the small perturbations of
c and K on the existence of the double Hopf bifurcations.

Now we carry out some simulations for system (1). Choose

r = 1.2, K = 3, m = 1.8, b = 2, c = 1,
(21)

d = 1, d1 = 1, d2 = 1, l = 3.

One can verify that (H0) holds and E∗ is (2.5, 0.75). Since a11 + b11 = −0.8333 < 0,
(H1) holds, and E∗ is locally stable for τ1 = τ2 = 0.

When τ1, τ2 vary simultaneously, we follow the process presented in Section 2.1.
As is shown in Fig. 1(a), F0(0) > 0 and F0(ω) = 0 has four zeros a1,0 = 0.06146,
b1,0 = 0.16390, a2,0 = 1.22056, b2,0 = 1.44592, the crossing set is Ω1,0 ∪ Ω2,0 =
[a1,0, b1,0] ∪ [a2,0, b2,0]. For the two ends of Ω1,0, we have ψ1,0(a1,0) = π, ψ2,0(a1,0) =
0, ψ1,0(b1,0) = 0, and ψ2,0(b1,0) = π, thus δa1 = 1, δb1 = 0, δa2 = 0, δb2 = 1. From
Eq. (11) we get that T +

0,j1,j2
connect T −0,j1+1,j2

at the left point a1,0 and T −0,j1,j2−1 at the
right point b1,0. As to Ω2,0, we get ψ1,0(a2,0) = 0, ψ2,0(a2,0) = π, ψ1,0(b2,0) = 0, and
ψ2,0(b2,0) = 0, thus δa1 = 0, δb1 = 1, δa2 = 0, δb2 = 0. From (11) we get that T +

0,j1,j2
connect T −0,j1,j2−1 at a2,0 and T −0,j1,j2 at b2,0. From Lemma 2 we obtain all the stability
switching curves of n = 0 given by T 1

0 and T 2
0 , which are showed in Figs. 1(b) and (c),

respectively. To give a clearer description of the stability crossing curves, we take the
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Figure 1. (a) Graph of F0(ω). (b) Stability switching curves T 1
0 . (c) Stability switching curves T 2
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Figure 2. (a) The detailed structure of the lower left portion of T 1
0 . (b) The detailed structure of the left-most

curve of T 2
0 . The blue (red) arrow represents the positive direction of T +k

j1,j2,0
or T −k

j1,j2,0
.
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Figure 3. (a) Graph of F1(ω). (b) Stability switching curves T 1
1 . (c) Stability switching curves T 2

1 .

lower left portion of T 1
0 and the left-most curve of T 2

0 as examples and draw the detailed
figures in Fig. 2. The numerical results in Fig. 2 coincide with the theoretical analysis.

When n = 1, F1(ω) = 0 has three zeros b1,1 = 0.08886, a2,1 = 1.28106, b2,1 =
1.48906, and the crossing set is Ω1,1 ∪ Ω2,1 = [0, b1,1] ∪ [a2,1, b2,1]. Then we get the
stability switching curves T 1

1 and T 2
1 , which are shown in Figs. 3(b) and (c).
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Figure 4. (a) Graph of F2(ω). (b) Graph of F3(ω). (c) Graph of F4(ω).

(a) (b) (c)

Figure 5. (a) Stability switching curves T 1
2 . (b) Stability switching curves T 1

3 . (c) Stability switching
curves T 1

4 .

When n = 2, F2(ω) = 0 has two zeros a1,2 = 1.39120, b1,2 = 1.56591, thus
Ω1,2 = [a1,2, b1,2]. The stability switching curves T 1

2 are shown in Fig. 5(a). When n = 3,
F3(ω) = 0 has two zeros a1,3 = 1.3822, b1,3 = 1.5362, thus Ω1,3 = [a1,3, b1,3], the
stability switching curves T 1

3 are shown in Fig. 5(b). When n = 4, F4(ω) = 0 has two
zeros a1,4 = 0.9052, b1,4 = 1.1001, thus Ω1,4 = [a1,4, b1,4], the stability switching
curves T 1

4 are shown in Fig. 5(c). When n > 5, Fn(ω) > 0 for all ω > 0, thus there are
no stability switching curves on the τ1,τ2-plane.

Combining the stability switching curves shown in Figs. 1, 3, and 5 together, zooming
them in one figure in [0, 1.3]×[0, 14], we get the stability switching curves shown in Fig. 6.
By Lemma 2, we have plotted all the stability switching curves in [0, 1.3]× [0, 14].

We focus on the lower bottom region bounded by left-most curve of T 1
0 , T 1

1 and the
lowest curve of T 2

0 in Fig. 6. By Lemma 1, E∗ is stable in the bottom left region, since
the crossing directions of the three stability switching curves are all pointing outside
of this region. These three stability crossing curves intersect at HH1(0.7717, 9.8717),
HH2(0.8413, 7.9598), and HH3(0.9011, 7.6982). By the normal form derivation process
in Section 3, we obtain the parameters in Table 1. For HH1, we get that case VIII oc-
curs [12]. Near the double Hopf singularity HH1, there are six different kinds of phase
diagrams in six regions, which are shown in Fig. 7(a). The six regions are divided by
l1, . . . , l4 with l1: σ2 = 1.5379σ1, l2: σ2 = 62.6720σ1, l3: σ2 = 58.5472σ1 (σ1 > 0),
l4: σ2 = −15.1454σ1 (σ1 > 0). For HH2, we get that case VIb occurs. There are also
six different kinds of phase diagrams in six regions near the double Hopf bifurcation
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Table 1. Parameter values at the double Hopf points.

Point n1 ω1 n2 ω2 d0 b0 c0 Type
HH1 0 0.1622 0 1.3639 −1 −6.7643 −72.9979 VIII
HH2 0 1.3999 1 1.4755 −1 0.0947 −7.5179 VIb
HH3 0 1.2480 1 1.3925 1 0.0521 4.1036 Ia

Figure 6. The stability switching curves and the intersections.

(a) (b)

Figure 7. (a) Bifurcation diagram near HH1. (b) Bifurcation diagram near HH2.

point HH2, which are shown in Fig. 7(b). The six regions are divided by k1, . . . , k4
with k1: σ2 = −3.7480σ1, k2: σ2 = −8.0660σ1, k3: σ2 = −7.5157σ1 (σ1 6 0),
k4: σ2 = −7.3311σ1 (σ1 6 0).

When (τ1, τ2) are chosen as P1(0.72, 9.7) in region D1, the positive equilibrium is
a sink, which is shown in Fig. 8. When (τ1, τ2) are chosen as P2(0.775, 9.7) in D2 or
P3(0.775, 9.87) in D3, or P4(0.775, 9.7) in D4, there exists a stable periodic solution
originating from the Hopf bifurcation. We only draw the case for P4 ∈ D4 in Fig. 9.

When P5(0.84, 7.95) falls in region R1, E∗ is a sink. When P6(0.84, 7.9662) is
chosen in R2 or P7(0.84, 7.9692) in R3, there exists a stable periodic solution. We only
draw the case for P7 ∈ R3 in Fig. 10.
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Figure 8. When P1 ∈ D1, the positive equilibrium is asymptotically stable, where the initial values are
u0(x, t) = 2.55 + 0.5 cosx, v0(x, t) = 0.75− 0.3 cosx.

Figure 9. When P4 ∈ D4, the spatially homogeneous periodic solution is stable, where the initial values are
u0(x, t) = 2.55 + 0.5 cosx, v0(x, t) = 0.75− 0.3 cosx.

Figure 10. When P7 ∈ R3, the spatially inhomogeneous periodic solution is stable, where the initial values are
u0(x, t) = 2.55 + 0.5 cosx, v0(x, t) = 0.75− 0.3 cosx.
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Figure 11. When P7 ∈ R3, (0, 0) attracts the solution initiating from u0(x, t) = 2.55+0.5 cosx, v0(x, t) =
1− 0.3 cosx.

(a) (b)

(c) (d)

Figure 12. Stability switching curves with different parameters: (a) c = 0.9 and c = 1, drawn by dotted
lines and solid lines, respectively; (b) c = 1.1 and c = 1, drawn by dotted lines and solid lines, respectively;
(c) K = 2.9 and K = 3, drawn by dotted lines and solid lines, respectively; (d) K = 3.1 and K = 3, drawn
by dotted lines and solid lines, respectively.
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Since the strong Allee effect is considered in system (1), the over-predation phe-
nomenon will occur when the initial value of the predator is large enough compared to
the prey. We only take one example to show the over-predation phenomenon, which is
revealed in Fig. 11.

Now we use parameters in (21) as a baseline to show the sensitivity of c and K on
model (1) by numerical simulations.

First we consider the sensitivity of c on the stable region ofE∗. We draw the left-most
and bottom stability crossing curves and zoom them in [0.65, 1] × [0, 14] in Figs. 12(a)
and (b). Then K is chosen as the perturbation parameter with all other parameters fixed
as the same in (21). We also draw the left-most and bottom stability crossing curves and
zoom them in [0.65, 1]× [0, 16] in Figs. 12(c) and (d).

From Fig. 12 we can conclude that although the influence of a slight perturbation
of c or K on the stability region cannot be evaluated quantitatively, the double Hopf
bifurcation still exist, which indicates that the double Hopf bifurcation in the system has
strong anti-interference ability.

5 Conclusion

A diffusive predator–prey system with two delays and strong Allee effect is investigated
in our paper. This system considers both the delay feedback of intraspecific competition
in prey and the delay feedback of digestion in the predator. By applying the method of
stability switching curves, we study the joint effect of the two delays on the stability of
the positive constant steady state. With the aid of the crossing directions, we present the
Hopf bifurcation theorem and give sufficient conditions for the existence of the double
Hopf bifurcation.

To explore the dynamics of the system near the double Hopf singularities, we cal-
culate the normal forms on the center manifold near the double Hopf singularities. The
calculation formulas of the normal form we give here are at a double Hopf singularity with
k1 = 0, k2 = 1. Then we get the corresponding unfoldings and the bifurcation sets. With
a set of parameters, we theoretically prove and illustrate the existence of homogeneous
and inhomogeneous periodic solution. Besides, heteroclinic orbits are found near the
double Hopf singularity.

Populations with strong Allee effect can be wiped out by the over-predation phe-
nomenon, we prove this phenomenon numerically. Finally, we carry out the sensitivity
analysis to show the impact of two parameters on the dynamics of the system. Numerical
simulation shows that small changes of c or K normally won’t affect the existence of
double Hopf singularities of the system.
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