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Abstract. Strongly consistent and asymptotically normal estimate of the Hurst index H are ob-
tained for stochastic differential equations (SDEs) that have a unique positive solution. A strongly
convergent approximation of the considered SDE solution is constructed using the backward Euler
scheme. Moreover, it is proved that the Hurst estimator preserves its properties, if we replace the
solution with its approximation.
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1 Introduction

The models defined by SDE

Xt = x0 +

t∫
0

g(Xs) ds+ σ

t∫
0

Xβ
s dBs,

1

2
6 β < 1,

where B is standard Brownian motion, g is continuous function on (0,∞), x0 > 0 is
nonrandom initial value, σ > 0 is a constant, include several well-known models such as
Chan–Karolyi–Longstaff–Sanders (CKLS), Cox–Ingersoll–Ross (CIR), Ait-Sahalia and
others, which are widely used in many financial applications. These models were
studied in [1,2,13–15] and in the references therein. They also found conditions when the
solutions to these models are positive. In addition, implicit numerical schemes preserv-
ing positivity were also considered. To solve these problems, some authors convert the
original SDE using the Lamperti transform to SDE with a constant diffusion coefficient.
This approach is also convenient for considering fractional analogues of the CKLS, CIR,
Ait-Sahalia models.
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Currently, much attention is paid to models with fractional Brownian motion (fBm)
BH since it introduces a memory element into the model under consideration. Consider
SDE

Xt = x0 +

t∫
0

g(Xs) ds+ σ

t∫
0

Xβ
s dBHs ,

1

2
6 β < 1, (1)

withH ∈ (1/2, 1). The stochastic integral in equation (1) is a pathwise Riemann–Stieltjes
integral. SDE (1) cannot be treated directly since the function h(x) = xβ , 1/2 6 β < 1,
does not satisfy the usual Lipschitz conditions that are commonly imposed.

For fractional CIR and CKLS models, the existence of a unique positive solution of
equation (1) was obtained in [3,8,9,11,12,16]. The proof is based on several approaches.
One approach is based on the consideration of the conditions under which the equation

Yt = y0 +

t∫
0

f(s, Ys) ds+BHt , H ∈
(

1

2
, 1

)
,

admits a unique positive solution, where f(t, x) is a locally Lipschitz function with
respect to the space variable x on x ∈ (0,∞). This approach was used in [3,8,16], where
the inverse Lamperti transform was used to obtain conditions under which equation (1)
admits a unique positive solution for fractional CIR and CKLS models. Unfortunately, we
cannot apply the proof of the positivity of the solution of equation (1) given in [16]. The
proof must be revised because it is not applicable, for example, for the Ait-Sahalia model
with 1/2 6 β < 1.

Marie [9] used rough-path approach to find the existence of the unique positive solu-
tion of the fractional CKLS model. One more approach for fractional CIR process was
suggested in [11, 12], where the integral with respect to fractional Brownian motion is
considered as the pathwise Stratonovich integral. In [10], it was proved that equation

Xt = x0 + b

t∫
0

Xs ds+ σ

t∫
0

Xβ
s dBHs , x0 > 0,

has a unique solution for H ∈ (1/(1 +β), 1), β ∈ [1/2, 1), and Xt = 0 a.s. for all t > τ ,
where τ = inf{t > 0: Xt = 0}.

The problem of the statistical estimation of the long-memory parameterH is of a great
importance. This parameter determines the mathematical properties of the model and
consequently describes the behavior of the underlying physical system.

Our goal is to construct strongly consistent and asymptotically normal estimator of
the Hurst index H for SDE (1), which has a unique positive solution. For such processes,
we can do this in the same way as done for the diffusion coefficient satisfying the usual
Lipschitz conditions (see [6, 7]). More results on parameter estimations for stochastic
differential equations can be found in the book [5]. Since the existence of a unique positive
solution for general form SDE (1) is unknown, we will pay attention to this problem.
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To model the estimator of the Hurst index, we need an approximation of the SDE (1)
solution. The approximation of the solution X is based on the use of the backward Euler
scheme, which is positivity preserving. Moreover, the Hurst index H estimator preserves
its properties if we replace the solution X with its approximation.

The paper is organized in the following way. In Section 2, we present the main results
of the paper. In Section 3, we prove the main auxiliary result about the existence and
uniqueness of positive solution for SDE (1). Section 4 contains proofs of main theo-
rems. In Section 5, fractional CKL and Ait-Sahalia models are considered as examples.
Section 6 gives some examples of simulating the fractional CKLS model to illustrate
the results. Finally, in Appendix, we recall same results for fBm and the Love–Young
inequality.

2 Main results

To state our main results, we use the following requirements on function f :

(C1) A function f(x) is a continuously differentiable on (0,+∞).
(C2) There exist constants a > 0 and α > 0 such that f(x) > a/x1+α for all

sufficiently small x.
(C3) There exists a constant K ∈ R such that the derivative is bounded above by K,

i.e., f ′(x) 6 K.

To estimate the Hurst index for SDE (1), we need conditions when this equation
admits a unique positive solution. The following theorem solves this problem. Cγ([0, T ])
denotes the space of Hölder continuous functions of order γ > 0 on [0, T ].

Theorem 1. Assume that function f satisfies conditions (C1)–(C3). Then the equation

Xt = x0 +

t∫
0

g(Xs) ds+ σ

t∫
0

Xβ
s dBHs , t > 0, (2)

where g(x) = xβf(x1−β), 1/2 6 β < 1, is well defined and has a unique positive
solution X ∈ Cγ([0, T ]) with order γ ∈ (1/2, H), H ∈ (1/2, 1).

Our goal is to construct strongly consistent and asymptotically normal estimator of
the Hurst parameter H for the solution X of equation (2) from discrete observations of
a single sample path.

Let π = {tnk = (k/n)T, 1 6 k 6 n} be a sequence of uniform partitions of the
interval [0, T ] and h = tnk − tnk−1, 1 6 k 6 n. For a real-valued process X = {Xt,
t ∈ [0, T ]}, we define the first and second-order increments along uniform partitions as

∆n,kX = Xtnk
−Xtnk−1

, 1 6 k 6 n,

∆
(2)
n,kX = Xtnk+1

− 2Xtnk
+Xtnk−1

, 1 6 k 6 n− 1.
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To avoid cumbersome expressions, we introduce symbol Oω . Let (Zn) be a sequence of
r.v., ς is an a.s. nonnegative r.v. and (an) ⊂ (0,∞) vanishes. Zn = Oω(an) means that
|Zn| 6 ς · an. In particular, Zn = Oω(1) corresponds to the sequence (Zn), which is a.s.
bounded.

Theorem 2. Assume that X is a unique positive solution of SDE (2) with H ∈ (1/2, 1).
Then

Ĥn = H +Oω

((
lnn

n

)1/2)
, 2 ln 2

√
n (Ĥn −H)

d−→ N (0, σ2
H)

with a known variance σ2
H defined in Section A.2, where

Ĥn =
1

2
− 1

2 ln 2
ln
Ṽ

(2)X
2n,T

Ṽ
(2)X
n,T

, Ṽ
(2)X
n,T =

n−1∑
k=1

(
∆

(2)
n,kX

Xβ(tnk )

)2

.

In practice, it is very interesting to compare different estimators. Therefore, we con-
sider approximations of discrete time that can be used in modeling. To construct an
approximation scheme for the SDE (2) solution, we use the solution of the SDE

Yt = y0 + (1− β)

t∫
0

f(Ys) ds+ (1− β)σBHt , t > 0, H ∈
(

1

2
, 1

)
,

y0 = x1−β0 .

(3)

The solutions of SDEs (2) and (3) satisfy the relation Xt = Y
1/(1−β)
t (see the proof of

Theorem 1).
The backward Euler approximation scheme for Y is defined as follows:

Ŷn,k+1 = Ŷn,k + (1− β)f(Ŷn,k+1)h+ σ(1− β)∆n,k+1B
H , 0 6 k 6 n− 1,

Ŷn,0 = y0.

For the well-definedness of the backward Euler approximation scheme, we need the
following assumption:

(C4) Set F (x) = x−(1−β)f(x)h on (0,∞). Assume that the function f(x) satisfies
conditions (C1), (C3) and there exists h0 > 0 such that limx→+∞ F (x) = +∞,
limx→0+ F (x) = −∞ for 0 < h < h0.

Remark 1. Note that under condition (C3) the function F (x) is strictly monotone on
(0,∞) for small h. Thus, from the conditions (C3) and (C4) it follows that for each b ∈ R,
the equation F (x) = b has a unique positive solution for 0 < h < h0. Consequently, the
backward Euler approximation scheme preserves positivity.
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Theorem 3. Let the function f(x) satisfies conditions (C1)–(C4), and f ′ is continuous on
(0,∞). If the sequence of uniform partitions π of the interval [0, T ] is such that h < h0,
then for any T > 0,

sup
06t6T

∣∣Yt − Ŷ nt ∣∣ = Oω
(
n−γ

)
, γ ∈

(
1

2
, H

)
, (4)

where

Ŷ nt = Ŷn,k +
t− tnk
h

(Ŷn,k+1 − Ŷn,k), t ∈
(
tnk , t

n
k+1

]
, k = 0, . . . , n− 1,

Ŷ nn,0 = y0.

Moreover,

sup
06t6T

∣∣Xt −
(
Ŷ nt
)1/(1−β)∣∣ = Oω

(
n−γ

)
, γ ∈

(
1

2
, H

)
, (5)

where X is the solution of equation (2).

The following result states that if we replace the solution X with its approximation,
then the estimator of the Hurst indexH will remain strongly consistent and asymptotically
normal.

Theorem 4. Let conditions of Theorem 3 are satisfied. Moreover, let β = (m − 1)/m,
m ∈ N. Then

ĤE
n = H +Oω

((
lnn

n

)1/2)
, 2 ln 2

√
n
(
ĤE
n −H

) d−→ N
(
0, σ2

H

)
with a known variance σ2

H defined in Section A.2, where

ĤE
n =

1

2
− 1

2 ln 2
ln
Ṽ
E(2)Ŷ
2n,T

Ṽ
E(2)Ŷ
n,T

, Ṽ
E(2)Ŷ
n,T =

n−1∑
k=1

(
∆

(2)
n,kŶ

m

Ŷ m−1k

)2

,

∆
(2)
n,iŶ

m = Ŷ mn,i+1 − 2Ŷ mn,i + Ŷ mn,i−1, (Ŷn,i)06i6n is the backward Euler approximation
of the process Y .

3 Auxiliary result

We are interested in conditions under which the SDE

Yt = y0 + k1

t∫
0

f(Ys) ds+ k2B
H
t , H ∈

(
1

2
, 1

)
, (6)

has a unique positive solution, where k1 and k2 are positive constants. As mentioned in
the introduction, this type of equation was considered in [3,8,16]. We provide conditions
of a different kind than in the above papers under which equation (6) has a unique positive
solution and which are easily applicable to the fractional CKLS and Ait-Sahalia models.
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Consider the following deterministic differential equation driven by a continuous
function ϕ:

yt = y0 + k1

t∫
0

f(ys) ds+ k2ϕt, (7)

where y0 is a constant.

Proposition 1. Let ϕ : R+ → R be a function such that ϕ0 = 0, and ϕ ∈ Cλ([0, T ])
for all T > 0 and fixed λ ∈ (1/2, 1). Let function f(x) satisfies conditions (C1)–(C3). If
y0 > 0 then equation (7) has a unique positive solution y ∈ Cλ([0, T ]) for any T > 0.

Proof. Existence. Since f(x) is locally Lipschitz continuous in (0,+∞), it is easy to
see that there exists a continuous local solution y to (7) on some interval [0, τ), where
τ = inf{t > 0: yt = 0}. For the existence of a positive solution, we need to prove that
τ = +∞. The proof is by contradiction. During the proof, we repeat the outlines of the
proof of [3] (see also [2], [12]).

Under condition (C2), there exists ε0 > 0 such that

f(x) >
a

x1+α
∀x ∈ (0, ε0). (8)

For any ε ∈ (0, ε0), let us introduce the last moment of hitting the level of ε before
the first zero reaching τε = sup{t ∈ (0, τ): yt = ε}. Then yt ∈ (0, ε) for all t ∈ (τε, τ).
This, together with (8), implies

f(yt) >
a

y1+αt

∀t ∈ (τε, τ).

According to the definitions of τ , τε and y, the following equality is true:

ε+ k1

τ∫
τε

f(ys) ds = k2(ϕτε − ϕτ ). (9)

Since the function yt ∈ (0, ε) on the interval (τε, τ), then for all t ∈ (τε, τ),

a

y1+αt

>
a

ε1+α
.

From (9) and inequality |ϕt − ϕs| 6 Kϕ|t− s|λ it follows that

ε+
k1a

ε1+α
(τ − τε) 6 Kϕk2(τ − τε)λ.

Now we show that there exists ε∗ ∈ (0, ε) such that, for all ε < ε∗ and for all x > 0,
Fε(x) > 0, where

Fε(x) = Cε,αx− Ĉxλ + ε, Cε,α =
k1a

ε1+α
, Ĉ = Kϕk2.

Then we get contradiction, which proves that the solution of equation (7) is positive.
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It is easy to check that Fε(0) = ε > 0 and Fε is convex on (0,+∞) (its second
derivative is strictly positive on this set), so it is enough to examine the sign of the function
in its critical points. So

F ′ε(x̃) = Cε,α − λĈx̃λ−1 = 0

=⇒ x̃ =

(
Cε,α

λĈ

)1/(λ−1)

=

(
k1a

Kϕλk2

)1/(λ−1)

ε(1+α)/(1−λ).

After some calculations, we get

Fε(x̃) = (λ− 1)Kϕk2

(
k1a

Kϕλk2

)λ/(λ−1)
ε(1+α)λ/(1−λ) + ε.

Since λ > 1/2, then λ/(1 − λ) > 1 and (1 + α)λ/(1 − λ) > 1. For any K > 0,
there exists ε∗ > 0 such that ε − Kε(1+α)λ/(1−λ) > 0 for all ε < ε∗. Choosing the
corresponding ε∗ for

K := (1− λ)Kϕk2

(
k1a

Kϕλk2

)λ/(λ−1)
and choosing an arbitrary ε < ε∗, we obtain that Fε(x) > 0 for all x > 0. The contradic-
tion obtained proves that τ = +∞.

It remains to prove that y ∈ Cλ([0, T ]). Indeed,

|yt − ys| 6 k1

t∫
s

∣∣f(yu)
∣∣du+ k2σ|ϕt − ϕs|

6 k1 max
06u6T

∣∣f(yu)
∣∣(t− s) + k2σC(t− s)λ

6 C̃(t− s)λ.

Uniqueness. Let ỹ and ŷ be two positive solutions of equation (7). Then

ỹt − ŷt =

t∫
0

(
f(ỹs)− f(ŷs)

)
ds

and from condition (C3)

(ỹt − ŷt)2 = 2

t∫
0

(ỹt − ŷt)
(
f(ỹs)− f(ŷs)

)
ds

6 2K

t∫
0

(ỹt − ŷt)2 ds.

From Gronwall ’s inequality it follows that ỹt = ŷt for all t 6 T , T > 0.
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As an immediate consequence of Proposition 1, we have the following result.

Proposition 2. Assume that conditions of Proposition 1 are satisfied and y0 > 0. Then
there exists a unique positive solution of equation (6) such that Y ∈ Cγ([0, T ]), T > 0,
where γ ∈ (1/2, H), H ∈ (1/2, 1).

4 Proofs of main theorems

Proof of Theorem 1. Set Xt = Y
1/(1−β)
t and x0 = y

1/(1−β)
0 , where Y is a solution of

equation (6) with k1 = k2 = 1 − β. Since the process Y is positive Hölder continuous
process up to the order γ ∈ (1/2, H) and β/(1− β) > 1, then Xβ

s is Hölder continuous
process up to the order γ ∈ ( 1

2 , H). This follows from the inequality

∣∣Y β/(1−β)t − Y β/(1−β)s

∣∣ 6 β

1− β
sup

06t6T
Y

(2β−1)/(1−β)
t |Yt − Ys| (10)

for 1/2 6 β < 1, where we applied the mean value theorem.
Thus, the integral

∫ t
0
Xβ
s dBHs is well defined as a pathwise Riemann–Stieltjes inte-

gral for γ ∈ (1/2, H) and equation (2) is well defined. Now we verify thatX is a solution
of equation (2). By chain rule we obtain

Xt = Y
1/(1−β)
t = Y

1/(1−β)
0 +

1

1− β

t∫
0

Y β/(1−β)s dYs

= y
1/(1−β)
0 +

t∫
0

Y β/(1−β)s f(Ys) ds+ σ

t∫
0

Y β/(1−β)s dBHs

= x0 +

t∫
0

g(Xs) ds+ σ

t∫
0

Xβ
s dBHs ,

where g(x) = xβf(x1−β). Thus, equation (2) has a continuous positive solution. Since

|Xt −Xs| =
∣∣Y 1/(1−β)
t − Y 1/(1−β)

s

∣∣ 6 1

1− β
sup

06t6T
Y
β/(1−β)
t |Yt − Ys|

for 1/2 6 β < 1, then X ∈ Cγ([0, T ]), γ ∈ (1/2, H).

The proof of Theorem 2 is based on the following lemma.

Lemma 1. Assume that conditions of Theorem 1 are satisfied and 1/2 6 β < 1. Then

∆
(2)
n,iX = σXβ(tni )∆

(2)
n,iB

H +Oω
(
n−2γ

)
,

where γ ∈ (1/2, H).
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Proof. Second-order increments of the process X we write as follows:

∆
(2)
n,kX =

( tnk+1∫
tnk

[
g(Xs)− g(Xtnk

)
]

ds−
tnk∫

tnk−1

[
g(Xs)− g(Xtnk

)
]

ds

)

+ σ

( tnk+1∫
tnk

[
Xβ
s −X

β
tnk

]
dBHs −

tnk∫
tnk−1

[
Xβ
s −X

β
tnk

]
dBHs

)

+ σXβ
tnk
∆

(2)
n,iB

H .

Applying inequality (10), condition (C1) and the fact that Y ∈ Cγ([0, T ]), γ ∈ (1/2, H),
we obtain∣∣g(Xt)− g(Xs)

∣∣ =
∣∣Y β/(1−β)t f(Yt)− Y β/(1−β)s f(Ys)

∣∣
6
∣∣f(Yt)

∣∣∣∣Y β/(1−β)t − Y β/(1−β)s

∣∣+ Y β/(1−β)s

∣∣f(Yt)− f(Ys)
∣∣

6 sup
06t6T

∣∣f(Yt)
∣∣ β

1− β
sup

06t6T
Y

(2β−1)/(1−β)
t |Yt − Ys|

+ sup
06t6T

Y
β/(1−β)
t sup

06t6T

∣∣f ′(Yt)∣∣|Yt − Ys| = Oω
(
n−γ

)
.

Thus,
tnk+1∫
tnk

∣∣g(Xs)− g(Xtnk
)
∣∣ ds = Oω

(
n−1−γ

)
,

tni∫
tni−1

∣∣g(Xs)− g(Xtnk
)
∣∣ds = Oω

(
n−1−γ

)
.

Moreover, by Love–Young inequality, (10) and Hölder continuity of BH we get∣∣∣∣∣
tni∫

tni−1

[
Xβ
s −X

β
tni

]
BHs

∣∣∣∣∣ 6 Cγ,γ
β

(1− β)
sup

06t6T
Y

(2β−1)/(1−β)
t KY,TGγ,Tn

−2γ ,

where KY,T = sups,t∈[0,T ], s 6=t |Yt − Ys|/|s − t|γ < ∞ a.s. Thus, we get the statement
of the lemma.

Proof of Theorem 2. Since X is a positive solution, it follows from Lemma 1 and (A.1)
that

Ṽ
(2)X
n,T =

n−1∑
k=1

(
σ∆

(2)
n,kB

H +Oω
(
n−2γ

))2
= σ2

n−1∑
k=1

(
∆

(2)
n,kB

H
)2

+Oω
(
n1−3γ

)
=
σ2T 2H(4− 22H)

n2H−1
V

(2)B̂H

n,T +Oω
(
n1−3γ

)
Nonlinear Anal. Model. Control, 25(6):1059–1078
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=
σ2T 2H(4− 22H)

n2H−1

[
1 +Oω

((
lnn

n

)1/2)]
+Oω

(
n1−3γ

)
=
σ2T 2H(4− 22H)

n2H−1

[
1 +Oω

((
lnn

n

)1/2)
+Oω

(
n−γ+2(H−γ))]

=
σ2T 2H(4− 22H)

n2H−1

[
1 +Oω

((
lnn

n

)1/2)]
(11)

if γ is slightly different from H . Thus, by Maclaurin’s expansion

Ĥn =
1

2
− 1

2 ln 2
ln

T 2H(4−22H)
(2n)2H−1 [1 +Oω(( lnn

n )1/2)]

T 2H(4−22H)
n2H−1 [1 +Oω(( lnn

n )1/2)]

=
1

2
− 1

2 ln 2
ln

(
1

22H−1

(
1 +Oω(( lnn

n )1/2)

1 +Oω(( lnn
n )1/2)

))
= H + ln

(
1 +Oω

((
lnn

n

)1/2))
= H +Oω

((
lnn

n

)1/2)
.

Repeating the proof of Theorem 3.17 in [5] and using (11), we get

Ĥn =
1

2
− 1

2 ln 2
ln

σ2T 2H(4−22H)
(2n)2H−1 V

(2)B̂H

2n,T +Oω(n1−3γ)

σ2T 2H(4−22H)
n2H−1 V

(2)B̂H

n,T +Oω(n1−3γ)

=
1

2
− 1

2 ln 2
ln

(
V

(2)B̂H

2n,T

22H−1V
(2)B̂H

n,T

(
1 +Oω(n−γ+2(H−γ))

1 +Oω(n−γ+2(H−γ))

))
= H̃n −

1

2 ln 2
ln
(
1 +Oω

(
n−γ+2(H−γ))) = H̃n +Oω

(
n−γ+2(H−γ)),

where

H̃n =
1

2
− 1

2 ln 2
ln

V
(2)B̂H

2n,T

22H−1V
(2)B̂H

n,T

= H − 1

2 ln 2
ln
V

(2)B̂H

2n,T

V
(2)B̂H

n,T

.

Applying the limit results of Section A.2, we obtain H̃n → H a.s. and

2 ln 2
√
n(H̃n −H)

d−→ N
(
0, σ2

H

)
.

Now, to finish the proof, it is enough to apply the Slutsky’s theorem and the results
obtained above. Note that the limit variance σ2

H of Ĥn equals that to H̃n.

Proof of Theorem 3. First, we prove (4). By Remark 1 the values of the approximation
(Ŷk) are strictly positive for y0 > 0 and 0 < h < h0.
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By definition of Ŷ n, for any t ∈ (tnk , t
n
k+1],

Yt − Ŷ nt = Yt −
t− tnk
h

Ŷk+1 −
tnk+1 − t

h
Ŷk

=
tnk − t
h

(1− β)

[ tnk+1∫
t

f(Ys) ds+ σ
(
BHtnk+1

−BHt
)]

+
tnk+1 − t

h
(1− β)

[ t∫
tnk

f(Ys) ds+ σ
(
BHt −BHtnk

)]

+
t− tnk
h

(Ytnk+1
− Ŷk+1) +

tnk+1 − t
h

(Ytnk − Ŷk).

The asymptotic behavior of the first two terms is Oω(n−γ). Thus, it remains for us to
obtain the asymptotic of the last two terms.

Note that

Ytnk+1
− Ŷn,k+1 = Ytnk − Ŷn,k + (1− β)

tnk+1∫
tnk

[
f(Ys)− f(Ŷn,k+1)

]
ds

= Ytnk − Ŷn,k + (1− β)

tnk+1∫
tnk

[
f(Ys)− f(Ytnk+1

)
]

ds

+ (1− β)ζk+1(Ytnk+1
− Ŷn,k+1)h,

where ζk+1 = f ′(Ytnk+1
+ θ(Ŷn,k+1 − Ytnk+1

)), θ ∈ (0, 1). Then

Ytnk+1
− Ŷn,k+1 =

1

1−(1−β)ζk+1h

[
Ytnk − Ŷn,k + (1− β)

tnk+1∫
tnk

[
f(Ys)− f(Ytnk+1

)
]

ds

]

=

k+1∑
i=1

Ii

k+1∏
j=i

(
1− ζj(1− β)h

)−1
, (12)

where Ii = (1− β)
∫ tni
tni−1

[f(Ys)− f(Ytni )] ds.

Note that 1 − ζi(1 − β)h > 1 − K+h > 0 for small h since f ′(x) 6 K, where
K+ = max{0,K}. Applying inequality ln(1/(1− x)) 6 x/(1− x), x < 1, we get

k+1∏
j=i

(
1− ζj(1− β)h

)−1
6
(
1−K+h

)−(k+1−i)
6 en ln(1/(1−K+h)

6 en(K
+h)/(1−K+h) 6 e(K

+T )/(1−K+h).
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Continuity of the function f ′ and the positivity of the process Y ∈ Cγ([0, T ]), γ ∈
(1/2, H), gives an estimate∣∣∣∣∣

tnk∫
tnk−1

[
f(Ys)− f(Ytnk )

]
ds

∣∣∣∣∣ 6 h max
06t6T

∣∣f ′(Yt)∣∣ max
tnk−16t6t

n
k

∣∣Yt − Ytnk ∣∣
= Oω

(
h1+γ

)
. (13)

From (12) it follows that

max
16k6n

|Ytnk − Ŷn,k| = Oω
(
n−γ

)
. (14)

This finishes the proof of (4).
It remains to prove (5). By applying inequality

xp − yp < pxp−1(x− y), 0 < y < x, p > 1,

it follows that ∣∣xp − yp∣∣ < p|x− y|
(
max

{
|x|, |y|

})p−1
.

Since Xt = Y
1/(1−β)
t , then

sup
06t6T

∣∣Xt −
(
Ŷ nt
)1/(1−β)∣∣

= sup
06t6T

∣∣Y 1/(1−β)
t −

(
Ŷ nt
)1/(1−β)∣∣

6
1

1− β
sup

06t6T

∣∣Yt − Ŷ nt ∣∣(max
{

sup
06t6T

|Yt|, sup
06t6T

∣∣Ŷ nt ∣∣})β/(1−β).
From (4) and finiteness of sup06t6T |Yt| we have

sup
06t6T

∣∣Ŷ nt ∣∣ 6 sup
06t6T

∣∣Ŷ nt − Yt∣∣+ sup
06t6T

|Yt| 6 Oω
(
n−γ

)
+ sup

06t6T
|Yt|

= Oω(1).

Thus,

sup
06t6T

∣∣Xt −
(
Ŷ nt
)1/(1−β)∣∣ = Oω

(
n−γ

)
.

This finishes the proof of (5).

To prove Theorem 4, we need the following statement.

Lemma 2. Let 1/2 6 β < 1 and β = (m − 1)/m, m ∈ N. If conditions of Theorem 3
are satisfied, then

∆
(2)
n,iŶ

m = (1− β)σŶ m−1n,i ∆
(2)
n,iB

H +Oω
(
n−2γ

)
.
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Proof. We now recall a well-known equality of algebra

am − bm = (a− b)
m−1∑
k=0

am−1−kbk.

From this equality we get

am − bm = (a− b)

[
am−2(a− b) + 2am−2b+

m−1∑
k=2

am−1−kbk

]

= (a− b)

[
am−2(a− b) + 2am−2b+ am−3b2 +

m−1∑
k=3

am−1−kbk

]

= (a− b)

[
am−2(a− b) + 2am−3b(a− b) + 3am−3b2 +

m−1∑
k=3

am−1−kbk

]

= (a− b)

[
(a− b)

m−1∑
k=1

kam−1−kbk−1 +mbm−1

]
,

am − bm = (a− b)

[
bm−2(b− a) + 2abm−2 +

m−1∑
k=2

akbm−1−k

]

= (a− b)

[
(b− a)

m−1∑
k=1

kak−1bm−1−k +mam−1

]
.

Thus,

∆
(2)
n,iŶ

m = (Ŷn,i+1 − Ŷn,i)2
m−1∑
k=1

kŶ m−1−kn,i+1 Ŷ k−1n,i +mŶ m−1n,i (Ŷn,i+1 − Ŷn,i)

+ (Ŷn,i−1 − Ŷn,i)2
m−1∑
k=1

kŶ k−1n,i Ŷ m−1−kn,i−1 −mŶ m−1n,i (Ŷn,i − Ŷn,i−1)

= mŶ m−1n,i ∆
(2)
n,iŶ + (Ŷn,i+1 − Ŷn,i)2

m−1∑
k=1

kŶ m−1−kn,i Ŷ k−1n,i−1

+ (Ŷn,i−1 − Ŷn,i)2
m−1∑
k=1

kŶ k−1n,i Ŷ m−1−kn,i−1

and
m−1∑
k=1

k
∣∣Ŷ m−1−kn,i Ŷ k−1n,i−1

∣∣ 6 max
16i6n

|Ŷn,i|m−2
m−1∑
k=1

k 6
m2

2
max
16i6n

|Ŷn,i|m−2,

m−1∑
k=1

k
∣∣Ŷ k−1n,i Ŷ m−1−kn,i−1

∣∣ 6 m2

2
max
16i6n

|Ŷn,i|m−2.
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Since from Theorem 3 we have

|Ŷn,i+1 − Ŷn,i| = Oω
(
n−γ

)
and

|Ŷn,i| 6 |Ŷn,i − Ytni |+ |Ytni | 6 Oω
(
n−γ

)
+ sup

06t6T
|Yt| = Oω(1),

then
∆

(2)
n,iŶ

m = mŶ m−1n,i ∆
(2)
n,iŶ +Oω

(
n−2γ

)
.

To prove the assertion of the lemma, it remains to prove that

∆
(2)
n,iŶ = ∆

(2)
n,iY +Oω

(
n−2γ

)
(15)

since

∆
(2)
n,iY = (1− β)σ∆

(2)
n,iB

H +Oω
(
n−1−γ

)
.

The last equality follows from (13). Indeed, applying formula (12), we get

∆n,i+1Y −∆n,i+1Ŷ

=

i+1∑
k=1

Ik

i+1∏
j=k

(
1− ζj(1− β)h

)−1 − i∑
k=1

Ik

i∏
j=k

(
1− ζj(1− β)h

)−1
= Ii+1

(
1− ζi+1(1− β)h

)−1
+

i∑
k=1

Ik

(
i+1∏
j=k

(
1− ζj(1− β)h

)−1 − i∏
j=k

(
1− ζj(1− β)h

)−1)
= Ii+1

(
1− ζi+1(1− β)h

)−1
+
((

1− ζi+1(1− β)h
)−1 − 1

) i∑
k=1

Ik

i∏
j=k

(
1− ζj(1− β)h

)−1
= Ii+1

(
1− ζi+1(1− β)h

)−1
+
((

1− ζi+1(1− β)h
)−1 − 1

)
(Ytni − Ŷn,i)

=
(
1− ζi+1(1− β)h

)−1[
Ii+1 + ζi+1(1− β)h(Ytni − Ŷn,i)

]
,

where ∆n,i+1Ŷ = Ŷn,i+1 − Ŷn,i. By Remark 1 the values of the approximation (Ŷk) are
strictly positive for small h. Since Y is continuous and Yt > 0 for all t ∈ [0, T ], then
from (14) it follows that

Ytnk+1
+ θ(Ŷn,k+1 − Ytnk+1

)

> (1− θ) inf
06t6T

Yt + θŶn,k+1 > (1− θ) inf
06t6T

Yt > 0,

Ytnk+1
+ θ(Ŷn,k+1 − Ytnk+1

)

6 sup
06t6T

Yt +Oω
(
n−γ

)
6 sup

06t6T
Yt +Oω(1).
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Thus,

0 < inf
n>2

min
16k6n−1

f ′
(
Ytnk+1

+ θ(Ŷn,k+1 − Ytnk+1
)
)

6 sup
n>2

max
16k6n−1

f ′
(
Ytnk+1

+ θ(Ŷn,k+1 − Ytnk+1
)
)
<∞ a.s.

and therefore
ζi+1(1− β)h(Ytni − Ŷn,i) = Oω

(
h1+γ

)
. (16)

Since for small h, it follows that ζi(1− β)h 6 Kh < 1, then

0 <
(
1− ζi+1(1− β)h

)−1
6
(
1−K+h

)−1
. (17)

From (13), (16) and (17) it follows that

∆n,i+1Y −∆n,i+1Ŷ = Oω
(
h1+γ

)
.

So, we obtain (15).

Proof of Theorem 4. The proof is a similar to that of Theorem 2.

5 Examples

Example 1. The fractional CKLS model has a unique positive solution, and Theorem 3
holds.

Proof. The SDE, which we call a fractional CKLS model, has the form

Xt = x0 +

t∫
0

(a1 − a2Xs) ds+ σ

t∫
0

Xβ
s dBHs ,

1

2
6 β < 1,

with the initial value x0 > 0, whereH ∈ (1/2, 1), deterministic constants a1 > 0, a2 ∈ R
and σ > 0.

Set f(x) = a1/x
β/(1−β) − a2x. Note that

lim
x→0+

(
f(x)− a1

2xβ/(1−β)

)
= +∞

with a = a1/2, α = (2β − 1)/(1− β) > 0. Thus, conditions (C1) and (C2) are satisfied.
Moreover, since g(x) = xβf(x1−β) = a1 − a2x, then from Theorem 1 we get that the
CKLS model has a unique positive solution.

We verify condition (C4). The function

F (x) = x− (1− β)f(x)h = −a1(1− β)

xβ/(1−β)
h+

(
1 + a2(1− β)h

)
x
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is continuous on (0,∞). It is clear that 1 + a2(1 − β)h > 0 for any h > 0 if a2 > 0.
If a2 < 0 and the sequence of uniform partitions π of the interval [0, T ] is such that
h < 1/(−a2(1 − β)), then 1 + a2(1 − β)h > 0. Set h0 = 1/(−a2(1 − β)). Thus,
limx→0+ F (x) = −∞ and limx→∞ F (x) = +∞ for h ∈ (0, h0). Moreover, since

F ′(x) =
a1β

x1/(1−β)
h+

(
1 + a2(1− β)h

)
,

then the function F is strictly increasing for h ∈ (0, h0). Thus, condition (C4) is satisfied.
Since the function f ′(x) is continuous on (0,∞) and

f ′(x) = − a1β

1− β
x−1/(1−β) − a2 6 |a2|,

then condition (C3) is fulfilled and Theorem 3 holds.

Example 2. The Ait-Sahalia model has a unique positive solution, and Theorem 3 holds.

Proof. The SDE, which we call a fractional Ait-Sahalia type model, has the form

Xt = x0 +

t∫
0

(
a1X

−1
s − a2 + a3Xs − a4Xr

s

)
ds+ σ

t∫
0

Xβ
s dBHs

with the initial value x0 > 0, r ∈ (−1, 1), where H ∈ (1/2, 1), 1/2 6 β < 1,
deterministic constants a1, a2, a3, a4 > 0 and σ > 0.

Set
f(x) =

a1
x(1+β)/(1−β)

− a2
xβ/(1−β)

+ a3x−
a4

x(β−r)/(1−β)
.

Note that

f(x)− a1
2x(1+β)/(1−β)

= x−(1+β)/(1−β)
(
a1
2
− a2x1/(1−β) − a4x(r+1)/(1−β)

)
+ a3x

and the term in the brackets is positive for small x. Thus,

lim
x→0+

(
f(x)− a1

2x(1+β)/(1−β)

)
= +∞

with a = a1/2, α = (2β)/(1−β) > 2. Therefore, conditions (C1) and (C2) are satisfied.
Moreover, since g(x) = xβf(x1−β) = a1x

−1 − a2 + a3x− a4xr, then from Theorem 1
we get that the Ait-Sahalia model for 1/2 6 β < 1, r ∈ (−1, 1), has a unique positive
solution.
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Now we verify condition (C4). Clearly, the function

F (x) = x− (1−β)f(x)h

= x
(
1−a3(1−β)h

)
−(1−β)

(
a1

x(1+β)/(1−β)
− a2
xβ/(1−β)

− a4
x(β−r)/(1−β)

)
h

is continuous on (0,∞). Assume, that h0 = 1/(a3(1 − β)). Then for h ∈ (0, h0), we
have 1− a3(1− β)h > 0 and limx→0+ F (x) = −∞, limx→∞ F (x) = +∞.

Note that

f ′(x) = −a1
1+β

1−β
x−2/(1−β) + a2

β

1−β
x−1/(1−β)+a3+a4

β−r
1−β

x−(1−r)/(1−β).

Since the derivative f ′(x) is continuous on (0,∞) and limx→0+ f
′(x) = −∞,

limx→∞ f ′(x) = a3, then there is a constant K such that f ′(x) 6 K. Therefore,

(x− y)
(
F (x)− F (y)

)
= (x− y)2 − (1− β)(x− y)

(
f(x)− f(y)

)
h

>
(
1−K+h

)
(x− y)2 > 0

withK+ = max{0,K} and the strict monotonicity is obtained. Therefore, the conditions
of Theorem 3 are satisfied.

6 Simulation results

The purpose of this section is to provide some simulations in order to illustrate vari-
ous aspects of the suggested estimator. We consider CKLS model. The simulation of
the obtained estimate presented below was performed using Wolfram Mathematica. The
values of the constants involved in these simulations were x0 = 4, a = 1, b = 2, σ = 1.
We considered these sample paths on the unit interval, hence, T = 1. The number of
batches were 200 in all of the considered cases.

The CKLS model after Lamperti transform has the form

Yt = x0 + (1− β)

t∫
0

(
a1

Y
β/(1−β)
s

− a2Ys
)

ds+ σ(1− β)

t∫
0

Y βs dBHs ,
1

2
6 β < 1.

Applying Theorem 4, we calculate the estimator ĤE
n with β = (m− 1)/m, m ∈ N. The

asymptotic behavior of the variance of the difference H − ĤE
n for different m, n, and

H is shown in Figs. 1, 2.
Figure 1 shows that the variance of the difference H − ĤE

n decreases as the sample
size increases. Figure 2 shows how the variance of the difference H − ĤE

n for differ-
ent H depends on the sample size. We see that with increasing sample size, the variance
decreases for all H values.
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(a) m = 2 (b) m = 8

Figure 1. Dependence of variance on n.

(a) m = 2 (b) m = 8

Figure 2. Dependence of variance on H .

Appendix

The following facts are taken from the book [5].

A.1 Love–Young inequality

For any a < b,Cγ([a, b]) denotes the space of Hölder continuous functions of order γ > 0
on [a, b]. Let f ∈ Cλ([a, b]) and g ∈ Cµ([a, b]) with λ+ µ > 1 and

Kf = sup
s,t∈[a,b]
s6=t

|f(t)− f(s)|
|s− t|λ

, Kg = sup
s,t∈[a,b]
s6=t

|g(t)− g(s)|
|s− t|µ

.

Love–Young inequality has the form: for any y ∈ [a, b],∣∣∣∣∣
b∫
a

f dg − f(y)
[
g(b)− g(a)

]∣∣∣∣∣ 6 Cµ,λKfKg(b− a)λ+µ, Cµ,λ = ζ(µ+ λ),

where ζ(s) denotes the Riemann zeta function, i.e., ζ(s) =
∑
n>1 n

−s [5, p. 10].

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Estimation of the Hurst index of the solutions of fractional SDE 1077

A.2 Several results on fBm

Recall that fBm BH = {BHt , t > 0} with the Hurst index H ∈ (0, 1) is a real-valued
continuous centered Gaussian process with covariance given by

E
(
BHt B

H
s

)
=

1

2

(
s2H + t2H − |t− s|2H

)
.

For consideration of strong consistency and asymptotic normality of the given estimators,
we need several facts regarding BH .

Limit results. Let

V
(2)B̂H

n,T =
n2H−1

T 2H(4− 22H)

n−1∑
k=1

(
∆

(2)
n,kB

H
)2
, H 6= 1

2
.

Then (see [4], [5, pp. 46, 52, 58, 66]) V (2)B̂H

n,T → 1 a.s. as n→∞ and

√
n

(
V

(2)B̂H

n,T − 1

V
(2)B̂H

2n,T − 1

)
d−→ N (0; ΣH), ΣH =

(
Σ11 Σ12

Σ12 Σ22

)
,

where N (0; ΣH) is a Gaussian vector with

Σ11 = 2

(
1 +

2

(4− 22H)2

∞∑
j=1

ρ̂ 2
H(j)

)
, Σ22 =

1

2
Σ11,

Σ12 = Σ21 =
1

22H(4− 22H)2

∑
j∈Z

ρ̃ 2
H(j),

ρ̂H(j) =
1

2

[
−6|j|2H − |j − 2|2H − |j + 2|2H + 4|j − 1|2H + 4|j + 1|2H

]
,

ρ̃H(j) =
1

2

[
|j + 1|2H + 2|j + 2|2H − |j + 3|2H + |j − 1|2H − 4|j|2H

− |j − 3|2H + 2|j − 2|2H
]
.

Moreover,

V
(2)B̂H

n,T = 1 +Oω
(
n−1/2 ln1/2 n

)
(A.1)

and
√
n ln

V B̂
H

2n,T

V B̂
H

n,T

d−→ N
(
0, σ2

H

)
with σ2

H = (3/2)Σ11 − 2Σ12.

Hölder-continuity of BH . It is known that almost all sample paths of an fBm BH

are locally Hölder of order strictly less than H , H ∈ (0, 1). To be more precise, for all
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T > 0, there exists a nonnegative random variable Gγ,T such that E(|Gγ,T |p) < ∞ for
all p > 1, and ∣∣BHt −BHs ∣∣ 6 Gγ,T |t− s|γ a.s.

for all s, t ∈ [0, T ], where γ ∈ (0, H) (see [5, p. 4]).
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