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Abstract. In this paper, we are concerned with the synchronization scheme for fractional-order
bidirectional associative memory (BAM) neural networks, where both synaptic transmission delay
and impulsive effect are considered. By constructing Lyapunov functional, sufficient conditions
are established to ensure the Mittag–Leffler synchronization. Based on Pontryagin’s maximum
principle with delay, time-dependent control gains are obtained, which minimize the accumulative
errors within the limitation of actuator saturation during the Mittag–Leffler synchronization.
Numerical simulations are carried out to illustrate the feasibility and effectiveness of theoretical
results with the help of the modified predictor-corrector algorithm and the forward-backward sweep
method.

Keywords: Mittag–Leffler synchronization, BAM neural network, fractional derivative, impulsive
effect, optimal control, actuator saturation.

1 Introduction

Forward and backward information flow is introduced in neural networks to produce
two-way associative search for stored stimulus-response associations. Above mentioned
neural network is usually referred to as BAM neural network, which behaves as a two-
layer hierarchy of symmetrically connected neurons [12]. In the past few decades, BAM
neural networks as well as their various generalizations have attracted the attention of
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many researchers due to their potential applications in parallel computation, associative
memory, nonlinear optimization problem and so on [29, 33]. BAM neural networks are
originally proposed by Kosko [12], which are described by the following system:

dxi(t)

dt
= −c(1)i xi(t) +

m∑
j=1

a
(1)
ji fj

(
yj(t)

)
+ I

(1)
i , i = 1, 2, . . . , n,

dyj(t)

dt
= −c(2)j yj(t) +

n∑
i=1

a
(2)
ij gi

(
xi(t)

)
+ I

(2)
j , j = 1, 2, . . . ,m,

(1)

which consists of two layers U = {x1, x2, . . . , xn} and V = {y1, y2, . . . , ym}. xi(t)
and yj(t) denote the membrane voltages of ith neuron in the U -layer and the membrane
voltages of jth neuron in the V -layer, respectively; c(1)i and c(2)j are the rates with which
the ith or jth unit resets its potential to the resting state in isolation when disconnected
from the network and external inputs; a(1)ji and a(2)ij are the connection weights through
the neurons. On the U -layer, the neurons whose states are denoted by xi(t) receive
the inputs I(1)i and the inputs outputted by those neurons in the V -layer via activation
functions fj(·), while on the V -layer, the neurons whose states are denoted by yj(t)

receive the inputs I(2)j and the inputs outputted by those neurons in the U -layer via
activation functions gi(·).

In system (1), it is assumed that neurons respond synchronously to signals. Due to the
finite speed of signal transmission and amplifiers switching, time delay inevitably exists
in neural networks, which is known as synaptic transmission delay. Usually, time delay
has a great influence on the dynamical behaviors and synchronization control of neural
networks. For example, Hu et al. [10] investigated the global synchronization criteria for
time-invariant uncertainty fractional-order neural networks, where the synchronization
criteria include time delay information.

Besides, traditional neural networks are mainly established based on integer-order
derivatives, which can be described by classical ordinary differential equations. In recent
years, experimental research indicates that fraction-order derivatives provide an excellent
tool for the description of memory and hereditary properties of various materials and
processes [2,18]. Generally speaking, plenty of practical objects can be described clearly
by the fractional differential equations, due to their more degrees of freedom and infinite
memory. Thus, the research of fractional neural networks has gained much attention and
some valuable results have been referred to [17, 27].

The synchronization of dynamical systems corresponds to a dynamical process where
the behavior of different dynamical systems tends to be consistent by coupling effect or
external control [32]. There have been several works on synchronization problems with
respect to the fractional-order neural networks via various control approaches such as
impulsive control [35], linear feedback control [26], sliding model control [6], event-
triggered control [22] and so on. Ye et al. [32] established sufficient conditions to ensure
the global Mittag–Leffler synchronization based on the delayed-feedback control strategy.
Ding et al. [9] studied the synchronization for a class of fractional-order BAM neural net-
works with time delays and discontinuous activation functions, where the state feedback
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and impulsive controllers are designed to ensure the Mittag–Leffler synchronization, re-
spectively.

However, the control gains of various controllers in the above-mentioned researches
are set as constants based on experience, which are not optimal. Furthermore, actuator sat-
uration is one of the most important non-smooth input nonlinearities in the control system.
In general, most of the practical network applications contain a huge number of actuators
and their physical capacity is quite limited. It is difficult to deliver arbitrarily large signals
through real actuators [23, 28], namely, the practical physical actuators can only generate
bounded amplitude signals, where the control system will provide poor performance or
even become unstable [24, 30]. Hence, during the Mittag–Leffler synchronization, it is of
great practical significance to realize optimal synchronization control which minimizes
the accumulative errors within the limitation of actuator saturation.

In this paper, we mainly focus on finding time-dependent control gains of optimal
linear feedback controllers. In addition, the states of artificial neural networks are often
subject to instantaneous perturbations and experience abrupt changes at certain instants,
which may be caused by switching phenomenon, frequency change or other sudden noise,
that exhibit impulsive effects. Thus, it is necessary to take the impulsive effects into
account [13, 19]. To this end, we consider the following impulsive fractional-order BAM
neural network with synaptic transmission delay:

C
0D

q
txi(t) = −c(1)i xi(t) +

m∑
j=1

a
(1)
ji fj

(
yj(t)

)
+

m∑
j=1

b
(1)
ji fj

(
yj
(
t− ηji(t)

))
+ I

(1)
i , t 6= tk,

∆xi(t) = γ
(1)
k

(
xi(t)

)
, t = tk, i = 1, 2, . . . , n, k = 1, 2, . . . ,

C
0D

q
t yj(t) = −c(2)j yj(t) +

n∑
i=1

a
(2)
ij gi

(
xi(t)

)
+

n∑
i=1

b
(2)
ij gi

(
xi(t− σij(t))

)
+ I

(2)
j , t 6= tk,

∆yj(t) = γ
(2)
k

(
yj(t)

)
, t = tk, j = 1, 2, . . . ,m, k = 1, 2, . . . .

(2)

C
0D

q
t denotes Caputo-type fractional derivative of order q with 0 < q < 1; a(1)ji , b(1)ji , a(2)ij

and b(2)ij are all the connection weights through the neurons; ηji(t) and σij(t) are synaptic
transmission delays.

This paper is organized as follows. In the next section, some necessary assumptions,
definitions, and lemmas are listed. Then we investigate the Mittag–Leffler synchronization
scheme for system (2). In Section 3, we aim to find optimal linear feedback controllers by
Pontryagin’s maximum principle with delay. In Section 4, numerical simulations illustrate
the analytical predictions obtained in Sections 2 and 3. The paper ends with a conclusion
in Section 5.
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2 Mittag–Leffler synchronization conditions via linear control

2.1 Preliminaries

Throughout this paper, the following assumptions hold.

(H1) Activation functions fi(·) and gj(·) are Lipschitz continuous, namely, there exist
positive constants Lfj , L

g
i ∈ R+ such that∣∣fj(y1)− fj(y2)
∣∣ 6 Lfj |y1 − y2|, j = 1, 2, . . . ,m, ∀y1, y2 ∈ R,∣∣gi(x1)− gi(x2)
∣∣ 6 Lgi |x1 − x2|, i = 1, 2, . . . , n, ∀x1, x2 ∈ R.

(H2) The impulsive operators γ(1)k and γ(2)k satisfy

γ
(1)
k

(
xi(tk)

)
= −λ(1)ik xi(tk), i = 1, 2, . . . , n, k = 1, 2, . . . ,

γ
(2)
k

(
yj(tk)

)
= −λ(2)jk yj(tk), j = 1, 2, . . . ,m, k = 1, 2, . . . ,

where λ(1)ik , λ
(2)
jk ∈ (0, 2).

(H3) Time-varying delays, including ηji(t) and σij(t), are continuous and bounded
on R+. Thus, there exists a positive constant τ such that ηji(t), σij(t) ∈ [0, τ ].

(H4) Moreover, impulsive moments
{
tk|k = 1, 2, . . .

}
satisfy 0 = t0 < t1 < t2 <

· · · < tk < · · · , tk → +∞ as k → +∞, and

xi(t
+
k ) = xi(tk) + γ

(1)
k (xi(tk)), xi(t

−
k ) = xi(tk), i = 1, 2, . . . , n,

yj(t
+
k ) = yj(tk) + γ

(2)
k (yj(tk)), yj(t

−
k ) = yj(tk), j = 1, 2, . . . ,m,

(3)

in which xi(t+k ) and xi(t−k ) represent the right and left limits of xi(t) at t = tk,
respectively.

Define a function spaceX (R,R) = {f : R→ R: f(t) is continuous, except for some
points tk ∈ R at which f(t−k ) and f(t+k ) exist and f(t−k ) = f(tk)}. Thus, the initial
condition associated with system (2) can be expressed as

xi(t) = ϕi(t), t ∈ [−τ, 0], xi
(
t+0
)

= ϕi(0),

yj(t) = φj(t), t ∈ [−τ, 0], yi
(
t+0
)

= φj(0),
(4)

where ϕi(t), φj(t) ⊂ X denote the real-valued piecewise continuous functions on [−τ, 0].
To investigate the Mittag–Leffler synchronization between master neural network and

slave neural network, we refer to system (2) as the master system, while the slave system
takes the following form:

C
0D

q
t x̃i(t) = −c(1)i x̃i(t) +

m∑
j=1

a
(1)
ji fj

(
ỹj(t)

)
+

m∑
j=1

b
(1)
ji fj

(
ỹj(t− ηji(t))

)
+ I

(1)
i + u

(1)
i (t), t 6= tk,

∆x̃i(t) = γ
(1)
k (x̃i(t)), t = tk, i = 1, 2, . . . , n, k = 1, 2, . . . ,

(5a)
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C
0D

q
t ỹj(t) = −c(2)j ỹj(t) +

n∑
i=1

a
(2)
ij gi

(
x̃i(t)

)
+

n∑
i=1

b
(2)
ij gi

(
x̃i(t− σij(t))

)
+ I

(2)
j + u

(2)
j (t), t 6= tk,

∆ỹi(t) = γ
(2)
k (ỹi(t)), t = tk, j = 1, 2, . . . ,m, k = 1, 2, . . . ,

(5b)

with the initial condition x̃i(t) = ϕ̃i(t), ỹj(t) = φ̃j(t), t ∈ [−τ, 0].
Let ei(t) = x̃i(t)− xi(t), ẽj(t) = ỹj(t)− yj(t) (i = 1, 2, . . . , n; j = 1, 2, . . . ,m) be

the synchronization errors. From master system (2) and slave system (5) the error system
follows that

C
0D

q
t ei(t) = −c(1)i ei(t) +

m∑
j=1

a
(1)
ji fj

(
ẽj(t)

)
+

m∑
j=1

b
(1)
ji fj

(
ẽj
(
t− ηji(t)

))
+ u

(1)
i , t 6= tk,

∆ei(t) = γ
(1)
k (ei(t)), t = tk, i = 1, 2, . . . , n, k = 1, 2, . . . ,

C
0D

q
t ẽj(t) = −c(2)j ẽj(t) +

n∑
i=1

a
(2)
ij gi

(
ei(t)

)
+

n∑
i=1

b
(2)
ij gi

(
ei
(
t− σij(t)

))
+ u

(2)
j , t 6= tk,

∆ẽj(t) = γ
(2)
k (ẽj(t)), t = tk, j = 1, 2, . . . ,m, k = 1, 2, . . . ,

(6)

where fj(ẽj(t)) = fj(ỹj(t))− fj(yj(t)), gi(ei(t)) = gi(x̃i(t))− gi(xi(t)).
Before the prove of Mittag–Leffler synchronization, we introduce the following defi-

nitions and lemmas.

Definition 1. (See [32].) System (2) has an equilibrium (x∗1, x
∗
2, . . . , x

∗
n, y
∗
1 , y
∗
2 , . . . ,

y∗m)T ∈ Rn+m if and only if

−c(1)i x∗i +

m∑
j=1

a
(1)
ji fj(y

∗
j ) +

m∑
j=1

b
(1)
ji fj(y

∗
j ) + I

(1)
i = 0, i = 1, 2, . . . , n,

−c(2)j y∗j +

n∑
i=1

a
(2)
ij gi(x

∗
i ) +

n∑
i=1

b
(2)
ij gi(x

∗
i ) + I

(2)
j = 0, j = 1, 2, . . . ,m,

and the impulsive jumps γ(1)k (xi(tk)) and γ(2)k (yj(tk)) satisfy

γ
(1)
k (x∗i ) = 0, γ

(2)
k

(
y∗j
)

= 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . .
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Definition 2. (See [20].) For any t > t0, the Caputo fractional derivative of order q
(0 < q < 1) with the lower limit t0 for a function f(t) ∈ C1([t0, b],R) (b > t0) is
defined as

C
t0D

q
t f(t) =

1

Γ(1− q)

t∫
t0

f ′(θ)

(t− θ)q
dθ (Γ denotes the gamma function.)

Definition 3. (See [17].) Mittag–Leffler function is usually used in the solutions of
fractional-order systems, which is defined as follows:

Eq(z) =

∞∑
k=0

zk

Γ(kq + 1)
, q > 0, z ∈ C.

Lemma 1. (See [17].) For the system C
0D

q
tx(t) = f(t, x), the solution is said to be

Mittag–Leffler stable if ∥∥x(t)
∥∥ 6

{
m
[
x(0)

]
Eq
(
−λtq

)}b
,

where fractional order q ∈ (0, 1), λ > 0, b > 0, m(0) = 0, m(x) > 0, and m(x) is
locally Lipschitz on x ∈ Rn with Lipschitz constant m0.

Lemma 2. (See [7].) Let V (t) be a continuous function on [0,+∞) and satisfies
C
0D

q
tV (t) 6 −λV (t), t > 0,

where 0 < q < 1 and λ is a constant. Then V (t) 6 V (0)Eq(−λtq), t ∈ [0,+∞).

2.2 Synchronization conditions via linear feedback controller

In this section, we investigate the Mittag–Leffler synchronization scheme for system (2).
By designing linear feedback controllers, Mittag–Leffler synchronization between master
system (2) and slave system (5) is established based on fractional calculus theory and
Lyapunov functional method.

Design a linear feedback control strategy for slave system (5) by the following forms:

u
(1)
i (t) = −h(1)i (t)ei(t), i = 1, 2, . . . , n,

u
(2)
j (t) = −h(2)j (t)ẽj(t), j = 1, 2, . . . ,m,

(7)

where h(1)i (t), h
(2)
j (t) > 0 are time-dependent control gains that will be determined later.

Combining the linear feedback controllers (7) and condition (H2), error system (6) follows
that

C
0D

q
t ei(t) = −c(1)i ei(t) +

m∑
j=1

a
(1)
ji fj

(
ẽj(t)

)
+

m∑
j=1

b
(1)
ji fj

(
ẽj
(
t− ηji(t)

))
− h(1)i (t)ei(t), t 6= tk,

∆ei(t) = −λ(1)ik ei(tk), t = tk, i = 1, 2, . . . , n, k = 1, 2, . . . ,

(8a)
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C
0D

q
t ẽj(t) = −c(2)j ẽj(t) +

n∑
i=1

a
(2)
ij gi

(
ei(t)

)
+

n∑
i=1

b
(2)
ij gi

(
ei
(
t− σij(t)

))
− h(2)j (t)ẽj(t), t 6= tk,

∆ẽj(t) = −λ(2)jk ẽj(tk), t = tk, j = 1, 2, . . . ,m, k = 1, 2, . . . .

(8b)

According to Definition 1, (e∗i , ẽ
∗
j )

T = (0, 0, . . . , 0)T ∈ Rn+m is an equilibrium of error
system (8). Besides, the impulsive operators satisfy γ(1)k (e∗i ) = 0, γ(2)k (ẽ∗j ) = 0, i =
1, 2, . . . , n, j = 1, 2, . . . ,m, k = 1, 2, . . . . Suppose that the initial value (ei(0), ẽj(0))T

satisfies that ei(0) 6= 0 and ẽj(0) 6= 0.

Theorem 1. Suppose that conditions (H1)–(H4) hold, then master system (2) can achieve
Mittag–Leffler synchronization with slave system (5) under the linear feedback control-
lers (7) if there exist two positive constants ρ1, ρ2 such that ρ2 > ρ1 > 0, where

ρ1 = max

{
max
16i6n

[
Lgi

m∑
j=1

∣∣b(2)ij ∣∣
]
, max
16j6m

[
Lfj

n∑
i=1

∣∣b(1)ji ∣∣
]}

,

ρ2 = min

{
min

16i6n

[
c
(1)
i + h

(1)
i (t)− Lgi

m∑
j=1

∣∣a(2)ij ∣∣
]
,

min
16j6m

[
c
(2)
j + h

(2)
j (t)− Lfj

n∑
i=1

∣∣a(1)ji ∣∣
]}

.

(9)

Proof. Define a piecewise continuous Lyapunov functional as follows:

V
(
t, e(t), ẽ(t)

)
=

n∑
i=1

∣∣ei(t)∣∣+

m∑
j=1

∣∣ẽj(t)∣∣. (10)

Case 1. For t = tk, from (3) and (H2) we have

V
(
t+k , e

(
t+k
)
, ẽ
(
t+k
))

=

n∑
i=1

∣∣ei(tk) + γ
(1)
k

(
ei
(
tk
))∣∣+

m∑
j=1

∣∣ẽj(tk) + γ
(2)
k

(
ẽj(tk)

)∣∣
=

n∑
i=1

∣∣ei(tk)− λ(1)ik ei(tk)
∣∣+

m∑
j=1

∣∣ẽj(tk)− λ(2)jk ẽj(tk)
∣∣.

Noting that λ(1)ik , λ
(2)
jk ∈ (0, 2), we obtain that

V
(
t+k , e

(
t+k
)
, ẽ
(
t+k
))

6
n∑
i=1

∣∣1− λ(1)ik ∣∣∣∣ei(tk)
∣∣+

m∑
j=1

∣∣1− λ(2)jk ∣∣∣∣ẽj(tk)
∣∣

6
n∑
i=1

∣∣ei(tk)
∣∣+

m∑
j=1

∣∣ẽj(tk)
∣∣

= V
(
tk, e(tk), ẽ(tk)

)
, k = 1, 2, . . . .
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Case 2. For t 6= tk, namely, t ∈ [tk−1, tk), the Caputo fractional derivative of (10) is

C
0D

α
t V
(
t, e(t), ẽ(t)

)
= C

0D
α

t

[
n∑
i=1

∣∣ei(t)∣∣]+ C
0 D

α
t

[
m∑
j=1

∣∣ẽj(t)∣∣]. (11)

Next, the fractional-order derivatives along the solutions of first and third equations of
system (8) are calculated as follows:

C
0D

q
t

∣∣ei(t)∣∣ 6 −c(1)i ∣∣ei(t)∣∣+
m∑
j=1

∣∣a(1)ji ∣∣∣∣fj(ẽj(t))∣∣
+

m∑
j=1

∣∣b(1)ji ∣∣∣∣fj(ẽj(t− ηji(t)))∣∣− h(1)i (t)
∣∣ei(t)∣∣,

C
0D

q
t

∣∣ẽj(t)∣∣ 6 −c(2)j ∣∣ẽj(t)∣∣+

n∑
i=1

∣∣a(2)ij ∣∣∣∣gi(ei(t))∣∣
+

n∑
i=1

∣∣b(2)ij ∣∣∣∣gi(ei(t− σij(t)))∣∣− h(2)j (t)
∣∣ẽj(t)∣∣.

(12)

Following from (H1), (12) is changed into

C
0D

q
t

∣∣ei(t)∣∣ 6 −c(1)i ∣∣ei(t)∣∣+

m∑
j=1

∣∣a(1)ji ∣∣Lfj ∣∣ẽj(t)∣∣
+

m∑
j=1

∣∣b(1)ji ∣∣Lfj ∣∣ẽj(t− ηji(t))∣∣− h(1)i (t)
∣∣ei(t)∣∣,

C
0D

q
t

∣∣ẽj(t)∣∣ 6 −c(2)j ∣∣ẽj(t)∣∣+

n∑
i=1

∣∣a(2)ij ∣∣Lgi ∣∣ei(t)∣∣
+

n∑
i=1

∣∣b(2)ij ∣∣Lgi ∣∣ei(t− σij(t))∣∣− h(2)j (t)
∣∣ẽj(t)∣∣.

(13)

Substituting (13) into (11) yields

C
0D

α
t V
(
t, e(t), ẽ(t)

)
6 − min

16i6n

[
c
(1)
i + h

(1)
i (t)− Lgi

m∑
j=1

∣∣a(2)ij ∣∣
]

n∑
i=1

∣∣ei(t)∣∣
− min

16j6m

[
c
(2)
j + h

(2)
j (t)− Lfj

n∑
i=1

∣∣a(1)ji ∣∣
]

m∑
j=1

∣∣ẽj(t)∣∣
+ max

16i6n

[
Lgi

m∑
j=1

∣∣b(2)ij ∣∣
]

n∑
i=1

sup
t−τ6s6t

∣∣ei(s)∣∣
+ max

16j6m

[
Lfj

n∑
i=1

∣∣b(1)ji ∣∣
]

m∑
j=1

sup
t−τ6s6t

∣∣ẽj(s)∣∣. (14)
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From (9) in Theorem 1 we have

C
0D

α
t V
(
t, e(t), ẽ(t)

)
6 −ρ2V

(
t, e(t), ẽ(t)

)
+ ρ1 sup

t−τ6s6t
V
(
s, e(s), ẽ(s)

)
. (15)

For any solution (eT(t), ẽT(t))T of error system (8), which satisfies the following Razu-
mikhin condition [31]

V
(
s, e(s), ẽ(s)

)
6 V

(
t, e(t), ẽ(t)

)
, t− τ 6 s 6 t,

there exists a real positive number λ satisfying λ 6 ρ2 − ρ1 such that

C
0D

α
t

{
V
(
t, e(t), ẽ(t)

)}
6 −λV

(
t, e(t), ẽ(t)

)
, t > 0, t 6= tk.

According to Lemma 2, we obtain that

V
(
t, e(t), ẽ(t)

)
6 V

(
0, e(0), ẽ(0)

)
Eq
(
−λtq

)
∀t ∈ [0,+∞). (16)

From Lemma 1 we conclude that master system (2) achieve Mittag–Leffler synchroniza-
tion with slave system (5) under the linear feedback controllers (7). In the next section,
we focus on finding time-dependent control gains by optimal control methods.

Remark 1. When the Caputo fractional derivative order q equals to 1, fractional-order
error system (8) become a integer-order system. The condition of Mittag–Leffler synchro-
nization (16) is transformed into

V
(
t, e(t), ẽ(t)

)
6 V

(
0, e(0), ẽ(0)

)
e−λt ∀t ∈ [0,+∞),

which implies that the corresponding integer-order system realizes the exponential syn-
chronization.

3 Optimal linear feedback controller

In this section, we aim to minimize the accumulative errors within the limitation of
actuator saturation based on Pontryagin’s maximum principle with delay [3, 16].

3.1 Statement of optimal control problem

Without loss of generality, we focus on a four-neuron impulsive fractional-order BAM
neural network, where ηji(t), σij(t) are set as the constant τ and m = n = 2 in error
system (8). Next, we discuss the existence of the optimal control solutions. Let x(t) =
(e1(t), e2(t), ẽ1(t), ẽ2(t)) be the state variable. Define a control function set as

u(t) =
(
h
(1)
1 (t), h

(1)
2 (t), h

(2)
1 (t), h

(2)
2 (t)

)
.
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Due to the limitations of synchronization conditions and actuator saturation, each of
control outputs has upper bound. The saturation function is defined as

sat
(
u(t)

)
=
[
sat
(
u
(1)
1 (t)

)
, sat

(
u
(1)
2 (t)

)
, sat

(
u
(2)
1 (t)

)
, sat

(
u
(2)
2 (t)

)]T
(17)

in which

sat
(
u
(j)
i (t)

)
= sign

(
u
(j)
i (t)

)
min

{∣∣u(j)i (t)
∣∣, ū(j)i }, i = 1, 2, j = 1, 2,

where ū(1)1 , ū
(1)
2 , ū

(2)
1 , ū

(2)
2 are the saturation levels for the corresponding actuators, re-

spectively. To better state the optimal control problem, we firstly introduce two sets,
namely, the sets of admissible trajectories and control. The set X of admissible trajecto-
ries is given by

X =
{
x(·) ∈W 1,1

(
[0, T ],R4

) ∣∣ (4) and (8) are satisfied
}
,

and the admissible control set U is given by

U =
{
u(·) ∈ L∞

(
[0, T ],R4

) ∣∣ (17) is satisfied for all t ∈ [0, T ]
}
.

From [25] we consider the following objective functional:

J
(
x(·), u(·)

)
=

T∫
0

f
(
t, u(t), x(t)

)
dt, (18)

where

f
(
t, u(t), x(t)

)
= A1

n∑
i=1

∣∣ei(t)∣∣+A2

m∑
j=1

∣∣ẽj(t)∣∣
+B1

n∑
i=1

(
ei(t)h

(1)
i (t)

)2
+B2

m∑
j=1

(
ẽj(t)h

(2)
j (t)

)2
.

Thereinto, A1 and A2 denote the weight constants for the accumulative errors, while B1

and B2 are the weight constants for the outputs of linear feedback controllers. Accumula-
tive error means that as time goes on, the errors between the master system and the slave
system accumulate gradually.

The optimal control problem consists of determining the vector function x�(·) =
(e�1(t), e�2(t), ẽ�1(t), ẽ�2(t)) ∈ X associated with an admissible control u�(·) ∈ U on the
time interval [0, T ], minimizing the objective functional J , namely,

J
(
x�(·), u�(·)

)
= min
x(·),u(·)∈X×U

J
(
x(·), u(·)

)
. (19)

3.2 Characterization of optimal control

In this subsection, by constructing the Hamiltonian H and then applying the Pontryagin’s
maximum principle, we derive the first-order necessary conditions for the existence of
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optimal control. The Hamiltonian is given by

H
(
t, u(t), x(t), λ(t)

)
= f

(
t, u(t), x(t)

)
+ λC0D

q
tx(t).

For more details about how to construct the Hamiltonian, please see [1, 11].
Let u�(·) = (h

(1)
1 (t), h

(1)
2 (t), h

(2)
1 (t), h

(2)
2 (t)) be the optimal control and x�(·) =

(e�1(t), e�2(t), ẽ�1(t), ẽ�2(t)) be the corresponding optimal trajectory. According to the Pon-
tryagin maximum principle [21], if u�(·) ∈ U is optimal for problem (19) with fixed
final time T , there exists a nontrivial absolutely continuous mapping λ : [0, T ] → R4,
λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t)) called the adjoint vector. From [5,21] it is not difficult
to show the following theorem.

Theorem 2. The optimal control problem (19) with fixed final time T admits a unique
optimal solution (e�1(t), e�2(t), ẽ�1(t), ẽ�2(t)) associated with an optimal control u�(t) for
t ∈ [0, T ]. Moreover, there exist adjoint functions λ�i (·) (i = 1, . . . , 4) such that

∂λ1(t)

∂t
= −

(
∂H

∂e1(t)
+ χ[0, T−τ ]

∂H

∂e1(t− τ)

∣∣∣∣
t=t+τ

)
,

∂λ2(t)

∂t
= −

(
∂H

∂e2(t)
+ χ[0, T−τ ]

∂H

∂e2(t− τ)

∣∣∣∣
t=t+τ

)
,

(20)

∂λ3(t)

∂t
= −

(
∂H

∂ẽ1(t)
+ χ[0, T−τ ]

∂H

∂ẽ1(t− τ)

∣∣∣∣
t=t+τ

)
,

∂λ4(t)

∂t
= −

(
∂H

∂ẽ2(t)
+ χ[0, T−τ ]

∂H

∂ẽ2(t− τ)

∣∣∣∣
t=t+τ

)
with transversality conditions λ�i (T ) = 0, i = 1, . . . , 4, where χ[a,b](t) is the character-
istic function defined by

χ[a,b] =

{
1 if t ∈ [a, b],

0 otherwise.

From the optimality conditions it follows that

∂H

∂u

(
t, x(t), u(t), λ(t)

)
= 0,

where

h̄
(1)
1 (t) =

λ1(t)

2B1e1(t)
, h̄

(1)
2 (t) =

λ2(t)

2B1e2(t)
,

h̄
(2)
1 (t) =

λ3(t)

2B2ẽ1(t)
, h̄

(2)
2 (t) =

λ4(t)

2B2ẽ2(t)
.

Proof. To obtain the optimal control solutions u�(t), the objective function (18) is rewrit-
ten as

J(u) =

T∫
0

[
H
(
t, u(t), x(t), λ(t)

)
− λ(t)

(
C
0D

q
tx(t)

)]
dt, (21)
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where λ is the Lagrange multiplier vector known as the co-state variable. The variation of
(21) yields

δJ =

T∫
0

[
δx
∂H

∂x
+ δu

∂H

∂u
+ δλ

∂H

∂λ
− (δλ)C0D

q
tx− λδ

(
C
0D

q
tx
)]

dt, (22)

where δx, δu and δλ are the variations of x, u and λ, respectively. Using the integration
by parts formula for Caputo fractional derivative [11], we have

T∫
0

λ(t)δ
(
C
0D

q
tx
)
dt =

(
t
I1−qT λ(t)

)
δx(t)

∣∣T
0
−

T∫
0

δx
(
t
Dq
Tλ(t)

)
dt, (23)

where 0D
q
t denotes the Riemann–Liouville derivative. Since x(0) is specified in the opti-

mal control, δx(0) = 0. Thus,

δJ =

T∫
0

[
δx

(
∂H

∂x
− tD

q
Tλ(t)

)
+ δu

∂H

∂u
+ δλ

(
∂H

∂λ
− C

0 D
q

tx

)]
dt

−
(
t
I1−qT λ(t)

)
δx(t)

∣∣
t=T

. (24)

The necessary condition for the fractional optimal control problem is δJ = 0. This
requires that the coefficients of x, u and λ in (24) be 0 simultaneously, namely,

C
0D

q
tx(t) =

∂H

∂λ

(
t, x(t), u(t), λ(t)

)
,

tD
q
Tλ(t) =

∂H

∂x

(
t, x(t), u(t), λ(t)

)
,

∂H

∂u

(
t, x(t), u(t), λ(t)

)
= 0,

tI
1−q
T λ(t)

∣∣
t=T

= 0.

(25)

Since λ is continuous, the condition tI
1−α
T λ(t)|t=T = 0 implies λ(T ) = 0. Therefore,

according to the relation between Riemann–Liouville and Caputo derivatives, we obtain
that

tD
q
T

[
λ(t)−

n−1∑
k=0

(t− T )k

k!
λ(k)(T )

]
= C
tD

q
Tλ(t).

The necessary condition in (25) is equivalent to

C
0D

α
t x(t) =

∂H

∂λ

(
t, x(t), u(t), λ(t)

)
,

C
tD

α
Tλ(t) =

∂H

∂x

(
t, x(t), u(t), λ(t)

)
,

∂H

∂u

(
t, x(t), u(t), λ(t)

)
= 0,

λ(T ) = 0.

(26)
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Remark 2. The analysis of the optimal control problem in this section helps us set proper
control gains according to different control purposes. Weight constants A1, A2, B1 and
B2 in objective functional (18) are selected based on the control purposes, that is to say,
if minimizing the accumulative errors are more important than restricting the outputs of
controllers during the Mittag–Leffler synchronization, A1 and A2 should be set as larger
values.

Remark 3. In [34], the control gains of linear feedback controllers are set as constants,
which also ensures the global synchronization of the master-slave systems. But, in prac-
tical control progress, it is difficult to deliver arbitrarily large signals through real con-
trollers. Besides, the control gains selected in [34] maybe not optimal, which cannot min-
imize the accumulative errors during the Mittag–Leffler synchronization. This problem
also exists in the delayed-feedback controllers of [32] and the state feedback controllers
of [35].

Remark 4. The time-dependent control gains in this subsection firstly satisfy the Mittag–
Leffler synchronization conditions in Section 2.2, that is to say, the lower bounds of
control gains are determined by the synchronization conditions.

4 Numerical simulations

In this section, we carry out some numerical simulations to illustrate the analytical pre-
dictions obtained in Sections 2 and 3. Based on the modified predictor-corrector algo-
rithm [4, 8] and the forward-backward sweep method [14], we derive the time-dependent
control gains, which minimizes the accumulative errors within the limitation of actuator
saturation.

4.1 Numerical solutions of control gains

Consider a four-neuron impulsive fractional-order BAM neural network with synaptic
transmission delay, where m = n = 2 in error system (8). Parameter values are set as
follows: [

c
(1)
1 0

0 c
(1)
2

]
=

[
0.4 0
0 0.6

]
,

[
c
(2)
1 0

0 c
(2)
2

]
=

[
0.5 0
0 0.8

]
,

[
a
(1)
11 a

(1)
12

a
(1)
21 a

(1)
22

]
=

[
1.5 −0.6
0.8 −0.5

]
,

[
a
(2)
11 a

(2)
12

a
(2)
21 a

(2)
22

]
=

[
−1.5 0.5
2.5 −0.8

]
,

[
b
(1)
11 b

(1)
12

b
(1)
21 b

(1)
22

]
=

[
1.2 −0.4
0.7 −0.8

]
,

[
b
(2)
11 b

(2)
12

b
(2)
21 b

(2)
22

]
=

[
−1.8 0.4
2.2 −0.7

]
,

[
η11(t) η11(t)
η11(t) η11(t)

]
=

[
0.5(1 + sin t) 0.5(1 + cos t)
0.5(1 + cos t) 0.5(1 + sin t)

]
,
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Figure 1. State trajectories of control gains h(1)
1 (t), h(1)

2 (t), h(2)
1 (t), h(2)

2 (t), respectively.

[
σ11(t) σ11(t)
σ11(t) σ11(t)

]
=

[
0.5(1 + cos t) 0.5(1 + sin t)
0.5(1 + sin t) 0.5(1 + cos t)

]
.

Besides, fj(·) and gi(·) are set as tanh(·). The initial conditions for master system (2)
and slave system (5) are (−0.4, 0.1,−0.3, 0.2) and (−0.3, 0.2,−0.2, 0.3), respectively.
From the synchronization conditions in Section 2.2 we obtain that the lower bounds of
control gains: ȟ(1)1 = 7.6, ȟ(1)2 = 4.7, ȟ(2)1 = 5.8, ȟ(2)2 = 4.3. Considering the actuator
saturation, each of control outputs has limitation, thus we set ū(1)1 = ū

(1)
2 = ū

(2)
1 =

ū
(2)
2 = 0.5 [15]. Besides, we assume that the upper bound of control gain is 50. The

order of fractional derivative is set as 0.8.
In the initial stage of Mittag–Leffler synchronization, the errors are relatively large

in system (8). Due to the actuator saturation, as shown in Fig. 1, control gains are cor-
respondingly small. Gradually, as the errors decrease, control gains increase to upper
bounds for minimizing the accumulative errors. At last, the dynamical behaviors of system
(8) approach to asymptotical stability. Control outputs are less necessary and could be
reduced to the lower bounds.

4.2 Dynamics behaviors of Mittag–Leffler synchronization

In this section, we mainly focus on the dynamical behaviors of master system (2) and slave
system (5). As the initial value (ei(0), ẽj(0))T satisfies that ei(0) 6= 0 and ẽj(0) 6= 0,
fractional master system (2) cannot achieve Mittag–Leffler synchronization with frac-
tional slave system (5) without control. Once introducing the optimal linear feedback
controllers to slave system (5), in Fig. 2, slave system (5) well synchronizes with master
system (2). It is not difficult to find the state trajectories of master system (2) or slave
system (5) change suddenly at some points, which is induced by the impulsive effect.

Ye et al. [32] proposed the delayed-feedback controllers to realize the global Mittag–
Leffler synchronization for fractional-order BAM neural networks. In this subsection,
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Figure 2. State trajectories of master system (2) and slave system (5) under optimal linear feedback
control with q = 0.8.

we compare the optimal linear control with the delayed-feedback control. Firstly, we
construct the following delayed-feedback controllers inspired by Ye et al. [32]:

u
(1)
1 (t) = −5e1(t)− 15 sgn

(
e1(t)

)∣∣e1(t− 1)
∣∣,

u
(1)
2 (t) = −10e2(t)− 15 sgn

(
e2(t)

)∣∣e2(t− 1)
∣∣,

u
(2)
1 (t) = −20ē1(t)− 15 sgn

(
ē1(t)

)∣∣ẽ1(t− 1)
∣∣,

u
(2)
2 (t) = −15ē2(t)− 15 sgn

(
ē2(t)

)∣∣ẽ2(t− 1)
∣∣.

Figure 3 describes the dynamical behaviors of error system (6) under the optimal lin-
ear feedback control and the delayed-feedback control, respectively. As we can see, the
transition process of error states with the optimal linear feedback control is smooth and
steady relatively, while under the delayed-feedback control, the error states oscillate in the
transition process. The only disadvantage of the optimal linear feedback control is that the
transition time is a little bit longer.

Remark 5. As for the forward-backward sweep method, the values for λ are not needed
to solve the differential equation for x. Then the algorithm terminates when there is
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Figure 3. State trajectories of error system (6) under optimal linear feedback control and delayed-
feedback control, respectively.

sufficient agreement between the states, co-states, and controls of two passes through
the approximation loop, which is easy to program and converges faster [14]. Daftardar-
Gejji et al. [4, 8] modified the fractional Adams method by applying the iterative method
that is called the modified predictor-corrector algorithm. The predictor terms are used to
approximate the corresponding terms in the corrector formula, and the method is relatively
accurate and time-efficient.

Remark 6. In Fig. 4, we carry out a comparison between the fractional error system (6)
and the corresponding integer-order system. It is not difficult to find that the transition
process of error states with q = 0.8 is smoother and steadier than that with q = 1.

5 Conclusion

In this paper, we have investigated the Mittag–Leffler synchronization for impulsive frac-
tional-order BAM neural networks with optimal linear feedback controllers. By construct-
ing Lyapunov functional, sufficient conditions are established to ensure the Mittag–Leffler
synchronization. Based on Pontryagin’s maximum principle with delay, time-dependent
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Figure 4. State trajectories of error system (6) with q = 1 and q = 0.8, respectively.

control gains are obtained, which minimizes the accumulative errors within the limitation
of actuator saturation. As shown in numerical simulations, under optimal linear feedback
controllers, slave system (5) well synchronizes with master system (2).

The objective functional in Section 3.1 consists of the accumulative errors and the
controller outputs, and the obtained optimal control gains can minimize the accumulative
errors during the Mittag–Leffler synchronization. To achieve different control effects,
we can choose some other parameters that characterize the process of Mittag–Leffler
synchronization, such as rise time tr and maximum overshoot σp. Rise time tr is the
time from the beginning to the time when the state of the error system first reaches the
steady-state value, while maximum overshoot σp measures whether the synchronization
process is smooth. However, it is complicated to solve tr and σp in error system (6) and
we leave it for further investigation.
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