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Abstract. We investigate the existence of positive solutions for a nonlinear Riemann–Liouville
fractional differential equation with a positive parameter subject to nonlocal boundary conditions,
which contain fractional derivatives and Riemann–Stieltjes integrals. The nonlinearity of the
equation is nonnegative, and it may have singularities at its variables. In the proof of the main
results, we use the fixed point index theory and the principal characteristic value of an associated
linear operator. A related semipositone problem is also studied by using the Guo–Krasnosel’skii
fixed point theorem.
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1 Introduction

We consider the nonlinear fractional differential equation

Dα
0+u(t) + λh(t)f

(
t, u(t)

)
= 0, t ∈ (0, 1), (1)

with the nonlocal boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ0

0+u(1) =

m∑
i=1

1∫
0

Dβi

0+u(t) dHi(t), (2)

where α ∈ R, α ∈ (n− 1, n], n,m ∈ N , n > 3, βi ∈ R for all i = 0, . . . ,m,
0 6 β1 < β2 < · · · < βm 6 β0 < α − 1, β0 > 1, λ is a positive parameter, and
Dk

0+ denotes the Riemann–Liouville derivative of order k (for k = α, β0, β1, . . . , βm).
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The integrals from the boundary conditions (2) are Riemann–Stieltjes integrals with Hi,
i = 1, . . . ,m, functions of bounded variation, the nonnegative function f(t, u) may have
singularity at u = 0, and the nonnegative function h(t) may be singular at t = 0 and/or
t = 1.

Under some assumptions for the functions h and f , we establish intervals for the
parameter λ such that problem (1), (2) has positive solutions (u(t) > 0 for all t ∈ (0, 1]).
These intervals for λ are expressed by using the principal characteristic value of an
associated linear operator. In the proof of the main theorems, we use the fixed point
index theory. In the case in which h ≡ 1 and f is a function which changes sign and
has singularities at t = 0 and/or t = 1, we present two existence results for the positive
solutions of this problem. In the proof of these results, we apply the Guo–Krasnosel’skii
fixed point theorem. The boundary conditions (2) cover various cases, such as multi-
point boundary conditions when the functions Hi are step functions, or classical integral
boundary conditions, or a combination of them.

We present below some papers, which investigate particular cases of our boundary
value problem (1), (2) and other problems related to (1), (2). Equation (1) with h(t) ≡ 1
subject to the boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dp
0+u(1) =

m∑
i=1

aiD
q
0+u(ξi),

where ξi ∈ R, i = 1, . . . ,m, 0 < ξ1 < · · · < ξm < 1, p, q ∈ R, p ∈ [1, n−2], q ∈ [0, p],
was investigated in [11]. In paper [11], the nonlinearity f changes sign, and it is singular
only at t = 0 and/or t = 1. The authors of [11] apply the Guo–Krasnosel’skii fixed
point theorem to prove the existence of positive solutions when the parameter belongs
to various intervals. Equation (1) with λ = 1 and h(t) ≡ 1 supplemented with the
boundary conditions (2) with m = 1, where f may change sign and may be singular
at the points t = 0, t = 1 and/or u = 0 has been studied in [20]. In the paper [20], the
author presents some conditions for f , which contain height functions defined on special
bounded sets under which he proves the existence and multiplicity of positive solutions.
The existence of multiple positive solutions for equation (1) with λ = 1 and h(t) ≡ 1
subject to the boundary conditions (2) was investigated in the recent paper [1]. The authors
use in [1] various height functions of the nonlinearity defined on special bounded sets and
two theorems from the fixed point index theory. In the paper [35], the authors prove the
existence of at least three positive solutions for equation (1) with λ = 1 and h(t) ≡ 1
with the boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+u(1) = λ

η∫
0

h̃(t)Dβ
0+u(t) dt, (3)

where β > 1, α − β − 1 > 0, 0 < η 6 1, 0 6 λ
∫ η

0
h̃(t)tα−β−1 dt < 1, h̃ ∈ L1[0, 1] is

nonnegative and may be singular at t = 0 and t = 1, and the function f is nonnegative
and may be singular at the points t = 0, t = 1 and u = 0. Our boundary conditions (2)
are more general than the above boundary conditions (3). Indeed, the last relation from (3)
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can be written as Dβ
0+u(1) =

∫ 1

0
Dβ

0+u(t) dH(t) with H(t) = {λ
∫ t

0
h̃(s) ds, t ∈ [0, η];

λ
∫ η

0
h̃(s) ds, t ∈ (η, 1]}, and in the right-hand side of the last condition in (2), we

have a sum of Riemann–Stieltjes integrals from Riemann–Liouville derivatives of various
orders. In the paper [35], the authors use different height functions of the nonlinear term
on special bounded sets, the Krasnosel’skii theorem and the Leggett–Williams fixed point
index theorem. We also mention the paper [33], where the authors prove the existence of
positive solutions of fractional differential equation (1) supplemented with the boundary
conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, Dβ
0+u(1) =

∞∑
i=1

αiD
γ
0+u(ξi), (4)

where β ∈ [1, n − 2], γ ∈ [0, β], αi > 0, i − 1, 2, . . . , 0 < ξ1 < ξ2 < · · · < ξi−1 <
ξi < · · · < 1 and Γ(α − γ) > Γ(α − β)

∑∞
i=1 αiξ

α−γ−1
i . The last condition of the

boundary conditions (4) can be written as Dβ
0+u(1) =

∫ 1

0
Dγ

0+u(t) dH(t), where H is
the step function defined by H(t) = {0, t ∈ [0, ξ1]; α1, t ∈ (ξ1, ξ2]; α1 + α2, t ∈
(ξ2, ξ3]; . . . ;

∑n
i=1 αi, t ∈ (ξn, ξn+1]; . . .}, so this condition is a particular case of

our condition from (2). We mention that condition (I3) (see below, in Section 3) used in
our results was first introduced in the paper [18], where the authors proved the existence
of at least one positive solution for a fourth-order nonlinear singular Sturm–Liouville
eigenvalue problem.

For some recent results on the existence, nonexistence and multiplicity of positive so-
lutions for fractional differential equations and systems of fractional differential equations
with various boundary conditions, we refer the reader to the monographs [10, 36] and the
papers [2,3,8,12,13,17,19,25,28,30,31,34]. We also mention the books [14,15,24,26,27]
and the papers [5–7, 21–23, 29] for applications of the fractional differential equations in
various disciplines.

The paper is organized as follows. In Section 2, we present the solution of a linear
fractional differential equation associated to equation (1) subject to the boundary condi-
tions (2) and the properties of the corresponding Green functions. Some theorems from the
fixed point index theory, the Guo–Krasnosel’skii fixed point theorem and an application
of the Krein–Rutman theorem in the space C[0, 1] are recalled in Section 2, and they will
be used in the next sections. In Section 3, we give and prove the main theorems for the
existence of at least one positive solution for problem (1), (2). In Section 4, we present
two existence results for the positive solutions of problem (1), (2) with h ≡ 1, where the
nonlinearity changes sign, and it is singular at t = 0 and/or t = 1. Section 5 contains some
examples, which illustrate the obtained results, and in Section 6, we give the conclusions
for our fractional boundary value problems.

2 Auxiliary results

In this section, we present some auxiliary results from [1] that we will use in the proof of
the main theorems. We consider the fractional differential equation

Dα
0+u(t) + x(t) = 0, t ∈ (0, 1), (5)
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with the boundary conditions (2), where x ∈ C(0, 1) ∩ L1(0, 1). We denote

∆ =
Γ(α)

Γ(α− β0)
−

m∑
i=1

Γ(α)

Γ(α− βi)

1∫
0

sα−βi−1 dHi(s).

Lemma 1. (See [1].) If ∆ 6= 0, then the unique solution u ∈ C[0, 1] of problem (5), (2)
is given by

u(t) =

1∫
0

G(t, s)x(s) ds, t ∈ [0, 1], (6)

where

G(t, s) = g1(t, s) +
tα−1

∆

m∑
i=1

1∫
0

g2i(τ, s) dHi(τ) (7)

and

g1(t, s) =
1

Γ(α)

{
tα−1(1−s)α−β0−1 − (t− s)α−1, 0 6 s 6 t 6 1,

tα−1(1−s)α−β0−1, 0 6 t 6 s 6 1,

g2i(t, s) =
1

Γ(α−βi)

{
tα−βi−1(1−s)α−β0−1 − (t− s)α−βi−1, 0 6 s 6 t 6 1,

tα−βi−1(1−s)α−β0−1, 0 6 t 6 s 6 1,

(8)

for all (t, s) ∈ [0, 1]× [0, 1], i = 1, . . . ,m.

Based on some properties of functions g1 and g2i, i = 1, . . . ,m, given by (8) (see
[11]), we have the following lemma.

Lemma 2. (See [1].) We suppose that ∆ > 0. Then the Green function G given by (7) is
a continuous function on [0, 1]× [0, 1] and satisfies the inequalities:

(i) G(t, s) 6 J (s) for all t, s ∈ [0, 1], where

J (s) = h1(s) +
1

∆

m∑
i=1

1∫
0

g2i(τ, s) dHi(τ), s ∈ [0, 1],

h1(s) =
1

Γ(α)
(1− s)α−β0−1

(
1− (1− s)β0

)
, s ∈ [0, 1];

(ii) G(t, s) > tα−1J (s) for all t, s ∈ [0, 1];
(iii) G(t, s) 6 σtα−1 for all t, s ∈ [0, 1], where

σ =
1

Γ(α)
+

1

∆

m∑
i=1

1

Γ(α− βi)

1∫
0

τα−βi−1 dHi(τ).
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Lemma 3. (See [1].) We suppose that ∆ > 0, x ∈ C(0, 1) ∩ L1(0, 1) and x(t) > 0 for
all t ∈ (0, 1). Then the solution u of problem (5), (2) given by (6) satisfies the inequality
u(t) > tα−1‖u‖ for all t ∈ [0, 1], where ‖u‖ = supt∈[0,1] |u(t)|, and so u(t) > 0 for all
t ∈ [0, 1].

We recall now some theorems concerning the fixed point index theory and the Guo–
Krasnosel’skii fixed point theorem. Let X be a real Banach space with the norm ‖·‖,
C ⊂ X a cone, “6” the partial ordering defined by C and θ the zero element in X . For
% > 0, let B% = {u ∈ X: ‖u‖ < %} be the open ball of radius % centered at θ, its closure
B% = {u ∈ X: ‖u‖ 6 %} and its boundary ∂B% = {u ∈ X: ‖u‖ = %}. The proofs of
our results are based on the following fixed point index theorems.

Theorem 1. (See [4].) Let A : B% ∩ C → C be a completely continuous operator. If
there exists u0 ∈ C \ {θ} such that u−Au 6= λu0 for all λ > 0 and u ∈ ∂B% ∩ C, then
i(A, B% ∩ C,C) = 0.

Theorem 2. (See [4].) Let A : B% ∩ C → C be a completely continuous operator. If
Au 6= µu for all u ∈ ∂B% ∩ C and µ > 1, then i(A, B% ∩ C,C) = 1.

Theorem 3. (See [9].) Let X be a Banach space, and let C ⊂ X be a cone in X .
Assume Ω1 and Ω2 are bounded open subsets of X with θ ∈ Ω1, Ω1 ⊂ Ω2, and let
A : C ∩ (Ω2 \Ω1)→ C be a completely continuous operator such that either

(i) ‖Au‖ 6 ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ > ‖u‖, u ∈ C ∩ ∂Ω2, or
(ii) ‖Au‖ > ‖u‖, u ∈ C ∩ ∂Ω1, and ‖Au‖ 6 ‖u‖, u ∈ C ∩ ∂Ω2.

Then A has a fixed point in C ∩ (Ω2 \Ω1).

Let the space C[0, 1] and the cone P = {u ∈ C[0, 1]: u(t) > 0 ∀t ∈ [0, 1]}. We
present next an application of the Krein–Rutman theorem in the space C[0, 1].

Theorem 4. (See [16, 32].) Suppose that A : C[0, 1] → C[0, 1] is a completely contin-
uous linear operator and A(P ) ⊂ P . If there exist v ∈ C[0, 1] \ (−P ) and a constant
c > 0 such that cAv > v, then the spectral radius r(A) 6= 0 and A has an eigenvector
u0 ∈ P \ {θ} corresponding to its principal characteristic value λ1 = (r(A))−1, that is
λ1Au0 = u0 or Au0 = r(A)u0, and so r(A) > 0.

3 Main results

In this section, we present intervals for the parameter λ such that our problem (1), (2)
has at least one positive solution. We consider the Banach space X = C[0, 1] with the
supremum norm ‖u‖ = supt∈[0,1] |u(t)|, and we define the cones

P =
{
u ∈ X: u(t) > 0 ∀t ∈ [0, 1]

}
,

Q =
{
u ∈ X: u(t) > tα−1‖u‖ ∀t ∈ [0, 1]

}
⊂ P.

Nonlinear Anal. Model. Control, 26(1):151–168
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We define the operator A : P → P and the linear operator T : X → X by

Au(t) = λ

1∫
0

G(t, s)h(s)f
(
s, u(s)

)
ds, t ∈ [0, 1], u ∈ P,

T u(t) =

1∫
0

G(t, s)h(s)u(s) ds, t ∈ [0, 1], u ∈ X.

We see that u is a solution of problem (1), (2) if and only if u is a fixed point of operatorA.
For r > 0, we denote Qr = Br ∩Q and Qr = Br ∩Q.

We introduce now the assumptions that we will use in what follows.

(I1) α ∈ R, α ∈ (n−1, n], n,m ∈ N , n > 3, βi ∈ R for all i = 0, . . . ,m,
0 6 β1 < β2 < · · · < βm 6 β0 < α − 1, β0 > 1, Hi : [0, 1] → R, i = 1,
. . . ,m, are nondecreasing functions, λ > 0, and

∆ =
Γ(α)

Γ(α− β0)
−

m∑
i=1

Γ(α)

Γ(α− βi)

1∫
0

sα−βi−1 dHi(s) > 0.

(I2) The function h ∈ C((0, 1), [0,∞)), and
∫ 1

0
J (s)h(s) ds <∞.

(I3) The function f ∈ C([0, 1]× (0,∞), [0,∞)), and for any 0 < r < R, we have

lim
n→∞

sup
u∈QR\Qr

∫
An

h(s)f
(
s, u(s)

)
ds = 0,

where An = [0, 1/n] ∪ [(n− 1)/n, 1].

Lemma 4. Assume that assumptions (I1)–(I3) hold. Then, for any 0 < r < R, the
operator A : QR \Qr → Q is completely continuous.

Proof. By (I3) we deduce that there exists a natural number n1 > 3 such that

sup
u∈QR\Qr

∫
An1

h(s)f
(
s, u(s)

)
ds < 1.

For u ∈ QR \Qr, there exists r1 ∈ [r,R] such that ‖u‖ = r1, and then

tα−1r 6 tα−1r1 6 u(t) 6 r1 6 R ∀t ∈ [0, 1].

Let L1 = max{f(t, x), t ∈ [1/n1, (n1−1)/n1], x ∈ [r/nα−1
1 , R]}. By Lemma 2, (I2)

and (I3) we find

sup
u∈QR\Qr

λ

1∫
0

G(t, s)h(s)f
(
s, u(s)

)
ds 6 sup

u∈QR\Qr

λ

1∫
0

J (s)h(s)f
(
s, u(s)

)
ds,
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sup
u∈QR\Qr

λ

1∫
0

J (s)h(s)f
(
s, u(s)

)
ds

6 sup
u∈QR\Qr

λ

∫
An1

J (s)h(s)f
(
s, u(s)

)
ds+ sup

u∈QR\Qr

λ

(n1−1)/n1∫
1/n1

J (s)h(s)f
(
s, u(s)

)
ds

6 λJ0 + λL1

(n1−1)/n1∫
1/n1

J (s)h(s) ds 6 λJ0 + λL1

1∫
0

J (s)h(s) ds <∞,

where J0 = maxt∈[0,1] J (t). This implies that the operator A is well defined.
We show next that A : QR \ Qr → Q. Indeed, for any u ∈ QR \ Qr and t ∈ [0, 1],

we have

(Au)(t) = λ

1∫
0

G(t, s)h(s)f
(
s, u(s)

)
ds 6 λ

1∫
0

J (s)h(s)f
(
s, u(s)

)
ds,

and then

‖Au‖ 6 λ

1∫
0

J (s)h(s)f
(
s, u(s)

)
ds.

On the other hand, by Lemma 2 we obtain

(Au)(t) > λtα−1

1∫
0

J (s)h(s)f
(
s, u(s)

)
ds > tα−1‖Au‖ ∀t ∈ [0, 1],

so Au ∈ Q. Therefore A(QR \Qr) ⊂ Q.
We prove now that A : QR \ Qr → Q is completely continuous. We assume that

E ⊂ QR \ Qr is an arbitrary bounded set. From the first part of the proof we know
thatA(E) is uniformly bounded. Then we show thatA(E) is equicontinuous. Indeed, for
ε > 0, there exists a natural number n2 > 3 such that

sup
u∈QR\Qr

∫
An2

h(s)f
(
s, u(s)

)
ds <

ε

4λJ0
.

Since G(t, s) is uniformly continuous on [0, 1] × [0, 1], for the above ε > 0, there exists
δ > 0 such that, for any t1, t2 ∈ [0, 1] with |t1 − t2| < δ and s ∈ [1/n2, (n2−1)/n2], we
have ∣∣G(t1, s)− G(t2, s)

∣∣ < ε

2λh̄L2
,

where L2 = max{1,max{f(t, x), t ∈ [1/n2, (n2− 1)/n2], x ∈ [r/nα−1
2 , R]}} and

h̄ = max{1,max{h(t), t ∈ [1/n2, (n2−1)/n2]}}.
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Then, for any u ∈ E, t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we deduce∣∣(Au)(t1)− (Au)(t2)
∣∣

= λ

∣∣∣∣∣
1∫

0

(
G(t1, s)− G(t2, s)

)
h(s)f

(
s, u(s)

)
ds

∣∣∣∣∣
6 2λ

∫
An2

J (s)h(s)f
(
s, u(s)

)
ds

+ λ sup
u∈E

(n2−1)/n2∫
1/n2

∣∣G(t1, s)− G(t2, s)
∣∣h(s)f

(
s, u(s)

)
ds

6 2λJ0
ε

4λJ0
+

ελ

2λh̄L2

( (n2−1)/n2∫
1/n2

h(s) ds

)
L2

6
ε

2
+
ε

2
= ε.

This gives us that A(E) is equicontinuous. By the Arzelà–Ascoli theorem we conclude
that A : QR \Qr → Q is compact.

Finally, we prove that A : QR \ Qr → Q is continuous. We suppose that un, u0 ∈
QR \ Qr for all n > 1 and ‖un − u0‖ → 0 as n → ∞. Then r 6 ‖un‖ 6 R for all
n > 0. By (I3), for ε > 0, there exists a natural number n3 > 3 such that

sup
u∈QR\Qr

∫
An3

h(s)f
(
s, u(s)

)
ds <

ε

4λJ0
. (9)

Because f(t, x) is uniformly continuous in [1/n3, (n3−1)/n3]× [r/nα−1
3 , R], we obtain

lim
n→∞

∣∣f(s, u(s)
)
− f

(
s, u0(s)

)∣∣ = 0

uniformly for s ∈ [1/n3, (n3−1)/n3]. Then the Lebesgue dominated convergence theo-
rem gives us

(n3−1)/n3∫
1/n3

h(s)
∣∣f(s, un(s)

)
− f

(
s, u0(s)

)∣∣ds→ 0 as n→∞.

Thus, for the above ε > 0, there exists a natural number N such that, for n > N , we have

(n3−1)/n3∫
1/n3

h(s)
∣∣f(s, un(s)

)
− f

(
s, u0(s)

)∣∣ds < ε

2λJ0
. (10)
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By (9) and (10) we conclude that

‖Aun −Au0‖

6 sup
u∈QR\Qr

λ

∫
An3

J (s)h(s)
∣∣f(s, un(s)

)
− f

(
s, u0(s)

)∣∣ds
+ sup
u∈QR\Qr

λ

(n3−1)/n3∫
1/n3

J (s)h(s)
∣∣f(s, un(s)

)
− f

(
s, u0(s)

)∣∣ds
6 λJ0

ε

4λJ0
+ λJ0

ε

4λJ0
+

ε

2λJ0
λJ0 = ε.

This implies thatA : QR\Qr → Q is continuous. HenceA : QR\Qr → Q is completely
continuous.

Under assumptions (I1)–(I3), by the extension theorem the operator A has a com-
pletely continuous extension (also denoted by A) from Q to Q.

Lemma 5. Assume that assumptions (I1), (I2) hold. Then the spectral radius r(T ) 6= 0,
and T has an eigenfunction ψ1 ∈ P \ {θ} corresponding to the principal eigenvalue
r(T ), that is T ψ1 = r(T )ψ1. So r(T ) > 0.

Proof. The operator T : X → X is a linear completely continuous operator. By Lemma 2
we know that G(t, s) > 0 for all t, s ∈ (0, 1). By (I2) we deduce that there exists an
interval [c, d] ⊂ (0, 1) (0 < c < d < 1) such that h(t) > 0 for all t ∈ [c, d]. We consider
a function ϕ ∈ C[0, 1] satisfying the conditions ϕ(t) > 0 for t ∈ (c, d) and ϕ(t) = 0 for
t /∈ (c, d). Then, for all t ∈ [c, d], we have

(T ϕ)(t) =

1∫
0

G(t, s)h(s)ϕ(s) ds >

d∫
c

G(t, s)h(s)ϕ(s) ds > 0 ∀t ∈ [c, d].

Hence there exists a constant a > 0 (a = maxt∈[c,d] ϕ(t)/mint∈[c,d](T ϕ)(t)), which
satisfies the inequality a(T ϕ)(t) > ϕ(t) for all t ∈ [0, 1]. By Theorem 4 we conclude that
the spectral radius r(T ) 6= 0 and T has an eigenfunction ψ1 ∈ P \ {θ} corresponding
to its principal characteristic value λ1 = (r(T ))−1 such that T ψ1 = r(T )ψ1, and so
r(T ) > 0.

Using a similar argument as that used in the proof of Lemma 4 for operator A, we
obtain that T (Q) ⊂ Q.

Theorem 5. Assume that assumptions (I1)–(I3) hold. If

0 6 fs∞ := lim sup
u→∞

max
t∈[0,1]

f(t, u)

u
< f i0 := lim inf

u→0+
min
t∈[0,1]

f(t, u)

u
6∞,

then, for any λ ∈ (1/(f i0r(T )), 1/(fs∞r(T ))), problem (1), (2) has at least one positive
solution u(t), t ∈ [0, 1] (with the conventions 1/0+ =∞ and 1/∞ = 0+).
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Proof. We consider λ ∈ (1/(f i0r(T )), 1/(fs∞r(T ))). For f i0, we have the cases: f i0 ∈
(0,∞) with f i0 > 1/(λr(T )) and f i0 = ∞. In the first case, f i0 ∈ (0,∞) with f i0 >
1/(λr(T )), we obtain

∀ε > 0, ∃ δ(ε) > 0 s.t.
f(t, u)

u
> f i0 − ε ∀t ∈ [0, 1], u ∈

(
0, δ(ε)

]
.

By taking ε = f i0 − 1/(λr(T )) we deduce that there exists r′1 > 0 such that f(t, u)/u >
1/(λr(T )) for all t ∈ [0, 1] and u ∈ (0, r′1], and so f(t, u) > u/(λr(T )) for all t ∈ [0, 1]
and u ∈ [0, r′1].

In the case f i0 =∞, we have

∀ε > 0, ∃ δ(ε) > 0 s.t.
f(t, u)

u
> ε ∀t ∈ [0, 1], u ∈

(
0, δ(ε)

]
.

So for ε = 1/(λr(T )), we deduce that there exists r′′1 > 0 such that f(t, u) > u/(λr(T ))
for all t ∈ [0, 1] and u ∈ [0, r′′1 ].

Hence, in the above both cases, we conclude that there exists r1 > 0 such that
f(t, u) > u/(λr(T )) for all t ∈ [0, 1] and u ∈ [0, r1].

Then, for any u ∈ ∂Qr1 , we find

Au(t) = λ

1∫
0

G(t, s)h(s)f
(
s, u(s)

)
ds

>
1

r(T )

1∫
0

G(t, s)h(s)u(s) ds =
1

r(T )
T u(t) ∀t ∈ [0, 1].

We assume that A has no fixed point on ∂Qr1 , (otherwise the proof is finished). We will
prove that

u−Au 6= µψ1 ∀u ∈ ∂Qr1 , µ > 0, (11)

where ψ1 is given in Lemma 5. We suppose that there exist u1 ∈ ∂Qr1 and µ1 > 0 such
that u1 − Au1 = µ1ψ1. Then µ1 > 0 and u1 = Au1 + µ1ψ1 > µ1ψ1. We denote
µ0 = sup{µ: u1 > µψ1}. Then µ0 > µ1, u1 > µ0ψ1 and

Au1 >
1

r(T )
T u1 >

1

r(T )
µ0T ψ1 = µ0ψ1.

Hence u1 = Au1+µ1ψ1 > µ0ψ1+µ1ψ1 = (µ0+µ1)ψ1, which contradicts the definition
of µ0. So relation (11) holds, and by Theorem 1 we deduce that

i(A, Qr1 , Q) = 0. (12)

For fs∞, we have also two cases: fs∞ ∈ (0,∞) with fs∞ < 1/(λr(T )) and fs∞ = 0.
In the first case, fs∞ ∈ (0,∞) with fs∞ < 1/(λr(T )), we obtain

∀ε > 0, ∃ δ(ε) > 0 s.t.
f(t, u)

u
6 fs∞ + ε ∀t ∈ [0, 1], u > δ(ε).
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By taking ε = 1/(2λr(T )) − fs∞/2 we deduce that there exists r′2 > r1 such that
f(t, u) 6 θ1/(λr(T ))u for all t ∈ [0, 1] and u ∈ [r′2,∞), where θ1 = 1/2 +
fs∞λr(T )/2 ∈ (0, 1).

In the case fs∞ = 0, we have

∀ε > 0, ∃ δ(ε) > 0 s.t.
f(t, u)

u
6 ε ∀t ∈ [0, 1], u > δ(ε).

So for ε = 1/(2λr(T )), we deduce that there exists r′′2 > r1 such that f(t, u) 6
1/(2λr(T ))u for all t ∈ [0, 1] and u ∈ [r′′2 ,∞).

Therefore, in the above both cases, we conclude that there exist θ ∈ (0, 1) and r2 > r1

such that f(t, u) 6 θ1/(λr(T ))u for all t ∈ [0, 1] and u ∈ [r2,∞).
We define now the operator T1 : X → X by

T1u = θ
1

r(T )
T u =

θ

r(T )

1∫
0

G(t, s)h(s)u(s) ds, t ∈ [0, 1], u ∈ X.

The operator T1 is linear and bounded, and T1(Q) ⊂ Q. Because θ ∈ (0, 1), we obtain
r(T1) = θ < 1. We consider the set

Z = {u ∈ Q \Br1 : µu = Au with µ > 1}.

For u ∈ Q, we denote D(u) = {t ∈ [0, 1]: u(t) > r2}. Then, for u ∈ Q, we have
u(t) > r2 for all t ∈ D(u), and so

f
(
t, u(t)

)
6 θ

1

λr(T )
u(t) ∀t ∈ D(u). (13)

By (13) and the definition of operator T , for any u ∈ Z, µ > 1 and t ∈ [0, 1], we
deduce

u(t) 6 µu(t) = (Au)(t) = λ

1∫
0

G(t, s)h(s)f
(
s, u(s)

)
ds

= λ

∫
D(u)

G(t, s)h(s)f
(
s, u(s)

)
ds+ λ

∫
[0,1]\D(u)

G(t, s)h(s)f
(
s, u(s)

)
ds

6
θ

r(T )

∫
D(u)

G(t, s)h(s)u(s) ds+ λ

1∫
0

J (s)h(s)f
(
s, ũ(s)

)
ds

6
θ

r(T )

1∫
0

G(t, s)h(s)u(s) ds+ λJ0M1 = (T1u)(t) + λJ0M1, (14)
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where ũ(t) = min{u(t), r2} for all t ∈ [0, 1] (which satisfies r1t
α−1 6 ũ(t) 6 r2 for

all t ∈ [0, 1]), J0 = sups∈[0,1] J (s), and M1 = supu∈Qr2
\Qr1

∫ 1

0
h(s)f(s, u(s)) ds (as

in the proof of Lemma 4, we obtain that M1 < ∞). By the Gelfand formula we know
that (I − T1)−1 exists and (I − T1)−1 =

∑∞
i=1 T i1 , which implies (I − T1)−1(Q) ⊂ Q.

This, together with (14), gives us u(t) 6 (I − T1)−1(λJ0M1), and so u(t) 6 λJ0M1 ×
‖(I − T1)−1‖ for all t ∈ [0, 1], which means that Z is bounded. Now we choose R >
max{r2, sup{‖u‖, u ∈ Z}}. Then we obtain that µu 6= Au for all u ∈ ∂QR and µ > 1.
By Theorem 2 we conclude that

i(A, QR, Q) = 1. (15)

By (12), (15) and the additivity property of the fixed point index we deduce that

i(A, QR \Qr1 , Q) = i(A, QR, Q)− i(A, Qr1 , Q) = 1.

So operator A has at least one fixed point on QR \ Qr1 , which is a positive solution of
problem (1), (2).

By using a similar approach as that used in the proof of Theorem 5, we obtain the
following result.

Theorem 6. Assume that assumptions (I1)–(I3) hold. If

0 6 fs0 := lim sup
u→0+

max
t∈[0,1]

f(t, u)

u
< f i∞ := lim inf

u→∞
min
t∈[0,1]

f(t, u)

u
6∞,

then, for any λ ∈ (1/(f i∞r(T )), 1/(fs0 r(T ))), problem (1), (2) has at least one positive
solution u(t), t ∈ [0, 1].

4 Some remarks on a related semipositone problem

In this section, we present two existence results for a semipositone problem associated to
problem (1), (2). More precisely, we consider the fractional differential equation

Dα
0+u(t) + λf̃

(
t, u(t)

)
= 0, t ∈ (0, 1), (16)

subject to the boundary conditions (2). We suppose that assumption (I1) holds and f̃ sat-
isfies the conditions

(I2′) The function f̃ ∈ C((0, 1) × [0,∞), R) may be singular at t = 0 and/or
t = 1, and there exist the functions p, q ∈ C((0, 1), [0,∞)), g ∈ C([0, 1] ×
[0,∞), [0,∞)) such that −p(t) 6 f̃(t, u) 6 q(t)g(t, u) for all t ∈ (0, 1) and
u ∈ [0,∞) with 0 <

∫ 1

0
p(t) dt <∞, 0 <

∫ 1

0
q(t) dt <∞.

(I3′) There exists ζ ∈ (0, 1/2) such that limu→∞mint∈[ζ,1−ζ] f̃(t, u)/u =∞.
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By using the Guo–Krasnosel’skii fixed point theorem (Theorem 3) and similar argu-
ments as those used in [11] (Theorems 3.1 and 3.2) we obtain the following results for
problem (16), (2).

Theorem 7. Assume that (I1), (I2′) and (I3′) hold. Then there exists λ∗ > 0 such that, for
any λ ∈ (0, λ∗], the boundary value problem (16), (2) has at least one positive solution.

In the proof of Theorem 7, we consider R1 > σ
∫ 1

0
p(t) dt > 0, and we define

λ∗ = min

{
1, R1

(
M2

1∫
0

J (s)
(
q(s) + p(s)

)
ds

)−1}

with M2 = max{maxt∈[0,1], u∈[0,R1] g(t, u), 1}. The solution u(t), t ∈ [0, 1], satisfies
the condition u(t) > Λ1t

α−1 for all t ∈ [0, 1], where Λ1 = R1 − σ
∫ 1

0
p(s) ds > 0.

Theorem 8. Assume that (I1), (I2′) and

(I4) There exists ζ ∈ (0, 1/2) such that the following hold:

lim
u→∞

min
t∈[ζ,1−ζ]

f̃(t, u) =∞ and lim
u→∞

max
t∈[0,1]

g(t, u)

u
= 0.

Then there exists λ∗ > 0 such that, for any λ > λ∗, the boundary value problem (16), (2)
has at least one positive solution.

By (I4) we know that for ζ ∈ (0, 1/2) and for a fixed number L0 > 0, there exists
M3 > 0 such that f̃(t, u) > L0 for all t ∈ [ζ, 1 − ζ] and u > M3. In the proof of
Theorem 8, we define λ∗ = M3(ζα−1σ

∫ 1

0
p(s) ds)−1. The solution u(t), t ∈ [0, 1],

satisfies the condition u(t) > Λ̃1t
α−1 for all t ∈ [0, 1], where Λ̃1 = M3/ζ

α−1.

5 Examples

Let α = 10/3, n = 4, β0 = 11/5, m = 2, β1 = 1/2, β2 = 5/4, H1(t) = t for all
t ∈ [0, 1], H2(t) = {0 for t ∈ [0, 1/2); 1 for t ∈ [1/2, 1]}.

We consider the fractional differential equations

D
10/3
0+ u(t) + λh(t)f

(
t, u(t)

)
= 0, t ∈ (0, 1), (17)

D
10/3
0+ u(t) + λf̃

(
t, u(t)

)
= 0, t ∈ (0, 1), (18)

subject to the boundary conditions

u(0) = u′(0) = u′′(0) = 0, D
11/5
0+ u(1) =

1∫
0

D
1/2
0+ u(t) dt+D

5/4
0+ u

(
1

2

)
. (19)

Nonlinear Anal. Model. Control, 26(1):151–168

https://doi.org/10.15388/namc.2021.26.201414


164 A. Tudorache, R. Luca

We have ∆ ≈ 1.12792427 > 0 and σ ≈ 0.94443688. So assumption (I1) is satisfied. In
addition, we obtain

g21(t, s) =
1

Γ(17/6)

{
t11/6(1− s)2/15 − (t− s)11/6, 0 6 s 6 t 6 1,

t11/6(1− s)2/15, 0 6 t 6 s 6 1,

g22(t, s) =
1

Γ(25/12)

{
t13/12(1− s)2/15 − (t− s)13/12, 0 6 s 6 t 6 1,

t13/12(1− s)2/15, 0 6 t 6 s 6 1,

h1(s) =
1

Γ(10/3)
(1− s)2/15

(
1− (1− s)11/5

)
, s ∈ [0, 1],

J (s) =


h1(s) + 1

∆{
1

Γ(23/6) (1− s)2/15 − 1
Γ(23/6) (1− s)17/6

+ 1
Γ(25/12) [( 1

2 )13/12(1− s)2/15 − ( 1
2 − s)

13/12]}, 0 6 s 6 1
2 ,

h1(s) + 1
∆{

1
Γ(23/6) (1− s)2/15 − 1

Γ(23/6) (1− s)17/6

+ 1
Γ(25/12) ( 1

2 )13/12(1− s)2/15}, 1
2 < s 6 1.

Example 1. We consider the functions

h(t) =
1

3
√
t(1− t)2

, t ∈ (0, 1); f(t, u) =
√
u+ t+

1
4
√
u
, t ∈ [0, 1], u > 0.

The cone Q from Section 3 is here Q = {u ∈ C[0, 1]: u(t) > t7/3‖u‖ ∀t ∈ [0, 1]}. For
0 < r < R and u ∈ QR \Qr, we deduce

f
(
t, u(t)

)
6
√
R+ 1 +

1
4
√
t7/3r

∀t ∈ (0, 1].

Besides, we obtain
∫ 1

0
J (s)h(s) ds 6 J0Γ(2/3)Γ(1/3) < ∞, J0 = maxs∈[0,1] J (s) ≈

0.781. Hence assumption (I2) is satisfied.
For u ∈ QR \Qr and An = [0, 1/n] ∪ [(n−1)/n, 1], we find

Cn =

∫
An

h(s)f
(
s, u(s)

)
ds =

∫
An

1
3
√
s(1− s)2

(√
u(s) + s+

1
4
√
u(s)

)
ds

6
∫
An

1
3
√
s(1− s)2

(√
R+ 1 +

1
4
√
s7/3r

)
ds

= (
√
R+ 1)

∫
An

ds
3
√
s(1− s)2

+
1
4
√
r

∫
An

1

s11/12(1− s)2/3
ds,

and then limn→∞ supu∈QR\Qr
Cn = 0 because f1(s) = 1/( 3

√
s(1− s)2) ∈ L1(0, 1)

and f2(s) = 1/(s11/12(1 − s)2/3) ∈ L1(0, 1). Hence assumption (I3) is satisfied. We
also have fs∞ = 0 and f i0 = ∞. Then by using Theorem 5 we deduce that, for any
λ ∈ (0,∞), problem (17), (19) has at least one positive solution u(t), t ∈ [0, 1], which
satisfies the condition u(t) > t7/3‖u‖ for all t ∈ [0, 1].
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Example 2. We consider the function

f̃(t, u) =
u3 + u+ 1
4
√
t(1− t)3

+ ln t, t ∈ (0, 1), u > 0.

For this example, we have p(t) = − ln t and q(t) = 1/( 4
√
t(1− t)3) for all t ∈ (0, 1),

g(t, u) = u3 + u + 1 for all t ∈ [0, 1] and u > 0,
∫ 1

0
p(t) dt = 1,

∫ 1

0
q(t) dt =

Γ(3/4)Γ(1/4) ≈ 4.44288. Then assumption (I2′) is satisfied. In addition, for ζ ∈ (0, 1/2)
fixed, assumption (I3′) is also satisfied. By some computations we obtain that∫ 1

0
J (s)(q(s)+p(s)) ds ≈ 2.71742073. We chooseR1 = 2, which satisfies the condition

R1 > σ
∫ 1

0
p(t) dt ≈ 0.944, and then we deduce M2 = 11 and λ∗ ≈ 0.0669084. By

Theorem 7 we conclude that, for any λ ∈ (0, λ∗], problem (18), (19) has at least one
positive solution u(t), t ∈ [0, 1], which satisfies the condition u(t) > Λ1t

7/3 for all
t ∈ [0, 1], where Λ1 ≈ 1.05556.

Example 3. We consider the function

f̃(t, u) =

√
u+ 1/3

5
√
t3(1− t)2

− 1
3
√
t
, t ∈ (0, 1), u > 0.

Here we have p(t) = 1/ 3
√
t and q(t) = 1/ 5

√
t3(1− t)2 for all t ∈ (0, 1), g(t, u) =√

u+ 1/3 for all t ∈ [0, 1] and u > 0. Because
∫ 1

0
p(t) dt = 3/2,

∫ 1

0
q(t) dt ≈

3.30327, assumption (I2′) is satisfied. In addition, for ζ ∈ (0, 1/2), we obtain that
limu→∞mint∈[ζ,1−ζ] f̃(t, u) = ∞ and limu→∞maxt∈[0,1] g(t, u)/u = 0, and then
assumption (I4) is also satisfied. We choose ζ = 1/4 and L0 = 100, and then we find
M3 = 5805 and λ∗ ≈ 104075. Then by Theorem 8 we deduce that, for any λ > λ∗,
problem (18), (19) has at least one positive solution u(t), t ∈ [0, 1], which satisfies the
inequality u(t) > Λ̃1t

7/3 for all t ∈ [0, 1], where Λ̃1 ≈ 147438.

6 Conclusion

In this paper, we study the existence of positive solutions for the nonlinear Riemann–
Liouville fractional boundary value problem (1), (2), where λ is a positive parameter. The
function f is nonnegative, and it may be singular at the second variable, and the function
h is also nonnegative, and it may have singularities at t = 0 and/or t = 1. We present
conditions for f and h and intervals for λ, which are expressed in term of the principal
characteristic value of an associated linear operator. In the proof of the existence theo-
rems, we use two results from the fixed point index theory. We also investigate a related
semipositone problem, namely, equation (1) with h ≡ 1 and f a sign-changing function
with singularities at t = 0 and/or t = 1 subject to the nonlocal boundary conditions (2).
For this problem, we give two existence results for the positive solutions when λ belongs
to various intervals. Three examples, which illustrate the obtained existence theorems,
are finally presented.
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