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Abstract. We introduce a reaction–diffusion system with modified nonlinear functional responses.
We first discuss the large-time behavior of positive solutions for the system. And then, for the
corresponding steady-state system, we are concerned with the priori estimate, the existence of
the nonconstant positive solutions as well as the bifurcations emitting from the positive constant
equilibrium solution. Finally, we present some numerical examples to test the theoretical and
computational analysis results. Meanwhile, we depict the trajectory graphs and spatiotemporal
patterns to simulate the dynamics for the system. The numerical computations and simulated graphs
imply that the available food resource for consumer is very likely not single.

Keywords: reaction–diffusion system, large-time behavior, positive solution, bifurcation,
numerical and graphical analysis.

1 Introduction

Many ecological phenomena among different populations can be characterized or sim-
ulated by various mathematical models. By analyzing different kinds of mathematical
models people may give scientific predictions and explanations on the dynamics of these
models, and further, put forward reasonable projects corresponding to some ecological
problems. In many kinds of ecological-mathematical models, the predator–prey model is
a very important branch. Since the classical Lotka–Volterra ecological model [13] was
introduced into investigations, the predator–prey-type models received extensively atten-
tions. In recent decades, different kinds of predator–prey models have been established,
and many great progress and valuable achievements have been made; see [4,6,9,20,22,23]
for examples.

In predator–prey models, the functional responses are very important terms in describ-
ing the relations between predator and prey, they determine many dynamical properties
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of the systems in some extent. Specifically, the functional response describes the change
of predation rate of predator capturing prey, that is, how the predator consuming prey
is dependent on the response terms. In large number of predator–prey models, the func-
tional responses are of prey-dependent type, such as the classical Lotka–Volterra-type
functional response, the Holling-type II (sometimes referred to as the Michaelis–Menten
functional response), III and IV functional responses, the Ivlev and inverse Ivlev func-
tional responses, etc. Taking these functions as the functional responses, a great many of
predator–prey models have been studied thoroughly, and quite a lot of important research
achievements have been given; see [1, 10, 18, 21, 24], etc.

The introduction of prey-dependent-type functional response is based on the assump-
tion that the predation rate of predator is only effected by prey, and the predators are
mutual noninterference within themselves. In fact, generally speaking, the phenomenon
in sharing or competing their foods always occurs during the process of predation. When
the population density of predator is high, the predation rate will decrease. Moreover,
as the well-known environmental paradox being proposed by Hairston, et al. [8] and
Rosenzweig [19], the type of functional responses gave rise to many strong controversies
among ecologists. Just in this situation, based on the Holling-type II functional response,
by a great deal of experimental and numerical analysis, Beddington [3] and DeAngelis et
al. [5] introduced a new type functional response, the predator–prey dependent functional
response f(x) = bx/(a + x + cy), which is called the Beddington–DeAngelis-type
functional response, where x and y represent the predator and prey, respectively, and
a, b, c are parameters. This type of functional response is very like with the Holling-
type II functional response, the only difference is that the Beddington–DeAngelis-type
functional response involves both prey and predator. Compared with the prey-dependent-
type functional responses, the predator–prey-dependent functional response not only re-
flects the mutual interference with predators, but also remains the merits of the ratio-
dependent functional responses. Moreover, it avoids some controversies induced by low
population density and better describes the predation effect of the predator versus prey. It
is just because of these reasons, different kinds of models with predator–prey-dependent
functional response have become a center topic in population dynamics.

Except the Beddington–DeAngelis-type functional response, another attentive preda-
tor–prey-dependent functional response hx/y is called the Leslie–Gower-type functional
response, where h is a constant. It was introduced by Leslie [11] and discussed jointly by
Leslie and Gower [12]. This functional response measures the self-consumption of preda-
tor when the foods are scarce, where the growth of predator population is of logistic form.
Since in actual ecological systems, the carrying capacity set by environmental resources is
proportional to prey abundance and the predators always try to survive by catching other
preys when their conventional food is short seriously, in such situations, the growth rate
of the predator would be affected. For this reason, Aziz-Alaoui [2] modified the logistic
form and proposed the Leslie–Gower-type functional response hx/(a + y), where a is
a positive constant and measures the environmental protection for predator. With such
a functional response, Aziz-Alaoui et al. studied some predator–prey models in spatially
homogeneous or inhomogeneous cases; see [7,15–17,25]. Based on and motivated by all
the above-mentioned, in this paper, we introduce the following nondimensional reaction–
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diffusion system

∂u

∂t
= d1∆u+ u

(
a− u− αv

c+ u+mv

)
, x ∈ Ω, t > 0,

∂v

∂t
= d2∆v + v

(
b− v − βv

r + u

)
, x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, 6≡ 0, x ∈ Ω,
v(x, 0) = v0(x) > 0, 6≡ 0, x ∈ Ω,

(1)

with two modified predator–prey-dependent nonlinear functional responses αv/(c+ u+
mv), βv/(r + u). Here Ω is a bounded domain in Rn with smooth boundary ∂Ω, u and
v are the densities of prey and predator populations. d1, d2 and a, b are the diffusion
rates and the growth rates of u and v, respectively; α is the predation rate of predator,
and c is the self-saturation density of prey; m represents the semi-saturation term of the
system; β measures the conversion rate of v predating u, and r reflects the protection of
the surroundings on predators; ν is the outward unit normal vector on ∂Ω. All parameters
are positive constants. u0(x), v0(x) are booth smooth functions in Ω.

For system (1), we consider the large-time behavior of positive solutions. In addition,
corresponding to (1), we mainly analyze the steady-state system

d1∆u+ u

(
a− u− αv

c+ u+mv

)
= 0, x ∈ Ω,

d2∆v + v

(
b− v − βv

r + u

)
= 0, x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω.

(2)

An outline of this paper is as follows: In Section 2, we consider the large-time be-
havior of positive solutions to system (1) mainly by the comparison principle of parabolic
equations. In Section 3, we give a priori estimate for the positive solutions of (2) by the
maximum principle. Then, in Section 4, we investigate the coexistence of predator and
prey to system (2) by the energy integral techniques and topological degree computation.
In Section 5, by taking the diffusion rate of predator as a parameter, we study the bi-
furcating phenomenon, which emits from the unique positive constant equilibrium also
by using the topological degree techniques. Since pattern is a very interesting nonlinear
phenomena and pattern dynamics is a primary branch of nonlinear science, finally, we
give some numerical examples and depict the corresponding trajectory graphs or spa-
tiotemporal patterns to simulate the related theoretical results in Section 6. It is worth
mentioning that the numerical simulated graphs imply that the available food resource for
predator may not single if the system parameters are controlled properly.
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2 Large-time behavior

In this section, we consider the large-time behaviors of positive solutions to system (1)
including the global attractor and the persistence.

Lemma 1. Let k > 0 be a constant. If the function f(x, t) satisfies

∂f

∂t
= d∆f + f(k − f), x ∈ Ω, t > 0,

∂f

∂ν
= 0, x ∈ ∂Ω, t > 0,

f(x, 0) = f0(x) > 0, 6≡ 0, x ∈ Ω,

(3)

with Ω being the same as that of in (1) and f0 being a smooth function in Ω, then
limt→∞ f(x, t) = k holds uniformly in Ω.

Proof. For any χ0 > 0, it is well known that the problem

dχ

dt
= χ(k − χ), χ(0) = χ0

has a unique solution χ = χ(t;χ0) satisfying limt→∞ χ(t;χ0) = k. Here we use the
mark χ(t;χ0) to represent that the solution χ is related to χ0.

Let M = maxΩ f0(x). Then M > 0 and f(M, t) is an upper-solution of (3).
Obviously, 0 is a lower-solution of (3). These lead to (3) permitting a unique nonneg-
ative solution f(x, t), and f(x, t) satisfies 0 6 f(x, t) 6 f(M, t). Then the maximum
principle induces that f(x, t) > 0, x ∈ Ω, t > 0. Take some τ > 0. Then f(x, τ) > 0
for x ∈ Ω. Denote z(x, t) = f(x, t+ τ). Then z(x, t) satisfies

∂z

∂t
= d∆z + z(k − z), x ∈ Ω, t > 0,

∂z

∂ν
= 0, x ∈ ∂Ω, t > 0,

z(x, 0) = f(x, τ), x ∈ Ω.

By the comparison principle of parabolic equations, for any t > 0, we have

f(k, t) 6 z(x, t) = f(x, t+ τ) 6 f(k, t)

with k= minΩ f(x, τ), k= maxΩ f(x, τ). Since limt→∞ f(k, t) = limt→∞ f(k, t) =k,
then limt→∞ f(x, t+τ) = k. Therefore, limt→∞ f(x, t) = k holds uniformly inΩ.

Theorem 1. If (u(x, t), v(x, t)) is a positive solution of (1), then

lim sup
t→∞

max
Ω

u(x, t) 6 a, lim sup
t→∞

max
Ω

v(x, t) 6 b.

Hence, for any ε > 0, the rectangle [0, a+ ε]× [0, b+ ε] is a global attractor of (1).
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Proof. Clearly, u(x, t) satisfies

∂u

∂t
6 d1∆u+ u(a− u), x ∈ Ω, t > 0,

∂u

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, 6≡ 0, x ∈ Ω.

By the comparison principle of parabolic equations and Lemma 1 we know that for any
0 < ε� 1, there exists t1 > 0 such that u(x, t) 6 a+ ε, x ∈ Ω when t > t1. Hence, we
get lim supt→∞maxΩ u(x, t) 6 a+ ε.

Likewise, using the comparison principle of parabolic equations and Lemma 1 again,
we also know that there is t2 with t2 > t1 such that v(x, t) 6 b+ ε, x ∈ Ω for 0 < ε� 1
when t > t2. So, lim supt→∞maxΩ v(x, t) 6 b+ ε. Then the arbitrariness of ε induces
that the conclusion holds.

The result shows that any positive solution (u(x, t), v(x, t)) of (1) lies in a bounded
region when t → ∞, that is, (u(x, t), v(x, t)) exists globally, and the rectangle [0, a +
ε]× [0, b+ ε] is a global attractor of (1) for any ε > 0.

Theorem 2. If ac > bα, then (1) is persistent. Specifically, any positive solution (u(x, t),
v(x, t)) of (1) satisfies

lim inf
t→∞

min
Ω

u(x, t) >
ac− bα

c
, lim inf

t→∞
min
Ω

v(x, t) >
br

r + β
.

Proof. For any ε > 0, the proof of Theorem 1 implies that u(x, t) satisfies

∂u

∂t
> d1∆u+ u

(
a− u− α(b+ ε)

c

)
, x ∈ Ω, t > t2,

∂u

∂ν
= 0, x ∈ ∂Ω, t > t2,

u(x, t2) > 0, x ∈ Ω,

where t2 is defined in the proof of Theorem 1. Similar as that we prove Theorem 1, there
exists t3, t3 > t2 such that u(x, t) > a−(α(b+ε))/c−ε, x ∈ Ω when t > t3. Therefore,

lim inf
t→∞

min
Ω

u(x, t) > a− α(b+ ε)

c
− ε.

Since u(x, t) > 0, x ∈ Ω, then v(x, t) satisfies

∂v

∂t
> d2∆v + v

(
b− v − β

r
v

)
, x ∈ Ω, t > 0,

∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x) > 0, 6≡ 0, x ∈ Ω.
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Hence, there is t4 with t4 > t3 such that v(x, t) > br/(r + β) − ε > 0, x ∈ Ω when
t > t4. So,

lim inf
t→∞

min
Ω

v(x, t) >
br

r + β
− ε.

Then the arbitrariness of ε implies that

lim inf
t→∞

min
Ω

u(x, t) >
ac− bα

c
and lim inf

t→∞
min
Ω

v(x, t) >
br

r + β
.

This shows that system (1) is persistent.

Remark 1. Theorem 2 implies that the predator and prey always coexist in their living
surroundings despite the location and time as long as ac > bα, moreover, this coexistence
is independent of their diffusion situation.

3 A priori estimate

In this section, we seek a priori estimate for the positive solutions of (2), which will be
used frequently in the latter contents. As preparation, we introduce the following lemma
due to [14].

Lemma 2. Suppose the functions ω(x) ∈ C2(Ω) × C1(Ω) and g(x, ω) ∈ C(Ω × R.
Then the followings hold.

(i) If ω(x) satisfies ∆ω(x) + g(x, ω(x)) > 0, x ∈ Ω, ∂ω/∂ν 6 0, x ∈ ∂Ω, and
ω(x0) = maxΩ ω, then g(x0, ω(x0)) > 0.

(ii) If ω(x) satisfies ∆ω(x) + g(x, ω(x)) 6 0, x ∈ Ω, ∂ω/∂ν > 0, x ∈ ∂Ω, and
ω(x0) = minΩ ω, then g(x0, ω(x0)) 6 0.

Theorem 3. Let (u(x), v(x)) be any positive solution of (2). Then

max
Ω

u(x) 6 a, max
Ω

v(x) 6
b(a+ r)

a+ r + β
< b.

Proof. Since (u(x), v(x)) satisfies (2), then regularity theory of elliptic equations implies
that u(x) and v(x) must attain their maximum and minimum values in Ω. By the first
equation of (2) we have

∆u+ d−1
1 u(a− u) > 0, x ∈ Ω;

∂u

∂ν
= 0, x ∈ ∂Ω.

Then Lemma 2(i) induces u(a− u) > 0 at the maximum of u, so maxΩ̄ u(x) 6 a.
Then by maxΩ̄ u(x) 6 a and the second equation of (2) we get

∆v + d−1
2 v

(
b− v − βv

a+ r

)
> 0, x ∈ Ω;

∂v

∂ν
= 0, x ∈ ∂Ω.

Using Lemma 2(i) again, there holds v(b − v − βv/(a + r)) > 0 at the maximum of v,
and further, maxΩ̄ v(x) 6 (

¯
a+ r)/(a+ r + β) < b. The proof is finished.
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In the following, for convenience in use, we denote ∧ = ∧(a, b, c,m, r, α, β).

Theorem 4. Let d > 0 be a given number. If d1 > d, then there is a constant C =
C(d, n,Ω,∧) such that any positive solution (u(x), v(x)) of (2) satisfies

min
Ω

u(x) > C, min
Ω

v(x) > C.

Proof. Denote

u(x1) = min
Ω

u(x), u(x2) = max
Ω

u(x);

v(y1) = min
Ω

v(x), v(y2) = max
Ω

v(x).

Similar to the proof of Theorem 3, apply Lemma 2(ii) directly to the first equation of (2)
to yield

d−1
1 u(x1)(a− u(x1) +

αv(x1)

c+ u(x1) +mv(x1)
) 6 0,

which implies a 6 u(x1) + αv(x1)/(c + u(x1) + mv(x1)). Then use Lemma 2(i) and
(ii) to the second equation of (2) continuously to get

v(y2) 6
b(r + u(y2))

r + β + u(y2)
and v(y1) >

b(r + u(y1))

r + β + u(y1)
,

respectively. Combining with Theorem 3, we get

v(y2) 6
b(r + u(x2))

r + β
and v(y1) >

b(r + u(x1))

a+ r + β
. (4)

Thus,

a 6 u(x1) +
αv(x1)

c+ u(x1) +mv(x1)
6 u(x1) +

bα(r + u(x2))

c(r + β + u(x2))

6 u(x1) + Pu(x2), (5)

where P > 0 is a constant satisfying P > bα(r + u(x2))/(cu(x2)(r+β+u(x2))). Now,
let

h(x) = d−1
1

(
a− u− αv

c+ u+mv

)
.

Then h(x) and u satisfy

∆u(x) + h(x)u(x) = 0, x ∈ Ω;
∂u

∂ν
= 0, x ∈ ∂Ω.

Further, by the Harnack inequality when d1 > d, there is C∗ = C∗(d, n,Ω, ‖h‖∞) such
that

max
Ω

u(x) 6 C∗min
Ω

u(x), i.e. u(x2) 6 C∗u(x1). (6)

Nonlinear Anal. Model. Control, 26(2):293–314

https://doi.org/10.15388/namc.2021.26.22356


300 Y. Jia

Substitute (6) into (5) to get

min
Ω

u(x) = u(x1) >
a

1 + PC∗
. (7)

Combining (4) with (7), we have

min
Ω

v(x) = v(y1) >
b(r + a

1+PC∗
)

a+ r + β
.

Take

C = min

{
a

1 + PC∗
,
b(r + a

1+PC∗
)

a+ r + β

}
.

The result follows.

In a same way, if we take d2 as the parameter, then we can get a very similar estimate
on the lower bound.

4 Coexistence

4.1 Nonexistence

This subsection devotes to the nonexistence of nonconstant positive solutions to system
(2) by energy integral procedure. The following two nonexistent results are based on the
priori estimates obtained in the previous section.

Theorem 5. If (
√

(am− a− c− α)2 − 4am(a+ c) + am − a − c − α)/2m < C or
b(a + r)/(a + r + β) < C holds, then (2) has no nonconstant positive solution, where
C is given in Theorem 4.

Proof. We only prove the result holds under the first condition since the second case can
be proved similarly. Suppose that (u, v) is a nonconstant positive solution to system (2).
Integrating the first equation of (2) in Ω, we get

0 =

∫
Ω

u

(
a− u− αv

c+ u+mv

)
dx 6

∫
Ω

(
a− C − αC

c+ a+mC

)
udx.

Using the positivity of u, we obtain further mC2 − (am− a− c− α)C − a(a+ c) 6 0,
which induces C 6 (

√
(am− a− c− α)2 − 4am(a+ c) + am − a − c − α)/2m,

a contradiction occurs.

Theorem 6. Let d2 > bµ−1
1 with µ1 being the second eigenvalue of−∆ with homogenous

Neumann boundary condition. Then there exists a positive constant D̃ = D̃(µ1, α) or
D̃ = D̃(µ1,∧) such that (2) does not permit any nonconstant positive solution if d1 > D̃.

Proof. Let (u, v) be a nonconstant positive solution. Denote u = (1/|Ω|)
∫
Ω
u(x) dx,

v = (1/|Ω|)
∫
Ω
v(x) dx. Multiply the first equality in (2) by u − u and then integrate
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in Ω to get

d1

∫
Ω

∣∣∇(u− u)
∣∣2 dx

=

∫
Ω

(
u

(
a− u− αv

c+ u+mv

)
− u
(
a− u− αv

c+ u+mv

))
(u− u) dx

=

∫
Ω

(
(a− u− u)(u− u)2 − αu(c+ u)(u− u)(v − v)

(c+ u+mv)(c+ u+mv)

)
dx

−
∫
Ω

αv(c+mv)(u− u)2

(c+ u+mv)(c+ u+mv)
dx

6
∫
Ω

(
a(u− u)2 + α|u− u||v − v|

)
dx.

Similarly, we can get

d2

∫
Ω

∣∣∇(v − v)
∣∣2 dx =

∫
Ω

(
v

(
b− v − βv

r + u

)
− v
(
b− v − βv

r + u

))
(v − v) dx

6
∫
Ω

(
b(v − v)2 +

βv2

(r + u)(r + u)
|u− u||v − v|

)
dx.

Add these two inequalities and use the Cauchy inequality to yield∫
Ω

(
d1

∣∣∇(u− u)
∣∣2 + d2

∣∣∇(v − v)
∣∣2) dx

6
∫
Ω

(
a(u− u)2 + 2L|u− u||v − v|+ b(v − v)2

)
dx

6
∫
Ω

(
(a+ ε−1L)(u− u)2 + (b+ εL)(v − v)2

)
dx,

where ε > 0 is arbitrary and L = max{α, βv2/((r + C)(r + u))}. Using the Poincaré
equality, we have

µ1

∫
Ω

(
d1|u− u|2 + d2|v − v|2

)
dx

6
∫
Ω

(
d1|∇(u− u)|2 + d2|∇(v − v)|2

)
dx

6
∫
Ω

(
(a+ ε−1L)(u− u)2 + (b+ εL)(v − v)2

)
dx.
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Since d2 > bµ−1
1 , take ε small enough such that µ1d2 > b+ εL. Then there holds

d1

∫
Ω

|u− u|2 dx 6 µ−1
1

(
a+ ε−1L

) ∫
Ω

|u− u|2 dx.

Denote D̃ = µ−1
1 (a+ε−1L). Then this inequality holds if and only if u ≡ u is a constant

in view of d1 > D̃. This is a contradiction, and the proof is complete.

4.2 Existence

This subsection deals with the existence of nonconstant positive solutions to system (2)
by choosing d2 as the parameter and by using the Leray–Schauder degree theory.

Firstly, we give some preliminaries. Denote

X =

{
(u, v)T ∈

(
C2(Ω) ∩ C1(Ω)

)
×
(
C2(Ω) ∩ C1(Ω)

)
:
∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω

}
.

Denote by 0 = µ0 < µ1 < µ2 < · · · the eigenvalues of−∆ under homogenous Neumann
boundary condition in Ω and E(µi) the eigenspace corresponding to each µi in C2(Ω)∩
C1(Ω). Let {ϕil, l = 1, 2, . . . ,m(µi)} be an orthogonal basis in E(µi) and Xil =
{Cϕil: C ∈ R2} with m(µi) being the multiplicity of µi, i = 0, 1, 2, . . . . Then Xi =⊕m(µi)

l=1 Xil and X =
⊕∞

i=0Xi.
Rewrite system (2) as

−∆U = D−1F (U), x ∈ Ω;
∂U

∂ν
= 0, x ∈ ∂Ω, (8)

with
U = (u, v)T ∈ X, D = diag(d1, d2),

F (U) =

(
u

(
a− u− αv

c+ u+mv

)
, v

(
b− v − βv

u+ r

))T

.

So, U is a solution of (2) if and only if U is a solution of (8), this is equivalent to

G(d1, d2;U) := U − (I −∆)−1
[
D−1F (U) + U

]
= 0, x ∈ Ω,

∂U

∂ν
= 0, x ∈ ∂Ω,

namely, U is a zero point of G(d1, d2; ·), where (I −∆)−1 is the inverse of I −∆.
In the following, we need to use the positive constant solution of (2). By a direct

analysis on the derivative of a cubic function it can be easily shown that (2) admits
a unique positive constant solution denoted by (u∗, v∗) =: U∗ if one of the following
two cases holds.

(H1) brα/(cr + cβ + bmr) < a < c+ r + β + bm;
(H2) a > max{c + r + β + bm, brα/(cr + cβ + bmr), (cr + cβ + bmr + bα)/

(c+ r + β + bm)}.
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Clearly, U∗ is a zero point of G(d1, d2; ·), and the Fréchet derivative of G(d1, d2; ·)
on U at U∗ is

DUG(d1, d2;U∗) = I − (I −∆)−1
(
D−1B + I

)
,

where B =
(
a11 a12
a21 a22

)
with

a11 =
u∗(2u∗ +mv∗ − a+ c)

c+ u∗ +mv∗
, a12 = − αu∗(c+ u∗)

(c+ u∗ +mv∗)2
,

a21 =
(b− v∗)2

β
, a22 = −b.

It easy to check that λ is an eigenvalue of DUG(d1, d2;U∗) on Xi if and only if
λ(1 + µi) is an eigenvalue of the matrix

µiI −D−1B =

(
µi − a11d

−1
1 −a12d

−1
1

−a21d
−1
2 µi − bd−1

2

)
=: Mi.

Thus, DUG(d1, d2;U∗) is invertible if and only if Mi is nonsingular. By decomposition
Xi =

⊕m(µi)
l=1 Xil it is seen that λ is an eigenvalue of DUG(d1, d2;U∗) on each Xil,

also, the multiplicity of λ is equivalent to the multiplicity of the eigenvalues λ(1 + µi) of
Mi. Therefore, if λ is an q-multiplicity eigenvalue of DUG(d1, d2;U∗) on each Xi and
λ(1 + µi) is an n-multiplicity eigenvalue of Mi, then q = nm(µi).

Direct computation yields

detMi =
d1d2µ

2
i − (bd1 + a11d2)µi + a11b− a12a21

d1d2
,

trMi = 2µi − a11d
−1
1 − bd

−1
2 .

Denote

H(d1, d2; θ) = d1d2θ
2 − (bd1 + a11d2)θ + a11b− a12a21. (9)

In the following, if it involvesH(d1d2; θ) but does not emphasize the effects of d1 and d2

onH, we use h(θ) to denoteH(d1, d2; θ) for simplicity. Then h(µi) = d1d2 detMi. If

(bd1 + a11d2)2 > 4d1d2(a11b− a12a21), (10)

then h(θ) = 0 has two real roots denoted by θ1 = θ1(d1, d2), θ2 = θ2(d1, d2), respec-
tively, and

θ1 =
bd1 + a11d2 +

√
(bd1 + a11d2)2 − 4d1d2(a11b− a12a21)

2d1d2
,

θ2 =
bd1 + a11d2 −

√
(bd1 + a11d2)2 − 4d1d2(a11b− a12a21)

2d1d2
.

(11)

Denote by S the set of all eigenvalues of −∆ under homogenous Neumann boundary
condition in Ω. Let T = T (d1, d2) = {θ: θ > 0, θ2(d1, d2) < θ < θ1(d1, d2)} with
θ1, θ2 being given by (11). Then we have the following lemma.
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Lemma 3. If h(µi) 6= 0 for µi ∈ S , then the index equality index(G(d1, d2; ·), U∗) =
(−1)σ holds, where

σ =

{∑
µi∈T ∩S m(µi), T ∩ S 6= ∅,

0, T ∩ S = ∅.

Proof. Since h(µi) 6= 0, we know detMi 6= 0. So the matrix Mi is nonsingular, and
DUG(d1, d2;U∗) is invertible. Then index(G(d1, d2; ·), U∗) = (−1)γ holds with γ =∑
i>0

∑
Reλi<0m(λi) and λi being an eigenvalue of DUG(d1, d2;U∗) on Xi.

Now, we need to show γ = σ. Denote by τi the eigenvalue of Mi. Then τi = λi(1 +
µi), m(λi) = m(τi)m(µi). The sum of algebraic multiplicity of the eigenvalues with
negative real parts of Mi modulo 2 can be expressed as

1

2

(
1− sgn(detMi)

)
=

1

2

(
1− sgn

(
h(µi)

))
=: ρi, (12)

where

sgn(detMi) =

{
1, detMi > 0,

−1, detMi < 0.

For each µi ∈ S, if µi ∈ T , then detMi < 0. By (12) we have ρi = 1. If µi /∈ T , then
detMi > 0. By (12), again, we get ρi = 0. Therefore,∑

i>0

ρim(µi) =

{∑
µi∈T ∩S m(µi), T ∩ S 6= ∅,

0, T ∩ S = ∅.

Further, γ =
∑
i>0

∑
Re τi<0m(τi)m(µi) =

∑
i>0 ρim(µi) = σ.

Theorem 7. Suppose a11 > 0. If there is n > 1 such that a11d
−1
1 ∈ (µn, µn+1) and

σn =
∑n
i=1m(µi) is odd, then there exists d∗ > 0 such that (2) has at least a nonconstant

positive solution when d2 > d∗.

Proof. Since a11 > 0, it is easy to see that (10) holds if d2 large enough, moreover,
θ1 > θ2 > 0 and limd2→+∞ θ1 = a11d

−1
1 , limd2→+∞ θ2 = 0. Furthermore, since

a11d
−1
1 ∈ (µn, µn+1), there is large d0 such that

θ1 ∈ (µn, µn+1), 0 < θ2 < µ1 (13)

holds if d2 > d0. By Theorem 5 there exists d > d0 such that (2) has no nonconstant
positive solution for d1 = d, d2 > d. Take d large enough such that 0 < a11d

−1
1 < µ1.

Then there is d∗ > d such that the following holds for d2 > d∗:

0 < θ2(d, d2) < θ1(d, d2) < µ1. (14)

Now, we show that (2) has at least a nonconstant positive solution when d2 > d∗.
We prove this by contradiction. Suppose that there exists d∗2 > d∗ such that (2) has no
nonconstant positive solution. Fix d2 = d∗2 and define the homotopy operatorW(t) as

W(t) =

(
td1 + (1− t)d 0

0 td2 + (1− t)d∗
)
, t ∈ [0, 1].
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Denote U = (u(x), v(x)). Consider the problem

−∆U =W−1(t)F (U), x ∈ Ω;
∂U

∂ν
= 0, x ∈ ∂Ω. (15)

Obviously, U is a solution of (2) if and only if U is a solution of (15) for t = 1. Especially,
for any t ∈ [0, 1], U∗ is the unique positive constant solution of (15).

For t ∈ [0, 1], U is a positive solution of (15) if and only if the equality

K(U ; t) := U − (I −∆)−1
[
W−1(t)F (U) + U

]
= 0 (16)

holds. By the discussion above we know that (16) has no nonconstant positive solution
for t = 0. By our assumption (16) has no nonconstant positive solution for d2 = d∗ and
t = 1, furthermore, the followings equalities hold:

K(U ; 1) = G(d1, d2;U), K(U ; 0) = G(d, d∗;U),

DUG(d1, d2;U∗) = I − (I −∆)−1(W−1B + I),

DUG(d, d∗;U∗) = I − (I −∆)−1(W̃−1B + I),

where W̃ = diag(d, d∗). Then (13) and (14) induce that

T (d1, d2) ∩ S = {µ1, µ2, . . . , µn}, T (d, d∗) ∩ S = ∅.

Since σn is odd, Lemma 3 implies that

index
(
K(·; 1), U∗

)
= index

(
G(d1, d2; ·), U∗

)
= (−1)σn = −1,

index
(
K(·; 0), U∗

)
= index

(
G(d, d∗; ·), U∗

)
= (−1)0 = 1.

Thanks to Theorems 3 and 4, we know that there exist positive constants P1, P2 with
P1 < C and P2 > max{a, b(a + r)/(a + r + β)} such that any positive solution
(u(x), v(x)) of (15) satisfies P1 < u(x), v(x) < P2, x ∈ Ω for t ∈ [0, 1]. Define
Θ = {U ∈ X: P1 < u(x), v(x) < P2, U = (u(x), v(x))T}. Then, clearly, K(U ; t) 6= 0
for t ∈ [0, 1] if U ∈ ∂Θ. By the homotopy invariance of degree we get

deg
(
K(·; 0), Θ, 0

)
= deg

(
K(·; 1), Θ, 0

)
. (17)

However, the equations K(U ; 0) = 0 and K(U ; 1) = 0 both have a unique positive
solution U∗ in Θ, therefore,

deg
(
K(·; 0), Θ, 0

)
= index

(
K(·; 0), U∗

)
= 1,

deg
(
K(·; 1), Θ, 0

)
= index

(
K(·; 1), U∗

)
= −1.

These contradict to (17), and the proof is completed.
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5 Bifurcation

In this section, taking d2 as a parameter, we investigate the existence of bifurcation
solutions emitting from U∗ by using the topological degree techniques.

For some d̃2 ∈ (0,+∞), if (d̃2;U∗) satisfies: for any δ ∈ (0, d̃2), there is d2 ∈ [d̃2−δ,
d̃2 + δ] such that system (2) admits a nonconstant positive solution, then (d̃2;U∗) ∈
(0,+∞) ×X is called a bifurcation point of (2). Otherwise, (d̃2;U∗) is called a regular
point of (2).

Define N (d2) = {θ > 0: h(θ) = 0}, where h(θ) is H(d1, d2; θ) defined by (9).
Obviously, N (d2) has at most two elements for any given d1, d2 > 0.

For some given d̃2 > 0, the following holds.

Theorem 8.

(i) If S ∩ N (d̃2) = ∅, then (d̃2;U∗) is a regular point of (2).
(ii) Suppose S ∩ N (d̃2) 6= ∅ and (bd1 + a11d̃2)2 6= 4d1d̃2(a11b − a12a21). If∑

µi∈N (d̃2)m(µi) is odd, then (d̃2;U∗) is a bifurcation point of (2).

Proof. Let W (x) = U(x)− U∗. Then (8) is equivalent to

−∆W = D−1F (W + U∗), x ∈ Ω;
∂W

∂ν
= 0, x ∈ ∂Ω,

and then it is equivalent to W satisfying

R(d2;W ) := W − (I −∆)−1
[
D−1F (W + U∗) +W

]
= 0, x ∈ Ω,

∂W

∂ν
= 0, x ∈ ∂Ω.

The Fréchet derivative ofR(d2; ·) on W at W = 0 is

DWR(d2; 0) = I − (I −∆)−1
(
D−1B + I

)
= DUG(d1, d2;U∗),

where B is given in Section 4.2. As what we do in Section 4, λ is an eigenvalue of
DWR(d2; 0) on Xi if and only if λ(1 + µi) is an eigenvalue of Mi.

(i) If S ∩ N (d̃2) = ∅, that is, µi ∈ S , H(d1, d̃2;µi) 6= 0, then detMi 6= 0, and Mi

is nonsingular, so DWR(d2; 0) is regular. By the implicit function theorem we know that
there exists ε, 0 < ε � 1, such that W = 0 is the unique solution of R(d2; ·) = 0 in
Ξ = {U ∈ X: ‖U‖X < ε} for any d2 (d2 is in a neighborhood d̃2), this means that
(d̃2;U∗) is a regular point of (2).

(ii) By assumptions we take µi ∈ S ∩ N (d̃2), then H(d1, d̃2;µi) = 0 and µi 6=
(a11d

−1
1 + bd−1

2 )/2. Further,

detMi =
H(d1, d̃2;µi)

(d1d2)
= 0, trMi = 2µi − a11d

−1
1 − bd

−1
2 6= 0.

Thus, the two eigenvalues of Mi are 0 and trMi, respectively, and 0 is simple.
If the result is false, then there is d̃2 > 0 satisfying the following.
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(a) S ∩ N (d̃2) 6= ∅, (bd1 + a11d̃2)2 6= 4d1d̃2(a11b− a12a21) and
∑
µi∈N (d̃2)m(µi)

is odd;
(b) There exists δ ∈ (0, d̃2) such that W = 0 is the unique solution ofR(d2; ·) = 0 in

Ξ for d2 ∈ [d̃2 − δ, d̃2 + δ].

Now, it needs to deduce a contradiction. Since R(d2; ·) is a compact perturbation
of I , then (b) implies that the Leray–Schauder degree deg(R(d2; ·), Ξ, 0) is well defined,
furthermore, deg(R(d2; ·), Ξ, 0) is independent of d2 ∈ [d̃2− δ, d̃2 + δ]. If DWR(d2; 0)
is invertible for d2 ∈ [d̃2 − δ, d̃2 + δ], then

deg
(
R(d2; ·), Ξ, 0

)
= (−1)γ(d2), (18)

where γ(d2) is the sum of algebraic multiplicity of the eigenvalues with negative real
parts of DWR(d2; 0). For any µi ∈ S ∩ N (d̃2), we have

H(d1, d̃2;µi) = d1d̃2µ
2
i − (bd1 + a11d̃2)µi + a11b− a12a21 = 0. (19)

The Fréchet derivative of H(d1, d2;µi) on d2 at d̃2 is Hd2(d1, d̃2;µi) = d1µ
2
i − a11µi.

It is easy to see that Hd2(d1, d̃2;µi) 6= 0. (Otherwise, if Hd2(d1, d̃2;µi) = 0, then µi =
a11d

−1
1 . Substituting µi = a11d

−1
1 into (19), we get a12a21 = 0, which contradicts to

a12a21 < 0.) Therefore, for all d2 ∈ [d̃2 − δ, d̃2 + δ], we have

Hd2(d1, d2;µi) 6= 0. (20)

Combine (20) with (19) to get

H(d1, d̃2 − δ; µi)H(d1, d̃2 + δ; µi) < 0. (21)

Clearly, S has no accumulation point. So, S ∩ N (d2) = ∅ for d2 ∈ [d̃2 − δ, d̃2) ∪
(d̃2, d̃2 + δ] and small δ. Then by the proof of (i) we know that DWR(d2; 0) is invertible
when d2 ∈ [d̃2 − δ, d̃2) ∪ (d̃2, d̃2 + δ].

The proof of Lemma 3 tells us that the sum of algebraic multiplicity of eigenvalues
with negative real parts of DWR(d2; 0) is

∑
Reλi<0m(λi) =: γi(d2), then

γi(d2) =
∑

Reλi<0

m(λi) =
∑

Re τi<0

m(τi)m(µi) = ρim(µi), (22)

where ρi is defined by (12).
If µi /∈ N (d̃2), then γi(d2) is independent of d2 ∈ [d̃2 − δ, d̃2 + δ] since

deg(R(d2; ·), Ξ, 0) is independent of d2. If µi ∈ N (d̃2), then (21) and (22) imply that
the sum of algebraic multiplicity of the eigenvalues with negative real parts of
DWR(d̃2 − δ; 0) and DWR(d̃2 + δ; 0) on Xi satisfies

γi(d̃2 − δ)− γi(d̃2 + δ) = m(µi) or γi(d̃2 + δ)− γi(d̃2 − δ) = m(µi).

Hence,

γ(d̃2 − δ)− γ(d̃2 + δ) =
∑

µi∈N (d̃2)

m(µi) or γ(d̃2 + δ)− γ(d̃2 − δ) =
∑

µi∈N (d̃2)

m(µi).
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Since
∑
µi∈N (d̃2)m(µi) is odd, by (18) we get

deg
(
R(d̃2 − δ; ·), Ξ, 0

)
6= deg

(
R(d̃2 + δ; ·), Ξ, 0

)
. (23)

However, deg(R(d2; ·), Ξ, 0) is independent of d2 ∈ [d̃2−δ, d̃2 +δ], so (23) cannot hold.
Therefore, (d̃2;U∗) is a bifurcation point of (2). The proof is accomplished.

6 Numerical examples, discussions and conclusions

In the previous sections, we investigate the coexistence of prey and predator and find out
their coexistent conditions. Nevertheless, from the realistic point of view, we do hope the
prey and predator can coexist since our aim is to maintain the balance of ecosystems. The
conditions in Theorems 7 and 8 ensure that the prey and predator can coexist and, in this
case, the ecological balance may be sustainable. To clarify this point, in this section, we
give some numerical examples to support our theoretical analysis. We fix a, b, c, m, r
and take α, β as parameters. For the sake of simple calculation, the parameters a, b, c,
m and r are referred to [18] in part and taken as follows: a = 1.2, b = 0.08, c = 2.4,
m = 50, r = 12. The parameters α, β are chosen, and the values (u∗, v∗), ac, bα, brα/
(cr + cβ + bmr) =: s1, c+ r + β + bm =: s2, a11 are calculated and listed in Table 1.

Summarizing these numerical simulations, the following results follow: In Exam-
ples 1–2, we see that ac > bα holds, then Theorem 2 shows that system (1) has persistent
property and any positive solution (u(x, t), v(x, t)) of (1) satisfies

lim inf
t→∞

min
Ω

u(x, t) > 0.5333, lim inf
t→∞

min
Ω

v(x, t) > 0.06,

lim inf
t→∞

min
Ω

u(x, t) > 0.2, lim inf
t→∞

min
Ω

v(x, t) > 0.06,

respectively. However, ac < bα holds in Examples 3–5, so, we do not know whether
system (1) has persistence or not in these three cases. Nevertheless, we also see that the
existent condition (H1) of (u∗, v∗) in Examples 1–5 holds and (u∗, v∗) is worked out
in each example, and then (2) may have a nonconstant positive solution according to
Theorem 7.

Based on the parameter values taken above, we depict some trajectory graphs or
spatiotemporal pattern formation to simulate our theoretical results.

The followings Figs. 1–5 and Figs. 6–10 are, respectively, the trajectory graphs and
the spatiotemporal patterns corresponding to Examples 1–5 with d1 = 0.1, d2 = 1 and
different initial values.

Table 1. Simulating parameter values.

α β (u∗, v∗) ac bα s1 s2 a11

Example 1 20 4 (2.85, 0.0605) 2.88 1.6 0.2222 22.4 3.8724
Example 2 30 4 (3.26, 0.063) 2.88 2.4 0.3333 22.4 4.3923
Example 3 50 8 (4.24, 0.067) 2.88 4.0 0.5 26.4 5.53
Example 4 80 12 (5.46, 0.072) 2.88 6.4 0.7273 30.4 7.4896
Example 5 100 18 (6.22, 0.08) 2.88 8.0 0.8 36.4 8.6942
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Figure 1. The trajectory graphs of u and v of system (1) with α = 20, β = 4 and initial data
u0 = 0.8 + 0.02456 cos(5x), v0 = 0.45 + 0.05132 sin(3x).
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Figure 2. The trajectory graphs of u and v of system (1) with α = 30, β = 4 and initial data
u0 = 0.85 + 0.02456 cos(5x), v0 = 0.26 + 0.5132 sin(3x).
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Figure 3. The trajectory graphs of u and v of system (1) with α = 50, β = 8 and initial data
u0 = 0.75 + 0.02456 cos(5x), v0 = 0.4 + 0.05132 sin(3x).
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Figure 4. The trajectory graphs of u and v of system (1) with α = 80, β = 12 and initial data
u0 = 0.45 + 0.02456 cos(5x), v0 = 0.45 + 0.05132 sin(3x).
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Figure 5. The trajectory graphs of u and v of system (1) with α = 100, β = 18 and initial data
u0 = 0.42 + 0.02456 cos(5x), v0 = 0.4 + 0.05132 sin(3x).

All the trajectory graphs show that the quantity of prey and predator decrease and
increase gradually as the predation rate of predator, the conversion rate of predator due to
capturing prey increasing and time going on, and tend to stabilize eventually. Specifically,
the quantity of prey and predator are as followings in turn: 0.08, 0.07, 0.06, 0.05, 0.04 and
0.22, 0.41, 0.65, 0.84, 0.98, respectively, from Figs. 1–5. We also see that the declining
and ascending scales between the prey and predator are inconformity, in contrast, the
increase of the predator is much stronger than the decrease of the prey. Though the
quantity of the prey is decreasing, it is clear that such changes are very small, that
is, the quantity of the prey remains roughly stable regardless some fluctuations of the
predation rate and the conversion rate of predator. This situation probably implies that the
available food resource for predator is not single, that is, what we want to see in population
dynamics since which sustains the persistence of the species when the food resource for
predator is scarce. This helps to maintain the ecological balance. Figures 6–10 show that
the spatiotemporal patterns always occur for our given parameter values, which imply that
the system exhibits rich dynamical behavior.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Analysis and simulation on dynamics of a partial differential system 311

Figure 6. The spatiotemporal pattern formations of u and v of system (1) with α = 20, β = 4 and
initial data u0 = 0.8 + 0.02456 cos(5x), v0 = 0.45 + 0.05132 sin(3x).

Figure 7. The spatiotemporal pattern formations of u and v of system (1) with α = 30, β = 4 and
initial data u0 = 0.8 + 0.02456 cos(5x), v0 = 0.26 + 0.05132 sin(3x).

Figure 8. The spatiotemporal pattern formations of u and v of system (1) with α = 50, β = 8 and
initial data u0 = 0.75+0.02456 cosx+0.05132 sin y, v0 = 0.4+0.02456 cosx+0.05132 sin y.

In fact, we made a lot of numerical examples and trajectory graphs, we found that
the differences among these simulation and graphic results are very small. Here, we only

Nonlinear Anal. Model. Control, 26(2):293–314
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Figure 9. The spatiotemporal pattern formations of u and v of system (1) with α = 80, β = 12 and
initial data u0 = 0.45 + 0.04675 cos(3x) + 0.05869 sin(3y), v0 = 0.45 + 0.03675 cos(3x) +
0.055521 sin(3y).

Figure 10. The spatiotemporal pattern formations of u and v of system (1) with α = 100, β = 18
and initial data u0 = 0.42 + 0.06475 cos(3x) + 0.05268 sin(8y), v0 = 0.4 + 0.03675 cos(8x) +
0.05521 sin(3y).

present the above five numerical examples and their corresponding trajectory graphs, the
spatiotemporal pattern formation to state our findings.

The numerical examples tell us that the ecosystem reflected by model (1) or (2) is
easy to maintain stability when the predation rate and the conversion rate of predator
do not change dramatically. This might imply that neither the prey nor the predator will
disappear within a certain period of time, which could also mean that other species is
difficult to invade such system, this is exactly what we hope to happen biologically.
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