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Abstract. In this article, we introduce fixed point theorems for multivalued mappings satisfying
implicit-type contractive conditions based on a special form of simulation functions. We also
provide an application of our result in integral inclusions. Our outcomes generalize/extend many
existing fixed point results.
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1 Introduction

The contraction mapping principle proposed by Banach is an important and significant
inception in functional analysis due to its applicability in other areas of mathematics
and applied sciences. With the passage of time, this result has become a solid base for
metric fixed point theory. Thus, several researchers generalized it by stating fixed point,
common fixed point, coincidence point, couple fixed point theorems regarding mappings
satisfying certain type of contractive conditions on metric spaces or on various abstract
spaces. In [31], nonlinear contractions in ordered metric spaces are studied in their cyclic
form. In [13], metric spaces endowed with partial order proved to be a suitable setting
to develop fixed point theorems for adequate mappings and also an application regarding
the existence and uniqueness of a solution to a periodic boundary value problem. Gen-
eralized weak Berinde contractions on partial metric spaces are studied in [30]. In [15],
a quasicontractivity-type condition, which entails the conclusions from Banach principle,
is presented. In [34], a Banach-type condition is studied in connection with the complete-
ness of the underlying metric space. [16] and [32] refer to some Prešić-type generalization
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of the Banach principle. Fixed point properties in the context of α−ψ-contractions are
developed in [25]. In [8], closed multivalued mappings are in view with respect to α−φ-
contractive conditions. In [9], weakly compatible mappings, which satisfy an implicit
relation, are studied. In [12] and [14], it is stated a generalization of some weak con-
traction principle. In [10], b-metric-like spaces feature common fixed point properties.
In [29], cone b-metric spaces are an adequate setting to develop generalized Hardy–
Rogers-type contractions. [20] focuses on Mizoguchi–Takahashi-type fixed point theo-
rems. In [23], approximate fixed point theorems are stated in the context of α-contractive
mappings. The α-admissibility was used to prove interesting fixed point results in [2, 26,
28] or [27]. In [35], implicit contraction mappings are studied. Later on, the combination
of metric fixed point theory and optimization theory enabled discussions on best proximity
points of nonself mappings satisfying certain types of proximal contractive conditions
on metric spaces or on abstract spaces. Browder theorems are extended in [17]. In [1],
multivalued operators are studied from the point of view of their best proximity points. [3]
has in view Kakutani multimappings, while [4] equilibrium pairs for finite families of
multivalued mappings are presented. Work [7] is dedicated to the study of proximal
contractions by means of suitable simulation functions. Controlled contractions are used
in [5] in order to obtain best proximity properties. [6] is devoted to best proximity re-
sults for Prešić-type operators. Generalized proximal contractive mappings are developed
in [11], while [18] refers to global optimal solutions. The existence of best proximity
points for generalized classes of contractions is performed in [21]. Applications of best
proximity points associated with α−ψ-proximal contractions are presented in [19]. Hy-
perconvex spaces proved to be an adequate framework to develop best proximity theorems
for mappings endowed with suitable continuity properties in [22].

2 Preliminaries

In this article, we will use the following type of implicit functions presented in [7]. Here
κψ represents the set of functions κ : (R+)4 → R+ = [0,∞) endowed with the following
properties:

(K1) κ is continuous and nondecreasing in each coordinate;
(K2) If l > j and l 6 κ(l, j, l, l), then l = 0;
(K3) If l < j and l 6 κ(j, j, l, j), then l 6 ψ(j), where ψ : [0,∞) → [0,∞) is

a nondecreasing mapping with
∑∞
n=1 ψ

n(t) <∞ for all t > 0.

Definition 1. (See [7].) A mapping χ : R+×R+ → R is known as an implicit simulation
function with respect to κψ if the following conditions hold:

(C1) χ(al, κ(m,n, o, p)) 6 κ(m,n, o, p)− al for any a,m, n, o, p > 0;
(C2) χ(j, κ(0, 0, j, j/2)) > a if and only if κ(0, 0, j, j/2) − j > a for any real

number a;
(C3) χ(j, κ(0, 0, j, j/2)) > 0 implies j = 0.

The next example illustrates such a kind of mappings.
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Example 1. (See [7].) Define the mappings χ : R+ × R+ → R and κ : (R+)4 → R+ =
[0,∞),

χ(l, j) = j − l and κ(m,n, o, p) = ζmax{m,n, o, p},
where ζ ∈ [0, 1). One can check that the above defined χ is an implicit simulation function
with respect to the above defined function κ.

The following result was presented in [7] (along the paper, N = {1, 2, . . . }).

Theorem 1. (See [7].) Let T be a mapping from a complete metric space (X, dm) into
itself, which satisfies

χ

(
α(j, l)dm(Tj, T l), κ

(
dm(j, l), dm(j, T j), dm(l, T l),

dm(l, T j)+dm(j, T l)

2

))
>0

for all j, l ∈ X , where χ is an implicit simulation function with respect to κψ . Further,
assume that the following conditions hold:

(i) T is α-admissible, that is, for j, l ∈ X , α(j, l) > 1 implies α(Tj, T l) > 1;
(ii) There exists j1 ∈ X satisfying α(j1, T j1) > 1;

(iii) For all sequences {jn} in X with α(jn, jn+1) > 1, n ∈ N and jn → j, we have
α(jn, j) > 1 for each n ∈ N.

Then T has a fixed point.

Consider (X, dm) a metric space and CL(X) the collection of all nonempty closed
subsets of X . For J ∈ CL(X) and l ∈ X , dm(l, J) = inf{dm(l, j), j ∈ J}. For each
J, L ∈ CL(X), let

Hm(J, L) =

{
max{supj∈J dm(j, L), supl∈L dm(l, J)} if the maximum exists;
∞ otherwise.

The function Hm is known as the generalized Hausdorff metric induced by dm.

3 Main results

Here Γ represents the set of all functions η : (R+)5 → R+ = [0,∞) having the following
properties:

(E1) η(m,n, o, p, q) = 0 if and only if at least one of m, n, o, p, q is zero;
(E2) η is continuous.

We now present the first result of this section.

Theorem 2. LetX be a nonempty set and dm a distance on it. Assume that T is a mapping
from X into CL(X) that satisfies

χ

(
α(j, l)Hm(Tj, T l), κ

(
dm(j, l), dm(j, T j), dm(l, T l),

dm(l, T j) + dm(j, T l)

2

))
+ Lη

(
dm(j, l), dm(j, T j), dm(l, T l), dm(j, T l), dm(l, T j)

)
> 0 (1)
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for all j, l ∈ X with j 6= l, where χ is an implicit simulation function with respect to κψ ,
η ∈ Γ and L > 0. Further, assume that the following conditions hold:

(i) T is α-admissible, that is, for j, l ∈ X , α(j, l) > 1 implies α(a, b) > 1 for all
a ∈ Tj, b ∈ T l;

(ii) There exist j1 ∈ X and j2 ∈ Tj1 satisfying α(j1, j2) > 1;
(iii) For all sequences {jn} in X with α(jn, jn+1) > 1, n ∈ N and jn → j, we have

α(jn, j) > 1 for each n ∈ N.

Then T has a fixed point.

Proof. Hypothesis (ii) ensures the existence of two elements j1, j2∈X with α(j1, j2)>1
and j2 ∈ Tj1. Without loss of generality, we may presume that j1 6= j2. Inequality (1)
and condition (C1) imply that

κ

(
dm(j1, j2), dm(j1, T j1), dm(j2, T j2),

dm(j2, T j1) + dm(j1, T j2)

2

)
− α(j1, j2)Hm(Tj1, T j2)

+ Lη
(
dm(j1, j2), dm(j1, T j1), dm(j2, T j2), dm(j1, T j2), dm(j2, T j1)

)
> 0. (2)

As dm(j2, T j1) = 0, we get by the use of (E1) that

η
(
dm(j1, j2), dm(j1, T j1), dm(j2, T j2), dm(j1, T j2), dm(j2, T j1)

)
= 0.

Thus, inequality (2) implies

Hm(Tj1, T j2)

6 α(j1, j2)Hm(Tj1, T j2)

< κ

(
dm(j1, j2), dm(j1, T j1), dm(j2, T j2),

dm(j2, T j1) + dm(j1, T j2)

2

)
.

There is ε1 > 0 such that

Hm(Tj1, T j2) + ε1

6 κ

(
dm(j1, j2), dm(j1, T j1), dm(j2, T j2),

dm(j2, T j1) + dm(j1, T j2)

2

)
. (3)

Since ε1 > 0, then we have an element j3 ∈ Tj2 satisfying

dm(j2, j3) 6 Hm(Tj1, T j2) + ε1. (4)

If j2 = j3, there is nothing left to be proved. Therefore, we may consider j2 6= j3. By
using relations (3), (4) and the nondecreasing behavior of κ we get

dm(j2, j3) 6 κ

(
dm(j1, j2), dm(j1, j2), dm(j2, j3),

dm(j1, j2) + dm(j2, j3)

2

)
. (5)

We now claim that dm(j2, j3) < dm(j1, j2). Suppose this inequality does not hold; then
we have dm(j2, j3) > dm(j1, j2). By using this in inequality (5) it follows

dm(j2, j3) 6 κ
(
dm(j2, j3), dm(j1, j2), dm(j2, j3), dm(j2, j3)

)
.
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From this inequality and condition (K2) we get dm(j2, j3) = 0, which is not possible
due to our assumption. Thus, dm(j2, j3) < dm(j1, j2). Hence, inequality (5) yields

dm(j2, j3) 6 κ
(
dm(j1, j2), dm(j1, j2), dm(j2, j3), dm(j1, j2)

)
.

This relation, together with condition (K3), compels

dm(j2, j3) 6 ψ
(
dm(j1, j2)

)
. (6)

Note that hypothesis (i) compels that α(j2, j3) > 1.
Continuing the proof after the above pattern, we get a sequence {jn} satisfying

jn+1 ∈ Tjn, α(jn, jn+1) > 1 and dm(jn+1, jn+2) < ψ(dm(jn, jn+1)) < dm(jn, jn+1)
for n ∈ N. Having in mind the monotone behavior of ψ and inequality (6), we are led to

dm(jn+1, jn+2) 6 ψn
(
dm(j1, j2)

)
for each n ∈ N. (7)

Next, we will prove that {jn} is a Cauchy sequence. Consider the natural numbers q, p,
q > p. By using the triangular inequality and relation (7) we obtain

dm(jq, jp) 6
q−1∑
e=p

dm
(
je, je+1

)
6

q−1∑
e=p

ψe
(
dm(j1, j2)

)
6
∞∑
e=p

ψe
(
dm(j1, j2)

)
→ 0.

This shows that {jn} is a Cauchy sequence in X . By the completeness of X there is an
element j∗ ∈ X so that jn → j∗. Hypothesis (iii) implies α(jn, j∗) > 1 for each n ∈ N.
Without loss of generality, we may assume that jn 6= j∗, n ∈ N. From inequality (1), for
all n ∈ N, it follows that

χ

(
α(jn, j

∗)Hm(Tjn, T j
∗), κ

(
dm(jn, j

∗), dm(jn, T jn), dm(j∗, T j∗),

dm(j∗, T jn) + dm(jn, T j
∗)

2

))
+ Lη

(
dm(jn, j

∗), dm(jn, T jn), dm(j∗, T j∗), dm(jn, T j
∗), dm(j∗, T jn)

)
> 0.

By using hypothesis (C1) and the fact that α(jn, j∗) > 1 in the above inequality we get

dm(jn+1, T j
∗)

6 α(jn, j
∗)Hm(Tjn, T j

∗)

< κ

(
dm(jn, j

∗), dm(jn, T jn), dm(j∗, T j∗),
dm(j∗, T jn) + dm(jn, T j

∗)

2

)
+ Lη

(
dm(jn, j

∗), dm(jn, T jn), dm(j∗, T j∗), dm(jn, T j
∗), dm(j∗, T jn)

)
6 κ

(
dm(jn, j

∗), dm(jn, jn+1), dm(j∗, T j∗),
dm(j∗, jn+1) + dm(jn, T j

∗)

2

)
+ Lη

(
dm(jn, j

∗), dm(jn, T jn), dm(j∗, T j∗), dm(jn, T j
∗), dm(j∗, T jn)

)
.
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Taking the limit n→∞ leads us to

dm(j∗, T j∗) 6 κ

(
0, 0, dm(j∗, T j∗),

dm(j∗, T j∗)

2

)
.

From the above inequality and (C2) we get

χ

(
dm(j∗, T j∗), κ

(
0, 0, dm(j∗, T j∗),

dm(j∗, T j∗)

2

))
> 0.

By using condition (C3) it follows dm(j∗, T j∗) = 0, that is, j∗ ∈ Tj∗.

The next result can be obtained from the above one by considering α(j, l) = 1 for all
j, l ∈ X .

Corollary 1. Let T be a mapping from a complete metric space (X, dm) into CL(X),
which satisfies

χ

(
Hm(Tj, T l), κ

(
dm(j, l), dm(j, T j), dm(l, T l),

dm(l, T j) + dm(j, T l)

2

))
+ Lη

(
dm(j, l), dm(j, T j), dm(l, T l), dm(j, T l), dm(l, T j)

)
> 0 (8)

for all j, l ∈ X with j 6= l, where χ is an implicit simulation function with respect to κψ ,
η ∈ Γ and L > 0. Then T has a fixed point.

Example 2. Let X = C[0, 1] be the collection of all continuous functions from [0, 1] into
R with the metric d(u, l) = maxp∈[0,1] |u(p)− l(p)|. Define an operator T as

Tu =

{ 1∫
0

(1− p)u(p) dp

}
for all u ∈ X.

˚ Then we have

Hm(Tu, T l) = max
p∈[0,1]

∣∣∣∣∣
1∫

0

(1− p)u(p) dp−
1∫

0

(1− p)l(p) dp

∣∣∣∣∣
6 max
p∈[0,1]

∣∣∣∣∣
1∫

0

(1− p) dp

∣∣∣∣∣ max
p∈[0,1]

∣∣u(p)− l(p)∣∣
=

1

2
d(u, l) <

2

3
d(u, l), u 6= l.

Thus, by taking χ(l, j) = j − l, κ(m,n, o, p) = (2/3)m and L = 0 in inequality (8) we
get the above inequality. Thus, by Theorem 2 and Corollary 1 the mapping T has a fixed
point.
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In the following theorem, we will use b-metric spaces, where the triangle inequality
of metric spaces is replaced by one in which the right-hand side of the classical triangle
inequality is multiplied by a constant s, s > 1. Here we denote by κψs

the collection
of functions κ : (R+)4 → R+ = [0,∞), which satisfy (K1), (K2) and (K3) with
a nondecreasing mapping ψ : [0,∞) → [0,∞) such that

∑∞
n=1 s

nψn(t) < ∞ for all
t > 0, where s > 1.

Theorem 3. Let X be a nonempty set and bm a continuous b-metric so that (X, bm) is
complete. Let T be a mapping from X into CL(X) that satisfies

χ

(
α(j, l)Hbm(Tj, T l), κ

(
bm(j, l), bm(j, T j), bm(l, T l),

bm(l, T j) + bm(j, T l)

2s

))
+ Lη

(
bm(j, l), bm(j, T j), bm(l, T l), bm(j, T l), bm(l, T j)

)
> 0 (9)

for all j, l ∈ X , where χ is an implicit simulation function with respect to κψs
, η ∈ Γ and

L > 0. Further, assume that the following conditions hold:

(i) T is αs-admissible, that is, for j, l ∈ X , α(j, l) > s implies α(a, b) > s for each
a ∈ Tj, b ∈ T l;

(ii) There exist j1 ∈ X and j2 ∈ Tj1 satisfying α(j1, j2) > s;
(iii) For each sequence {jn} in X with α(jn, jn+1) > s, n ∈ N and jn → j, we have

α(jn, j) > s for all n ∈ N.

Then T has a fixed point.

Proof. Hypothesis (ii) ensures that there are two elements j1, j2 in X with α(j1, j2) > s
and j2 ∈ Tj1. Without loss of generality, we may assume that j1 6= j2. Inequality (9) and
condition (C1) imply that

κ

(
bm(j1, j2), bm(j1, T j1), bm(j2, T j2),

bm(j2, T j1) + bm(j1, T j2)

2s

)
− α(j1, j2)Hbm(Tj1, T j2)

+ Lη
(
bm(j1, j2), bm(j1, T j1), bm(j2, T j2), bm(j1, T j2), bm(j2, T j1)

)
> 0. (10)

Taking account of property (E1) of the functions from Γ , as bm(j2, T j1) = 0, we get that

η
(
bm(j1, j2), bm(j1, T j1), bm(j2, T j2), bm(j1, T j2), bm(j2, T j1)

)
= 0.

Thus, relation (10) compels

sHbm(Tj1, T j2)

6 α(j1, j2)Hbm(Tj1, T j2)

6 κ

(
bm(j1, j2),bm(j1, T j1), bm(j2, T j2),

bm(j2, T j1) + bm(j1, T j2)

2s

)
. (11)
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As s > 1, there exists an element j3 ∈ Tj2 such that

bm(j2, j3) 6 sHbm(Tj1, T j2). (12)

Again, we may assume j2 6= j3. By taking advantage of relations (11), (12) and the
nondecreasing behavior of κ it follows

bm(j2, j3) 6 κ

(
bm(j1, j2), bm(j1, j2), bm(j2, j3),

bm(j1, j2) + bm(j2, j3)

2

)
. (13)

We now claim bm(j2, j3) < bm(j1, j2). By reductio ad absurdum we presume that
bm(j2, j3) > bm(j1, j2). Having in mind also inequality (13), we obtain

bm(j2, j3) 6 κ
(
bm(j2, j3), bm(j1, j2), bm(j2, j3), bm(j2, j3)

)
.

This inequality, jointly with condition (K2), imposes bm(j2, j3) = 0, which is a con-
tradiction to the assumption that j2 6= j3. Thus, bm(j2, j3) < bm(j1, j2). Relation (13)
yields

bm(j2, j3) 6 κ
(
bm(j1, j2), bm(j1, j2), bm(j2, j3), bm(j1, j2)

)
.

This inequality combined with property (K3) compel

bm(j2, j3) 6 ψ(bm(j1, j2)).

Note that hypothesis (i) ensures that α(j2, j3) > s.
Continuing the above pattern, we get a sequence {jn} endowed with the properties

jn+1 ∈ Tjn and α(jn, jn+1) > s, bm(jn+1, jn+2) < bm(jn, jn+1) and

bm(jn+1, jn+2) 6 ψn
(
bm(j1, j2)

)
for all n ∈ N. (14)

Next, we will prove that {jn} is a Cauchy sequence. Consider the natural numbers q, p,
q > p. By using the triangular inequality, relation (14), and the fact that s > 1 we get

bm(jq, jp) 6
q−1∑
e=p

sebm(je, je+1) 6
q−1∑
e=p

seψe
(
bm(j1, j2)

)
6
∞∑
e=p

seψe
(
bm(j1, j2)

)
→ 0.

This shows that {jn} is a Cauchy sequence in X , whose completeness ensures the exis-
tence of an element j∗ ∈ X so that jn → j∗. Hypothesis (iii) implies α(jn, j∗) > s for
each n ∈ N since α(jn, jn+1) > s for all n ∈ N. Without loss of generality, it can be
presumed that jn 6= j∗ for all n ∈ N. From (9) we get

χ

(
α(jn, j

∗)Hbm(Tjn, T j
∗),

κ

(
bm(jn, j

∗), bm(jn, T jn), bm(j∗, T j∗),
bm(j∗, T jn) + bm(jn, T j

∗)

2s

))
+ Lη

(
bm(jn, j

∗), bm(jn, T jn), bm(j∗, T j∗), bm(jn, T j
∗), bm(j∗, T jn)

)
> 0.
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By the use of condition (C1) and the relation α(jn, j∗) > s in the above inequality, for
n ∈ N, we get

sbm(jn+1, T j
∗)

6 α(jn, j
∗)Hbm(Tjn, T j

∗)

6 κ

(
bm(jn, j

∗), bm(jn, T jn), bm(j∗, T j∗),
bm(j∗, T jn) + bm(jn, T j

∗)

2s

)
+ Lη

(
bm(jn, j

∗), bm(jn, T jn), bm(j∗, T j∗), bm(jn, T j
∗), bm(j∗, T jn)

)
6 κ

(
bm(jn, j

∗), bm(jn, jn+1), bm(j∗, T j∗),

bm(j∗, jn+1) + bm(jn, j
∗) + bm(j∗, T j∗)

2

)
+ Lη

(
bm(jn, j

∗), bm(jn, T jn), bm(j∗, T j∗), bm(jn, T j
∗), bm(j∗, T jn)

)
.

By taking the limit n → ∞, using the continuity of bm, κ and η and the fact that
sbm(jn+1, T j

∗) > bm(j∗, T j∗)− sbm(jn+1, j
∗), it follows that

bm(j∗, T j∗) 6 κ

(
0, 0, bm(j∗, T j∗),

bm(j∗, T j∗)

2

)
.

From the above inequality and condition (C2) we get

χ

(
bm(j∗, T j∗), κ

(
0, 0, bm(j∗, T j∗),

bm(j∗, T j∗)

2

))
> 0.

By using (C3) we obtain bm(j∗, T j∗) = 0. That is, j∗ ∈ Tj∗.

By defining α : X×X → [0,∞), α(j, k) = s for each j, k ∈ X , we get the following
corollary.

Corollary 2. Consider X a nonempty set endowed with a continuous b-metric bm so that
(X, bm) is complete. Let T be a mapping from X into CL(X) that satisfies

χ

(
sHbm(Tj, T l), κ

(
bm(j, l), bm(j, T j), bm(l, T l),

bm(l, T j) + bm(j, T l)

2s

))
+ Lη

(
bm(j, l), bm(j, T j), bm(l, T l), bm(j, T l), bm(l, T j)

)
> 0

for all j, l ∈ X , where χ is an implicit simulation function with respect to κψs
, η ∈ Γ and

L > 0. Then T has a fixed point.

The following result can be obtained directly from Theorem 3 by considering χ(l, j) =
j − l for all l, j ∈ R+, κ(m,n, o, p) = qmax{m,n, o, p} and η(m,n, o, p, q) = mnopq
for all m,n, o, p, q ∈ R+.
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Corollary 3. Consider X a nonempty set endowed with a continuous b-metric bm so that
(X, bm) is complete. Let T be a mapping from X into CL(X) that satisfies

α(j, l)Hbm(Tj, T l)

6 qmax

{
bm(j, l), bm(j, T j), bm(l, T l),

bm(l, T j) + bm(j, T l)

2

}
+ Lbm(j, l)bm(j, T j)bm(l, T l)bm(j, T l)bm(l, T j), j, l ∈ X,

where q ∈ [0, 1) and L > 0. Further, assume that the following conditions hold:

(i) T is αs-admissible, that is, for j, l ∈ X , α(j, l) > s implies α(a, b) > s for all
a ∈ Tj, b ∈ T l;

(ii) There exist j1 ∈ X and j2 ∈ Tj1 satisfying α(j1, j2) > s;
(iii) For all {jn} inX withα(jn, jn+1) > s, n ∈ N and jn → j, we haveα(jn, j) > s

for all n ∈ N.

Then T has a fixed point.

4 Application to integral inclusions

Here we apply our result to prove the existence of a solution to the integral inclusion
having the following form:

j(u) ∈
v(u)∫
c(u)

W
(
u, p, j(p)

)
dp+ l(u), u ∈ [a, b], (15)

where l, c, v : [a, b] → R are continuous functions, c(u) 6 v(u) for all u ∈ [a, b], and
W : [a, b] × [a, b] × R → Pcv(R), Pcv(R) is a collection of nonempty, convex and
compact subsets of R such that W (·, ·, j) is a lower semicontinuous operator for each
j ∈ C([a, b],R), where C([a, b],R) represents the space of all continuous functions from
[a, b] into R.

Consider X = C([a, b],R); this space is a complete b-metric space with dm(j, l) =
supu∈[a,b] |j(u)− l(u)|2 and s = 2.

We now define an operator T : C([a, b],R) → CL(C([a, b],R)) for the integral
inclusion (15) as

Tj(u) =

{
e ∈ C

(
[a, b],R

)
: e ∈

v(u)∫
c(u)

W
(
u, p, j(p)

)
dp+ l(u), u ∈ [a, b]

}
.

We denote by Wj(u, p) := W (u, p, j(p)) for all u, p ∈ [a, b], j ∈ C([a, b],R). The
Michael’s selection theorem [24] ensures that for Wj : [a, b] × [a, b] → Pcv(R), there
exists a continuous operator wj : [a, b] × [a, b] → R with wj(u, p) ∈ Wj(u, p) for each
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u, p ∈ [a, b]. By this fact we get
∫ v(u)
c(u)

wj(u, p) dp+l(u) ∈ Tj(u). Thus, Tj is nonempty.
Moreover, the arguments provided in [33] confirm that Tj is also a closed operator.

We now state and prove an existence theorem for the integral inclusion (15).

Theorem 4. Let X = C([a, b],R), and let the operator T : X → CL(X),

Tj =

{
e ∈ C

(
[a, b],R

)
: e(u) ∈

v(u)∫
c(u)

W
(
u, p, j(p)

)
dp+ l(u), u ∈ [a, b]

}
,

where l, c, v, j : [a, b] → R are continuous functions, c(u) 6 v(u) for all u ∈ [a, b],
and W : [a, b] × [a, b] × R → Pcv(R) is such that W (·, ·, j) is a lower semicontinuous
operator for all j. Further, assume that the following conditions hold:

(i) There exists a mapping α : X ×X → (0,∞) satisfying the following:

(i-a) There exist j1 ∈ X and j2 ∈ Tj1 with α(j1, j2) > 2;
(i-b) For j, k ∈ X with α(j, k) > 2, we have α(a, b) > 2 for each a ∈ Tj,

b ∈ Tk;
(i-c) For all {jn} in X with α(jn, jn+1) > 2, n ∈ N and jn → j, we have

α(jn, j) > 2 for all n ∈ N.

(ii) There exists a continuous mapping q : X ×X → [0,∞) such that

Hbm

(
W
(
u, p, j(p)

)
,W
(
u, p, k(p)

))
6 q
(
j(p), k(p)

)√
ψ
(∣∣j(p)− k(p)∣∣2)

for each u, p ∈ [a, b] and j, k ∈ X , where ψ : [0,∞)→ [0,∞) is a nondecreas-
ing continuous mapping such that

∑∞
n=1 2

nψn(t) < ∞ for all t > 0. Moreover,
the mapping q : X ×X → [0,∞) satisfies

v(u)∫
c(u)

q
(
j(p), k(p)

)
dp 6

√
1

α(j, k)
, u ∈ [a, b].

Then the integral inclusion (15) has a solution.

Proof. Our aim is to prove the existence of a fixed point for the above defined operator T
by using Theorem 3. For this, we focus on relation (9). Let j, k ∈ X and e ∈ Tj. Let
wj(u, p) ∈ Wj(u, p) for u, p ∈ [a, b] with e(u) =

∫ v(u)
c(u)

wj(u, p) dp + l(u), u ∈ [a, b].
By using hypothesis (ii) we have r(u, p) ∈Wk(u, p) such that∣∣wj(u, p)− r(u, p)∣∣ 6 q

(
j(p), k(p)

)√
ψ
(∣∣j(p)− k(p)∣∣2) for all u, p ∈ [a, b].

Now, consider the operator S,

S(u, p) =Wk(u, p)

∩
{
m ∈ R:

∣∣wj(u, p)−m∣∣ 6 q
(
j(p), k(p)

)√
ψ
(
|j(p)− k(p)

∣∣2)},
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where u, p ∈ [a, b]. The lower semicontinuity of the operator S yields that there exists
wk : [a, b]× [a, b]→ R with wk(u, p) ∈ S(u, p) for each u, p ∈ [a, b]. Thus, we get

h(u) =

v(u)∫
c(u)

wk(u, p) dp+ l(u) ∈
v(u)∫
c(u)

W
(
u, p, k(p)

)
dp+ l(u), u ∈ [a, b],

and, for each u ∈ [a, b], we have

∣∣e(u)− h(u)∣∣2 6

( v(u)∫
c(u)

∣∣wj(u, p)− wk(u, p)∣∣dp)2

6

( v(u)∫
c(u)

q
(
j(p), k(p)

)√
ψ
(∣∣j(p)− k(p)∣∣2) dp)2

6

(√
ψ
(

sup
p∈[a,b]

∣∣j(p)− k(p)∣∣2) v(u)∫
c(u)

q
(
j(p), k(p)

)
dp

)2

= ψ
(
dm(j, k)

)( v(u)∫
c(u)

q
(
j(p), k(p)

)
dp

)2

6
1

α(j, k)
ψ
(
dm(j, k)

)
.

Consequently, it follows that

α(j, k)dm(e, h) 6 ψ
(
dm(j, k)

)
.

By replacing the role of j and k we conclude that

α(j, k)Hbm(Tj, Tk) 6 ψ
(
dm(j, k)

)
for each j, k ∈ X.

By taking χ(l, j) = j − l for all l, j ∈ R+, κ(m,n, o, p) = ψ(m), η(m,n, o, p, q)
= mnopq for all m,n, o, p, q ∈ R+ and L = 0, inequality (9) reduces to the above
inequality. Moreover, hypotheses (i-a), (i-b), (i-c) of the result imply hypotheses (i), (ii)
and (iii) of Theorem 3. Thus, Theorem 3 ensures that a fixed point of the operator T does
exist, that is, the integral inclusion (15) has a solution.

The following existence theorem is obtained by defining α : X × X → [0,∞),
α(j, k) = 2 for each j, k ∈ X in Theorem 4. Also, note that the following result can be
proved by using Corollary 2.

Theorem 5. Let X = C([a, b],R), and let the operator T : X → CL(X),

Tj(u) =

{
e ∈ C

(
[a, b],R

)
: e ∈

v(u)∫
c(u)

W
(
u, p, j(p)

)
dp+ l(u), u ∈ [a, b]

}
,

Nonlinear Anal. Model. Control, 26(2):334–348

https://doi.org/10.15388/namc.2021.26.22357


346 M.U. Ali, A. Pitea

where l, c, v, j : [a, b] → R are continuous functions, c(u) 6 v(u) for all u ∈ [a, b], and
W : [a, b]×[a, b]×R→ Pcv(R) is such thatW (·, ·, j) is a lower semicontinuous operator
for any j. Further, assume that there exists a continuous mapping q : X ×X → [0,∞)
such that

Hbm

(
W
(
u, p, j(p)

)
,W
(
u, p, k(p)

)
6 q
(
j(p), k(p)

)√
ψ
(∣∣j(p)− k(p)∣∣2),

u, p ∈ [a, b], j, k ∈ X , where ψ : [0,∞) → [0,∞) is a nondecreasing continuous
mapping such that

∑∞
n=1 2

nψn(t) < ∞ for all t > 0. Moreover, the mapping q :
X ×X → [0,∞) satisfies

v(u)∫
c(u)

q
(
j(p), k(p)

)
dp 6

1

2
, u ∈ [a, b].

Then the integral inclusion (15) has a solution.

5 Conclusion

Fixed point results with regard to multivalued mappings endowed with implicit-type con-
tractive conditions of a special form of simulation functions are stated and proved. An
application of our result in integral inclusions is presented. As further development, we
intend to design numerical schemes based on our outcomes.

References

1. A. Abkar, M. Gabeleh, The existence of best proximity points for multivalued non-self
mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, 107(2):319–325,
2013, https://doi.org/10.1007/s13398-012-0074-6.

2. A. Al-Rawashdeh, H. Aydi, F. Abdelbasset, S. Sahmim, W. Shatanawi, On common fixed
points for α−F -contractions and applications, J. Nonlinear Sci. Appl., 9(5):3445–3458, 2016,
https://doi.org/10.22436/jnsa.009.05.128.

3. M. A. Al-Thagafi, N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani
multimaps, Nonlinear Anal., Theory Methods Appl., Ser. A, 70(3):1209–1216, 2009, https:
//doi.org/10.1016/j.na.2008.02.004.

4. M.A. Al-Thagafi, N. Shahzad, Best proximity sets and equilibrium pairs for a finite family
of multimaps, Fixed Point Theory Appl., 2008:457069, 2008, https://doi.org/10.
1155/2008/457069.

5. M.U. Ali, B. Alqahtani, T. Kamran, E. Karapınar, Best proximity point results for γ-controlled
proximal contraction, IEEE Access, 7:128009–128013, 2019, https://doi.org/10.
1109/ACCESS.2019.2937160.

6. M.U. Ali, M. Farheen, T. Kamran, G. Maniu, Prešić type nonself operators and related
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