
Nonlinear Analysis: Modelling and Control, Vol. 26, No. 2, 349–362
https://doi.org/10.15388/namc.2021.26.22358

Press

Radial symmetry for a generalized nonlinear fractional
p-Laplacian problem∗

Wenwen Houa , Lihong Zhanga,1 , Ravi P. Agarwalb,c , Guotao Wanga,c

aSchool of Mathematics and Computer Science,
Shanxi Normal University,
Linfen, Shanxi 041004, China
lebron_hww@163.com; zhanglih149@126.com;
wgt2512@163.com
bDepartment of Mathematics, Texas A&M University,
Kingsville, TX 78363-8202, USA
ravi.agarwal@tamuk.edu
cNonlinear Analysis and Applied Mathematics (NAAM) Research Group,
Department of Mathematics, Faculty of Science,
King Abdulaziz University,
Jeddah 21589, Saudi Arabia

Received: February 4, 2020 / Revised: July 22, 2020 / Published online: March 1, 2021

Abstract. This paper first introduces a generalized fractional p-Laplacian operator (−∆)sF,p. By
using the direct method of moving planes, with the help of two lemmas, namely decay at infinity and
narrow region principle involving the generalized fractional p-Laplacian, we study the monotonicity
and radial symmetry of positive solutions of a generalized fractional p-Laplacian equation with
negative power. In addition, a similar conclusion is also given for a generalized Hénon-type
nonlinear fractional p-Laplacian equation.

Keywords: generalized fractional p-Laplacian, method of moving planes, negative powers, radial
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1 Introduction

Fractional-order differential equations are very suitable for describing materials and
processes with memory and heritability, and their description of complex systems has
the advantages of simple modeling, clear physical meaning of parameters and accurate
description. Examples include a fractional differential model for the free dynamic re-
sponse of viscoelastic single degree of freedom systems [18], a new noninteger model for
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convective straight fins with temperature-dependent thermal conductivity associated with
Caputo–Fabrizio fractional derivative [20] and so on.

In this paper, we are concerned with a generalized nonlinear fractional p-Laplacian
equation with negative power

(−∆)sF,pφ(x) + φ−γ(x) = 0, x ∈ Rn, (1)

where

(−∆)sF,pφ(x) = Cn,spPV

∫
Rn

F
(
|φ(x)− φ(y)|p−2[φ(x)− φ(y)]

|x− y|n+sp

)
dy.

Here 0 < s < 1, 2 < p <∞, PV means the Cauchy principal value andF is a continuous
function. For the purpose of making the integral meaningful, we need that

φ ∈ C1,1
loc ∩ lsp

with

lsp =

{
φ ∈ lp−1loc

∣∣∣ ∫
Rn

|1 + φ(x)|p−1

1 + |x|n+sp
dx <∞

}
.

The operator (−∆)sF,p introduced in this paper includes some special cases. When
F(·) is an identity map, (−∆)sF,p becomes the fractional p-Laplacian (−∆)sp. Based on
this, (−∆)sp will become fractional Laplacian(−∆)s if p = 2, this is well known. In
order to surmount the nonlocality of fractional Laplacian, Caffarelli and Silvestre [4]
introduced the extension method that reduced this nonlocal problem into a local one in
higher dimensions. This method is briefly described below. Given a function g : Rn → R,
let the extension G : Rn × [0,∞)→ Rn that meets the following condition:

div
(
y1−δ∇G

)
= 0, (x, y) ∈ Rn × [0,∞), G(x, 0) = g(x).

They concluded that

(−∆)δ/2g(x) = −Cn,δ lim
y→0+

y1−δ
∂G

∂y
, x ∈ Rn.

The extension method mentioned above has been utilized to discuss equations involving
fractional Laplacian; see [3,5,15]. Another way to overcome the nonlocality is the integral
equations method. Applications of this method can be found in [7, 12, 13, 23, 25, 26, 36].

However, there are still some operators that cannot be solved by the above methods;
see [5]. To overcome the difficulty, a direct method of moving planes is introduced in
[11]. Gradually, it is used to tackle a series of problems involving kinds of nonlinear
operators. For example, the relevant properties of solutions for nonlinear elliptic equations
are obtained, besides, it has been highly applied in studying the properties of fractional
Laplacian equations and systems; see [8, 14, 24, 28, 31, 32]. Furthermore, there are some
excellent results by using this method to study the radial symmetry and monotonicity of
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the solutions of fractional p-Laplacian equations and systems; see [9, 16, 22, 27, 33–35].
For fully nonlinear nonlocal operators, for example,

Kα

(
r(x)

)
≡ Cn,α lim

ε→0

∫
Rn\Bε(x)

G(r(x)− r(z))
|x− z|n+α

dz = f(x, r),

this direct method has been further developed by Chen and Li in [10].
Recently, the problems involving negative powers are studied in many fields, for

example, in MEMS device, singular minimal surface equations, and described curvature
equations in conformal geometry; see [1, 2, 6, 17, 19, 21, 29, 30].

In [17], Davila, Wang and Wei proved sharp Hölder continuity and an estimate of
rupture sets for sequences of solutions of the following nonlinear problem with negative
exponent:

∆u =
1

up
in Ω, p > 1.

The above problem arises in modeling an electrostatic microelectromechanical system
(MEMS) device. The solution of the singularity in the equation, namely u ≈ 0 in some
region, represents the rupture in the device in the physical model.

In [19], Jiang and Ni studied the singular elliptic equation

∆h =
1

α
h−α − p in Ω,

where Ω ⊂ Rn, n > 2, is a bounded smooth domain and α > 1. When n = 2 and
α = 3, the above equation is used to model steady states of van der Waals force driven
thin films of viscous fluids. They also considered the physical problem when total volume
of the fluid is prescribed. Singular elliptic equations modeling steady states of van der
Waals force driven thin films have been mathematically rigorously studied with no flux
Neumann boundary condition. They gave a complete description of all continuous radially
symmetric solutions. In particular, they constructed both nontrivial smooth solutions and
singular solutions.

In [6], Ma and Cai studied the following nonlinear fractional Laplacian equation with
negative powers by using the direct method of moving planes:

(−∆)α/2v(x) + v−β(x) = 0, x ∈ Rn.

The above results of all encourage us to further study a generalized nonlinear frac-
tional p-Laplacian equation with negative powers by the direct method of moving planes.
As far as authors know, up to now, this is a new attempt to study a class of equations (1)
combining a generalized fractional p-Laplacian with negative powers. Interestingly, this
method can also be analogously applied to a generalized Hénon-type nonlinear fractional
p-Laplacian equation with negative power

(−∆)sF,pφ(x) + |x|σφ−γ(x) = 0, x ∈ Rn \ {0}, (2)

where σ < 0 and γ > 0 are constants.
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The paper is structured as follows. In Section 2, we mainly present some lemmas
used in the following part. In Section 3, we study radial symmetry and monotonicity of
two generalized fractional p-Laplacian equations with negative powers by applying the
direct method of moving planes.

2 Auxiliary lemmas

Let Pκ = {x ∈ Rn | x1 = κ for some κ ∈ R} be the moving planes, Σκ = {x ∈ Rn |
x1 < κ} be the area to the left of Pκ, and xκ = (2κ−x1, x2, . . . , xn) be the reflection of
x about Pκ. Meanwhile, we denote

φκ(x) = φ
(
xκ
)
, dκ(x) = φ(x)− φκ(x),

Σ̃κ =
{
x
∣∣ xκ ∈ Σκ}, Σ−κ =

{
x ∈ Σκ

∣∣ dκ(x) < 0
}
.

Throughout the next section, we assume that there exists a constant L > 0 such that
F(x)−F(y) 6 L(x− y) and F(0) = 0.

Lemma 1 [A simple maximum principle]. Let ℵ be bounded area in Rn. Presume that
u ∈ lsp ∩ C1,1

loc (ℵ) is lower semicontinuous on ℵ̄ and satisfies

(−∆)sF,pφ(x) > 0 in ℵ, φ(x) > 0 in ℵc. (3)

Then
φ(x) > 0, x ∈ ℵ. (4)

If φ(x) = 0 at some point x ∈ ℵ, then φ(x) = 0 holds for almost all points x in Rn.
When ℵ is unbounded area, we need further assume that lim|x|→∞ φ(x) > 0, then the
same conclusion still holds.

Proof. Suppose (4) is not true, then there is an x0 such that φ(x0) = minℵ φ < 0.
According to the second inequality in (3),

(−∆)sF,pφ
(
x0
)

= Cn,sp PV

∫
Rn

F
(
|φ(x0)− φ(z)|p−2[φ(x0)− φ(z)]

|x0 − z|n+sp

)
dz < 0.

This is a direct contradiction to the first inequality in (3), hence (4) holds. When φ(x0)=0
at some point x0 ∈ ℵ, then

(−∆)sF,pφ
(
x0
)

= Cn,sp PV

∫
Rn

F
(
|φ(z)|p−2[−φ(z)]

|x0 − z|n+sp

)
dz 6 0.

On the other hand, from (3) we have

PV

∫
Rn

F
(
|φ(z)|p−2[−φ(z)]

|x0 − z|n+sp

)
dz > 0,

so, the integral result is 0. Because u is nonnegative, one could get that φ(x) = 0 almost
everywhere in Rn. This completes the lemma.
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Lemma 2 [Maximum principle for antisymmetric functions]. Let ℵ be bounded area
in Σ and φ ∈ lsp ∩ C1,1

loc (ℵ). If

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) > 0 in ℵ, dκ(x) > 0 in Σ \ ℵ, (5)

then
dκ(x) > 0 in ℵ.

If dκ(x) = 0 at some point in ℵ, then dκ(x) = 0 almost everywhere in Rn. When ℵ is
unbounded area, we need further presume that

lim
|x|→∞

dκ(x) > 0,

then the same conclusions still hold.

Proof. Suppose that dκ(x) > 0 in ℵ is not true, then there is a point x̂ in ℵ such that

dκ(x̂) = min
ℵ
dκ(x̂) < 0.

To simplify writing, let Q(m) = |m|p−2m, then Q′(m) = (p− 1)|m|p−2 > 0.

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x̂)

= Cn,sp PV

∫
Rn

F
(
Q(φ(x̂)− φ(y))

|x̂− y|n+sp

)
dy

− Cn,sp PV

∫
Rn

F
(
Q(φκ(x̂)− φκ(y))

|x̂− y|n+sp

)
dy

6 Cn,sp

∫
Rn

L
Q(φ(x)− φ(y))−Q(φκ(x̂)− φκ(y))

|x̂− y|n+sp
dy

= Cn,sp

∫
Σ

L
Q(φ(x̂)− φ(y))−Q(φκ(x̂)− φκ(y))

|x̂− y|n+sp
dy

+ Cn,sp

∫
Σ

L
Q(φ(x̂)− φκ(y))−Q(φκ(x̂)− φ(y))

|x̂− yκ|n+sp
dy

= Cn,spL

{∫
Σ

(
1

|x̂− y|n+sp
− 1

|x̂− yκ|n+sp

)
×
(
Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φκ(y)

))
dy

+

∫
Σ

1

|x̂− yκ|n+sp
(
Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φκ(y)

)
+Q

(
φ(x̂)− φκ(y)

)
−Q

(
φκ(x̂)− φ(y)

))
dy

}
= Cn,spL{J1 + J2}, (6)
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where

J1 =

∫
Σ

(
1

|x̂− y|n+sp
− 1

|x̂− yκ|n+sp

)
×
(
Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φκ(y)

))
dy,

J2 =

∫
Σ

1

|x̂− yκ|n+sp
(
Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φκ(y)

)
+Q

(
φ(x̂)− φκ(y)

)
−Q

(
φκ(x̂)− φ(y)

))
dy.

To estimate J1, we notice the fact

1

|x− y|n+sp
>

1

|x− yκ|n+sp
∀x, y ∈ Σκ.

Due to [
φ(x̂)− φ(y)

]
−
[
φκ(x̂)− φκ(y)

]
= dκ(x̂)− dκ(y) 6 0, but 6≡ 0,

on the basis of strict monotonicity of Q, we have

Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φκ(y)

)
6 0, but 6≡ 0.

Therefore,
J1 < 0. (7)

To evaluate J2, by using the mean value theorem we obtain

J2 =

∫
Σ

L

|x̂− yκ|n+sp
(
Q
(
φ(x̂)− φ(y)

)
−Q

(
φκ(x̂)− φ(y)

)
+Q

(
φ(x̂)− φκ(y)

)
−Q

(
φκ(x̂)− φκ(y)

))
dy

= dκ(x̂)

∫
Σ

L

|x̂− yκ|n+sp
(
Q′
(
ξ(y)

)
+Q′

(
η(y)

))
dy 6 0. (8)

Combining (6), (7) and (8), one can deduce

(−∆)sF,pφ(x̂)− (−∆)sF,pφκ(x̂) < 0.

This inequality contradicts the first condition in (5), thus dκ(x̂) > 0.
If dκ(x) = 0 at some point x ∈ ℵ, equivalently, x is a minimum of dκ in ℵ, so,

J2 = 0. Now, according to the first inequality in (5), we get J1 > 0, which means

Q
(
φ(x)− φ(y)

)
−Q

(
φκ(x)− φκ(y)

)
> 0.

Considering the monotonicity of Q, for almost all y ∈ Σ,[
φ(x)− φ(y)

]
−
[
φκ(x)− φκ(y)

]
= dκ(x)− dκ(y) = −dκ(y) > 0.
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Consequently, dκ(y) = 0 almost everywhere inΣ. Besides, in the light of the antisymme-
try of dκ, we receive dκ(y) = 0 almost everywhere in Rn. If ℵ is unbounded area, under
this circumstance, in view of assumption lim|x|→∞ dκ(x) > 0, suppose that dκ(x) > 0,
x ∈ Σ, is false, then a negative minimum of dκ is obtained at some point x ∈ Σ. Being
similar to the above argument, one can find a contradiction. The proof is completed.

Lemma 3 [Narrow region principle]. Let ℵ be bounded narrow area in Σ such that it
is contained in {x|κ − δ < x1 < κ} with small δ. Presume that c(x) is bounded from
below in ℵ and

F
(
(−∆)sp

)
φ(x)−F

(
(−∆)sp

)
φκ(x) + c(x)dκ(x) > 0 in ℵ,

dκ(x) > 0 in Σ \ ℵ,

and there exists y0 ∈ Σ satisfying dκ(y0) > 0, then when δ is sufficiently small, one can
get

dκ(x) > 0 in ℵ.
Further, if dκ(x) = 0 holds for some point in ℵ, then dκ(x) = 0 holds for almost all
points x in Rn. Besides, if ℵ is unbounded region, we need presume that

lim
|x|→∞

dκ(x) > 0,

then above conclusions still hold.

Proof. Suppose the contrary, then for any δ > 0, there exists an xδ ∈ ℵδ such that

dκ(xδ) = min
ℵδ

dκ(x) < 0.

Then for δk = 1/k, k = 1, 2, . . . , there exists xδk and ℵδk , let us call them xk and ℵk
such that

dκ(xk) = min
ℵk

dκ(x) < 0.

By inequality (6) we deduce

(−∆)sF,pφ(xk)− (−∆)sF,pφλ(xk)

6 Cn,spL

{∫
Σ

(
1

|xk − y|n+sp
− 1

|xk − yκ|n+sp

)
×
(
Q
(
φ(xk)− φ(y)

)
−Q

(
φκ(xk)− φκ(y)

))
dy

+

∫
Σ

1

|xk − yκ|n+sp
(
Q
(
φ(xk)− φ(y)

)
−Q

(
φκ(xk)− φκ(y)

))
+Q

(
φ(xk)− φκ(y)

)
−Q

(
φκ(xk)− φ(y)

))
dy

}
= Cn,spL{H1 +H2}, (9)
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where

H1 =

∫
Σ

(
1

|xk − y|n+sp
− 1

|xk − yκ|n+sp

)
×
(
Q
(
φ(xk)− φ(y)

)
−Q

(
φκ(xk)− φκ(y)

))
dy,

H2 =

∫
Σ

1

|xk − yκ|n+sp
(
Q
(
φ(xk)− φ(y)

)
−Q

(
φκ(xk)− φκ(y)

)
+Q

(
φ(xk)− φκ(y)

)
−Q

(
φκ(xk)− φ(y)

))
dy.

Similarly to (8), we can get H2 6 0, from [33] we can get H1 6 −(C0/2)δxk ,

c(xk)dκ(xk) 6 o(1)δxk . (10)

Combining (9) with (10), one can get

F
(
(−∆)sp

)
φ(xk)−F

(
(−∆)sp

)
φκ(xk) + c(xk)dκ(xk) 6 (−C + o(1))δxk < 0.

This contradicts with the equation, hence the proof is completed.

Lemma 4 [Decay at infinity]. Let ℵ be unbound area in Σ, and let φ ∈ lsp ∩ C1,1
loc (ℵ)

be a solution of

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) + c(x)dκ(x) > 0 in ℵ,
dκ(x) > 0 in Σ \ ℵ

with
lim
|x|→∞

|x|spc(x) > 0.

Then there exists a positive constant R0 (depending on c(x) and independent of φ(x) and
φκ(x)) such that if dκ(x0) = minℵ dκ(x) < 0, then |x0| 6 R0.

Proof. By inequality (6) we get

(−∆)sF,pφ
(
x0
)
− (−∆)sF,pφκ

(
x0
)

+ c
(
x0
)
dκ
(
x0
)

< Cn,sp

∫
Σ

L

|x0 − yκ|n+sp
(
Q
(
φ
(
x0
)
− φ(y)

)
−Q

(
φκ
(
x0
)
− φ(y)

)
+Q

(
φ
(
x0)− φκ(y)

)
−Q

(
φκ
(
x0
)
− φκ(y)

))
dy

+ c
(
x0
)
dκ
(
x0
)

6 dκ
(
x0
)(
Cn,sp

∫
Σ

L
Q′(ξ(y)) +Q′(η(y))

|x0 − yκ|n+sp
dy + c

(
x0
))

6 dκ
(
x0
)(
Cn,sp

∫
Σ

L
M

|x0 − yκ|n+sp
dy + c

(
x0
))
,
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where M is a constant. For each fixed κ, when |x0| > κ, x1 = (3|x0| + x01, (x
0)′), then

B|x0|(x
1) ⊂ Σ̃. Consequently,∫

Σ

1

|x0 − yκ|n+sp
dy >

∫
B|x0|(x

1)

1

|x0 − y|n+sp
dy >

wn
4n+sp|x0|sp

.

Then we have

0 6 (−∆)sF,pφ
(
x0
)
− (−∆)sF,pφκ

(
x0
)

+ c
(
x0
)
dκ
(
x0
)

< dκ
(
x0
)[
Cn,spLM

wn
4n+sp|x0|sp

+ c
(
x0
)]
,

this contradicts with the condition of c(x). This completes the proof.

3 The generalized fractional p-Laplacian equations with negative
powers

Theorem 1. Assume that φ ∈ lsp∩C1,1
loc (Rn) is the positive solution of equation (1) with

φ(x) = %|x|t + o(1) as |x| → ∞,

where sp/(γ+1) < t < 1 and % > 0 are constants. Then φ(x) must be radially symmetric
and monotone increasing about some point in Rn.

Proof. Step 1. In the first step, we indicate that when κ is sufficiently negative,

dκ(x) > 0 ∀x ∈ Σκ. (11)

According to equation (1), for x ∈ Σ−κ , we can derive

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) = φ−γκ (x)− φ−γ(x) = γξ−γ−1κ (x)dκ(x)

> γφ−γ−1(x)dκ(x),

where ξκ(x) values between φκ(x) and φ(x), that means

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) + c(x)dκ(x) > 0,

here c(x) = −γφ−γ−1(x). Consider φ(x) = %|x|t + o(1) near infinity, so

φ−γ−1(x) =
1

|x|t(γ+1)
+ o

(
1

|x|t(γ+1)

)
near infinity. Therefore, c(x) satisfies the condition of Lemma 4. Since φ(x) and φκ(x)
satisfy

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) + c(x)dκ(x) > 0, x ∈ Σ−κ ,

dκ(x) > 0, x ∈ Σκ \Σ−κ ,
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with c(x) ∼ 1/|x|t(γ+1) for |x| large, using Lemma 4 to dκ(x), if dκ(x) acquires the
negative minimum at point x̃ inΣκ, then |x̃| 6 R0, that is, when κ is sufficiently negative,
(11) holds.

Step 2. In this step, we will move Pκ to the limiting position, this moving process
could give the symmetry about the positive solution φ(x). (11) means that there is an
initial point to move Pκ, we could move Pκ so long as (11) holds. Let

κ0 = sup
{
κ
∣∣ dµ(x) > 0 ∀x ∈ Σµ, µ 6 κ

}
.

We show
dκ0(x) ≡ 0, x ∈ Σκ0 . (12)

If (12) does not hold, then by Lemma 2 we get

dκ0
(x) > 0 ∀x ∈ Σκ0

,

therefore, there exists a small δ > 0 and a constant bδ , which satisfy

dκ0(x) > bδ > 0 ∀x ∈ Σκ0−δ ∩BR0
(0).

According to the continuity of dκ about κ, there exists 0 < $ < δ such that

dκ(x) > 0 ∀x ∈ Σκ0−δ ∩BR0(0), κ ∈ [κ0, κ0 +$). (13)

In Lemma 3, ℵ = Σ−κ \Σκ0−δ is the narrow region, then

dκ(x) > 0 ∀x ∈ Σκ \Σκ0−δ.

This, combining with (13), indicates

dκ(x) > 0 ∀x ∈ Σκ, κ ∈ [κ0, κ0 +$).

This violates the definition of κ0. Thus, (12) holds. The proof is completed.

Next, we discuss the radial symmetry of a generalized nonlinear Hénon-type fractional
p-Laplacian equation with negative power.

Theorem 2. Presume φ ∈ lsp ∩ C1,1
loc (Rn) is a positive solution of (2) with

φ(x) = %|x|t + o(1) for |x| large,

where γ, % > 0 and σ < 0 are constants, 0 < t < 1 and t > (sp + σ)/(γ + 1). Then
φ(x) is radially symmetric about origin.

Proof. Before we prove Theorem 2, we first consider the singularity of equation (2) at the
origin. For κ < 0 and x ∈ Σ−κ \ {0κ}, φ(x) and φκ(x) satisfy

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x)

=
∣∣xκ∣∣σφ−γκ (x)− |x|σφ−γ(x)

=
[∣∣xκ∣∣σ − |x|σ]φ−γκ (x) + |x|σ

[
φ−γκ (x)− φ−γ(x)

]
> |x|σ

[
φ−γκ (x)− φ−γ(x)

]
> γ|x|σξ−γ−1κ (x)dκ(x)

> γ|x|σφ−γ−1(x)dκ(x),
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where ξκ(x) is between φ(x) and φκ(x). This implies,

(−∆)sF,pφ(x)− (−∆)sF,pφκ(x) + c(x)dκ(x) > 0

with c(x) = −γ|x|σφ−γ−1(x). Seeing that φ(x) = %|x|t + o(1) near infinity, so

c(x) ∼ 1

|x|t(γ+1)−σ + o

(
1

|x|t(γ+1)−σ

)
.

By our assumption t > (sp+ σ)/(γ + 1) we get c(x) ∼ o(1/|x|sp). Next, we still prove
the conclusion of Theorem 2 in two steps.

Step 1. We demonstrate that

dκ(x) > 0 ∀x ∈ Σκ \
{

0κ
}

(14)

holds when κ is sufficiently negative.
Near the singular point 0κ of φ(x) and φκ(x), we manifest thatΣ−κ has no intersection

with Bε(0κ) for certain small ε > 0. In fact, we consider that when κ is sufficiently
negative, obviously, 0κ is a sufficiently negative point, we have

lim
|x|→0κ

dλ(x) = lim
|x|→0κ

φ(x)− φ(0) > 0.

Since c(x) ∼ o(1/|x|sp), by applying Lemma 4 we could work out that there is an
R0 > 0, when dκ(x) gets the negative minimum at x∗ in Σκ, then the following relation
is true:

|x∗| 6 R0. (15)

That is to say, (14) holds when κ sufficiently negative.
Step 2. So long as (14) holds, we could move Pκ from left to right up to its critical

position. Let

κ0 = sup
{
κ
∣∣ dµ(x) > 0 ∀x ∈ Σµ \

{
0µ
}
, µ 6 κ

}
.

We prove that
κ0 = 0, dκ0(x) ≡ 0, x ∈ Σκ0 \

{
0κ0
}
.

Suppose κ0 < 0, we can use Lemmas 3 and 4 to state that Pκ can be moved further right,
this contradicts with κ0. By condition of u(x),

lim
|x|→0κ0

dκ0
(x) = lim

|x|→0κ0
φ(x)− φ(0) > 0.

That is, there exist ε, h0 > 0 such that

dκ0
(x) > h0 ∀x ∈ Bε

(
0κ0
)
\
{

0κ0
}
.

From (15) the situation where the negative minimum of dκ0(x) is obtained in BcR0
(0)

does not exist. We also show that it cannot be gained in the internal of BR0
(0). That is,
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when κ is close enough to κ0,

dκ(x) > 0, x ∈
(
Σκ ∩BR0

(0)
)
\
{

0κ
}
.

When κ0 < 0, by Lemma 2 one can get

dκ0
(x) > 0 ∀x ∈ Σκ0

\
{

0κ0
}
.

There is a positive constant j0, which satisfies

dκ0
(x) > j0, x ∈ (Σκ0−δ ∩BR0

(0)) \
{

0κ0
}
.

Since dκ(x) is continuous with respect to κ, there is 0 < ε < δ,

dκ(x) > 0, x ∈ (Σκ0−δ ∩BR0
(0)) \

{
0κ
}

holds for κ ∈ (κ0, κ0 + ε).
Considering that c(x) is bounded from below, for narrow region Σ−κ \ Σκ0−δ , using

Lemma 3 to dκ(x), we receive

dκ(x) > 0, x ∈ (Σκ \Σκ0−δ) \
{

0κ
}
.

From all above we get

dκ(x) > 0, x ∈ Σκ \
{

0κ
}
, κ ∈ (κ0, κ0 + ε).

This goes against the definition of κ0. Hence, κ0 = 0, dκ0
(x) = 0, x ∈ Σκ0

\{0κ0} hold.
Therefore, the proof is completed.
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