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Abstract. The novel approach to classification of spatio-temporal data based on Bayes discriminant
functions is developed. We focus on the problem of supervised classifying of the spatio-
temporal Gaussian random field (GRF) observation into one of two classes specified by different
drift parameters, separable nonlinear covariance functions and nonstationary label field. The
performance of proposed classification rule is validated by the values of local Bayes and empirical
error rates realized by leave one out procedure. A simulation study for spatial covariance functions
belonging to powered-exponential family and temporal covariance functions of AR(1) models is
carried out. The influence of the values of spatial and temporal covariance parameters to error
rates for several label field models are studied. The results showed that the proposed classification
methodology can be applied successfully in practice with small error rates and can be a useful tool
for discriminant analysis of spatio-temporal data.

Keywords: separable covariance function, Bayes discriminant function, powered-exponential
family.

1 Introduction

Spatial supervised classification is a problem of labeling observations based on feature
information and information about spatial adjacency relationships with training sample.
Switzer [25] was the first to treat classification of spatial data. Atkinson and Lewis [1] re-
viewed geostatistical techniques for classification of remotely sensed images. De Oliveira
[20] proposed spatial classification techniques based clipping of Gaussian random fields.
Spatial contextual classification problems arising in geospatial domain is considered by
Shekhar et al. [22]. It is usually assumed that feature observations conditional on labels
are independent (conditional independence) and normally distributed and the labels fol-
low the random field (RF) model. This approach is widely used in image classification
Nishii and Eguchi [19]. Dučinskas [9, 10] proposed and explored Bayes classification
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rules for spatial Gaussian data by avoiding the assumption of conditional independence.
Comprehensive overview of methods for statistical classification and discrimination of
Gaussian spatial data is provided by Berrett and Calder [3]. The novel approach to clas-
sification of Gaussian Markov random fields observation is developed by Dučinskas and
Dreižienė [11]. Critical comparison of spatial linear mixed models for ecological data
based on the correct classification rates is performed by Dreižienė and Dučinskas [8].

Some authors have investigated the performance of the Bayes classification rules
(BCR) when training samples consist of temporally dependent observations (see, e.g.,
[16, 18]).

Spatio-temporal data are often collected at monitored discrete time lags in locations
belonging to continuous area. Such type of data sets is usually viewed as a spatial time
series (see, e.g., [7]).

Valid and practical covariance structures are needed to model these types of data
sets in various disciplines such as environmental science, climatology and agriculture.
Usually, in environmental and agricultural research, the data are recorded at regular time
intervals (time lags) and at irregular stations (locations) in compact area (see, e.g., [14]).
Recently, deep learning methods via convolutional neural networks have been intensively
explored and used in image analysis and spatial data mining (see, e.g., [2, 27–31]).

However, statistical discriminant analysis of spatio-temporal data has been rarely
considered previously (see, e.g., [15]). Šaltytė-Benth and Dučinskas [26] considered clas-
sification of spatio-temporal data modeled by GRF in particular case when observation of
feature at focal location is uncorrelated with the training sample that consists of interde-
pendent feature variables.

In the present paper, avoiding this restriction, we focus on the classification of data
modeled by random fields with separable spatio-temporal covariance structures specified
by geostatistical spatial margins and discrete temporal margins (see, e.g., [6]). Separabil-
ity of covariances was assumed for the sake of reduction of complexity due to interdepen-
dencies between features.

The main distinctive feature of proposed approach is the allowing label field to be
nonstationary in time for each location, i.e., class label at each location can vary in time.
That essentially widens the application area of presented investigations.

For the performance of classifiers, the values of derived in local Bayes error rates and
empirical error rates are used. Empirical error rates are validated by modified leave-one-
out method when all but one observation is used to when complete the classification rule,
and this rule is then used to classify the omitted observation (see, e.g., [12]). For numerical
illustrations, the two powered-exponential isotropic models for spatial covariance are
considered. Temporal covariance is obtained by the Yule–Walker equations for AR(1)
models. Performance of proposed classification rule is compared for different parameters
of pure spatial and temporal covariances and prior class probabilities models.

This paper is organized as follows: proposed spatio-temporal data models and con-
ditional distributions are delivered in the next section; in Section 3, conditional Bayes
classification rules and its error rate is presented; in Section 4, the numerical illustrations
and simulations for various separable stationary spatio-temporal covariance and prior
probabilities models are displayed, and finally, the conclusions are in the last section.
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2 Spatio-temporal data models and conditional distributions

The main objective of this paper is to classify observations of GRF {Z(s; t): s∈D⊂R2,
t ∈ DT = [0,∞]}, where s and t define spatial and temporal coordinates, respectively.
Let {Y (s; t): s ∈ D ⊂ R2, t ∈ DT } be a random field that represents class label and
takes only the value 0 or 1 (see, e.g., [23]).

In this study, we assume that for l = 0, 1, the model of observation Z(s; t) con-
ditional on Y (s; t) = l is Z(s; t) = µl(s; t) + ε(s; t), where µl(s; t) – deterministic
spatio-temporal trend. The error term is assumed to be generated by the univariate zero-
mean GRF {ε(s; t): s ∈ D ⊂ R2, t ∈ T} with covariance function defined by model
cov(ε(s; t), ε(u; r)) = C(s, u; t, r) for all s, u ∈ D and t, r ∈ T .

In present paper, we restrict our attention to the separable spatio-temporal covariance
model C(s, u; t, r) = CS(s, u)CT (t, r), where CS(s, u) denotes pure spatial covariance
between observations in locations s and u, and CT (t, r) denotes pure temporal covari-
ance between observations at time points t and r. Under this assumption, the spatio-
temporal covariance structure factors into a purely spatial and a purely temporal compo-
nent, which allows for computationally efficient estimation and inference. Consequently,
separable covariance models have been popular even in situations in which they are not
physically justifiable. Many statistical tests for separability have been proposed recently
and are based on parametric models (see, e.g., [5, 13]) or spectral methods [21].

Let Sn = {si ∈ D, i = 1, . . . , n} be a set of locations, where observations are taken
at time t ∈ Dp = {1, 2, . . . , p, p+1}. At every moment of time t ∈ Dp, the set Sn is split
into two classes, S(0)

t and S(1)
t (i.e., Sn = S

(0)
t ∪ S(1)

t ): S(l)
t = {s ∈ Sn: Y (s, t) = l},

l = 0, 1.
Denote nlt the number of locations (of n) at time t that belong to class l; thus nlt is

the number of points in the set S(l)
t , and n = n0t + n1t for every t ∈ Dp. Hence a set of

class labels at any time moment can differ in composition.
Joint training sample Z is stratified training sample specified by n × p matrix

Z = (Z1, . . . , Zp), where Zt = (Z(s1, t), . . . , Z(sn, t))
′. This structure of data pre-

sentation is motivated by a model that assumes multivariate (in space) time series.
Denote by zt = (z1t , . . . , z

n
t ) and yt = (y1t , . . . , y

n
t ) the realized value of Zt and Yt =

(Y (s1, t), . . . , Y (sn, t))
′, respectively.

In what follows, with an insignificant loss of generality, we focuse on the linear
independent of time drift µl(s; t) = β′lx(s), where x(s) = (x1(s), . . . , xq(s))

′ is the
vector of a spatial covariates, and βl is a q-dimensional vector of parameters, l = 0, 1.

Denote by X the n× 2qp matrix X = (X(1), X(2), . . . , X(p)), where

X(t) =


x′1(1− y1t ) x′1y

1
t

x′2(1− y2t ) x′2y
2
t )

...
...

x′n(1− ynt ) x′ny
n
t

 ,

and xi = x(si), i = 1, . . . , n.
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Then the matrix model for Z conditional on {Yt = yt, t = 1, . . . , p} is Z = XB+E,
where B = Ip ⊗ β with β = (β′0, β

′
1)
′, and n × p matrix of Gaussian errors E =

(ε(si; t): i = 1, . . . , n, t = 1, . . . , p). Here Ip is p × p identity matrix, and β is 2q × 1
vector of parameters.

Denote pure spatial covariance n × n matrix by CS = (cijS = CS(si, sj), i, j =
1, . . . , n). In practice, it usually belongs to Matern class [17, Sect. 3.2] or powered-
exponential class of covariance functions (see, e.g., [24, p. 31], [6, Sect. 4.1.1]).

Then the model of training sampleM = vec(Z) conditional on Yt = yt, t = 1, . . . , p,
is

M = vec(XB) + vec(E), (1)

where vec(E) is the np × 1 vector of random errors that has normal distribution, i.e.,
vec(E) ∼ Nnp(0, Σ) with Σ = var(vec(E)) = CT ⊗ CS , and CT is a p × p matrix of
pure temporal covariances, CT = (ctrT = CT (t, r), t, r = 1, . . . , p).

In present paper, we concern with the problem of classification of the observations
Z(si, p + 1), i = 1, . . . , n, into one of two classes with given joint training sample M
or, in other words, based on training sample information we want to predict label at an
unobserved location t = p+ 1.

Set cp+1,r
T = CT (p + 1, r), r = 1, . . . , p, cp+1

T = (cp+1,1
T , . . . , cp+1,p

T )′ and e′i – the
ith row of identity matrix In.

Under spatio-temporal data model specification, we can conclude that in l = 0, 1, the
conditional distribution of Z(si, p+1) given M = m and Y (si, p+1) = l, is Gaussian,
i.e., (

Z(si, p+ 1)
∣∣M = m; Y (si, p+ 1) = l

)
∼ N

(
µp+1
li(m), Σp+1, i(m)

)
, (2)

where
µp+1
li(m) = β′lxi +

((
cp+1
T

)′
C−1T ⊗ e′i

)
vec(E),

Σp+1, i(m) = var
(
Z(si, p+ 1)

)
− ciis

(
cp+1
T

)′
C−1T cp+1

T = ciiSρp+1

with ρp+1 = cp+1,p+1
T − (cp+1

T )′C−1T cp+1
T .

In this study, we assume that the conditional distribution of label Y (si, p + 1), i =
1, . . . , n, given joint training sample M depends only on class labels values, i.e., condi-
tional distribution of (Y (si, p+ 1) = l |M = m) is identical to conditional distribution
of (Y (si, p+ 1) = l | {Yt = yt, t = 1, . . . , p}).

This assumption is quite frequently used by image classification researches (see, e.g.,
[19]). Set P(Y (si, p+1) = l |M = m) = πl(si, p+1), l = 0, 1, and shortly call them
prior class probabilities.

3 Conditional Bayes discriminant functions and its error rate

Under the assumption that the classes are completely specified, the conditional Bayes
discriminant function (CBDF) minimizing the probability of misclassification is formed
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by the log-ratio of conditional likelihood of distribution specified in (1)–(2), that is

W
(
Z(si, p+ 1)

)
=

(
Z(si, p+ 1)−

µp+1
1i(m) + µp+1

0i(m)

2

)
×Σ−1p+1, i(m)

(
µp+1
1i(m) − µ

p+1
0i(m)

)
+ γi(p+ 1), (3)

where γi(p+ 1) = ln(π1(si, p+ 1)/π2(si, p+ 1)).
It is easy to deduce that discriminant function W (Z(si, p + 1)) is optimal under the

criterion of the minimum of misclassification probability (see [18]).
Call the probability of misclassification for W (Z(si, p + 1)) as local Bayes error

rate and denote it by Pi. Also, denote squared Mahalanobis distance between conditional
distributions by

∆2
p+1, i(m) =

(
µp+1
1i(m) − µ

p+1
0i(m)

)′
Σ−1p+1, i(m)

(
µp+1
1i(m) − µ

p+1
0i(m)

)
.

Lemma 1. The local Bayes error rate is

Pi = π1(si, p+ 1)Φ

(
−
∆p+1,i(m)

2
− γi(p+ 1)

∆p+1, i(m)

)
+ π0(si, p+ 1)Φ

(
−
∆p+1, i(m)

2
+

γi(p+ 1)

∆p+1, i(m)

)
,

where Φ(x) is the standard normal cumulative distribution function.

Proof. It is easy to derive that conditional distribution ofW (Z(si, p+1)) givenM = m,
Y (si, p+ 1) = l is univariate Gaussian distribution with mean

E
(
W
(
Z(si, p+ 1)

) ∣∣M = m, Y (si, p+ 1) = l
)

= (−1)l+1
∆2

p+1, i(m)

2
+ γi(p+ 1)

and variance

var
(
W
(
Z(si, p+ 1)

) ∣∣M = m, Y (si, p+ 1) = l
)
= ∆2

p+1, i(m), l = 1, 2.

Using properties of the multivariate Gaussian distribution, we complete the proof.

Error estimation is critical to classification because the validity of the resulting clas-
sifier model, composed of the classifier and its error estimate, is based on the accuracy of
the error estimation procedure. Given a set of sample data, the data can be split between
training and test data with a classifier being designed on the training data and its error be-
ing validated on the test data. In this paper, our focus is on using p temporal observations
for training and the observations at p+ 1th time moment is using for testing.

Performance of the classification rule based on W (Z(si, p + 1)) could be evaluated
by several methods (e.g., [12]). In the present study, we prefer the leave-one-out estimator
or procedure when all but one (test observation) observation is used to complete the
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classification rule, and this rule (based on CBDF) is then used to classify the omitted
observation. This procedure consists of simulating a sample of v independent values
of Z(si, p + 1), denoted by {Zj(si, p + 1), j = 1, . . . , v}, drawn from conditional
distribution specified in (2) with prescribed labels Y (si, p+ 1).

For i = 1, . . . , n, define the empirical error rate by

LO i =
1

v

(
v∑

j=1

∣∣Y (si, p+ 1)− Ŷ j(si, p+ 1)
∣∣),

where Ŷ j(si, p+ 1) = H(W (Zj(si, p+ 1))), and H(·) is the Heaviside step function.

4 Numerical illustrations and simulations

For numerical illustrations of obtained results, we considered the Gaussian spatio-tempo-
ral model with pure spatial covariances belonging to the family of powered-exponential
isotropic models and with pure temporal covariance of AR(1) model. It is known that for
this model, c1,1T = ct,tT for t = 2, . . . , p+ 1, parameter α quantifies temporal dependency
by equation c1,1T = σ2

T /(1− α2), where σ2
T is the white noise variance.

Then cp+1
T = (σ2

T /(1− α2))(αp, αp−1 · · · α), and the inverse of temporal covari-
ance matrix CT is obtained by the Yule–Walker equations (see [4]).

Temporal covariance matrix C−1T is obtained by the Yule–Walker equations for AR(1)
model, i.e.,

C−1T =
1

σ2
T


1 −α · · · 0 0
−α 1 + α2 · · · 0 0

...
...

. . .
...

...
0 0 · · · 1 + α2 −α
0 0 · · · −α 1

 .

It is easy to derive that (cp+1
T )′C−1T = αe′p and ρp+1 = σ2

T , where e′p denotes the pth
row of identity matrix Ip.

Hence µp+1
li(m) = β′lxi + α(e′p ⊗ e′i) vec(E) and Σp+1,i(m) = ciiSσ

2
T . Here α is AR(1)

model parameter that quantifies temporal dependency, and σ2
T is the white noise variance

for this model.
In the study, two isotropic nugetless spatial covariance structures belonging to the

powered-exponential family are considered. Assuming that Cs = σ2
sR, where R = (rij)

is spatial correlation matrix, we concern on the following two particular cases:

(i) exponential case with rij = r(|si − sj |) = e−|si−sj |/ϕ;
(ii) squared-exponential case rij = r(|si − sj |) = e−(|si−sj |/ϕ)2 .

Here ϕ is the so called range parameter that represents the spatial dependence.
This choice of is based on the smoothness level of sample paths. Sample paths of

a GRF with the exponential covariance function are not smooth when the squared expo-
nential covariance model has smooth sample paths.
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Two methods for prior class probabilities is proposed.
First one is based on temporal weighted moving average (TWMA) method

π1t(si, p+ 1) =

∑p
t=1 y

t
it

(1 + p)p/2
.

Second one adds spatial correlations for weighting

π1ts(si, p+ 1) =

∑p
t=1 y

t
it+

∑p
t=1 y

t
i0
trii0

(1 + p)p/2 + rii0(1 + p)p/2
,

where i0 denotes the index of the nearest neighbor to si. Denote this method by (STWMA).
We have compared these four particular cases by calculating the Pi and LO i for i =

1, . . . , n, and we have presented them in tables.
Numerical illustrations are performed on 20 locations on two dimensional area that

are depicted in Fig. 1. Class labels for 20 locations and 4 time points in training sample
is presented in Table 1.

Local Bayes error rates Pi and their averages AP =
∑20

i=1 Pi/20 for two cases of
spatial covariances and two models for prior probabilities are presented in Table 2.

As it might be seen from Table 2, for α = 0.1, 0.3, classifiers with STWMA priors
in majority locations have an advantage against cases with TWMA priors for both spatial
covariance models. For large α values, significant difference between these two is not
observed.
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2
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16

17

18

19

20

Figure 1. Spatial sampling set S20.

Table 1. Class labels for 20 locations (i) at 4 time moments (t).

t i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0
2 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
3 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0
4 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0
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Table 2. Local and average Bayes error rates for ∆ = |µp+1
1i(m)

− µp+1
0i(m)

| = 1, ϕ = 3 and
various α.

i π1t(si, p+ 1) π1ts(si, p+ 1)

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.1 α = 0.3 α = 0.5 α = 0.7

exponential case
1 0 0 0 0.23 0 0.01 0.1 0.3
2 0 0 0.02 0.02 0 0 0 0.19
3 0 0 0 0.35 0 0.02 0.16 0.35
4 0.02 0.02 0.02 0.32 0.02 0.02 0.15 0.32
5 0 0.23 0.23 0.23 0 0.11 0.28 0.28
6 0 0 0 0.32 0 0 0.14 0.34
7 0 0.11 0.35 0.35 0 0.02 0.18 0.35
8 0.02 0.02 0.32 0.32 0 0.11 0.28 0.28
9 0 0 0.32 0.32 0 0 0.12 0.35

10 0 0 0 0 0 0 0.04 0.04
11 0 0 0 0.02 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0.35 0.35 0.35 0 0.19 0.32 0.32
14 0 0 0 0.32 0 0 0.1 0.35
15 0 0 0 0 0 0 0 0
16 0 0 0.23 0.23 0 0.15 0.31 0.31
17 0 0 0 0 0 0 0 0
18 0.02 0.02 0.35 0.35 0 0 0.2 0.35
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

AP 0.003 0.038 0.11 0.187 0.001 0.032 0.119 0.207

squared-exponential case
1 0 0 0 0.23 0 0.02 0.17 0.32
2 0 0 0.02 0.02 0 0 0 0.23
3 0 0 0 0.35 0 0.02 0.17 0.35
4 0.02 0.02 0.02 0.32 0.02 0.02 0.17 0.32
5 0 0.23 0.23 0.23 0 0.11 0.28 0.28
6 0 0 0 0.32 0 0 0.17 0.34
7 0 0.11 0.35 0.35 0 0.02 0.17 0.35
8 0.02 0.02 0.32 0.32 0 0.11 0.28 0.28
9 0 0 0.32 0.32 0 0 0.11 0.35

10 0 0 0 0 0 0 0.06 0.06
11 0 0 0 0.02 0 0 0 0
12 0 0 0 0 0 0 0 0
13 0 0.35 0.35 0.35 0 0.17 0.32 0.32
14 0 0 0 0.32 0 0 0.11 0.35
15 0 0 0 0 0 0 0 0
16 0 0 0.23 0.23 0 0.17 0.32 0.32
17 0 0 0 0 0 0 0 0
18 0.02 0.02 0.35 0.35 0 0 0.17 0.34
19 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0

AP 0.003 0.038 0.11 0.187 0.001 0.032 0.125 0.211

For v = 30 independent replications, local empirical error rates LO i and their
averages ALO =

∑20
i=1 LO i/20 for two cases of spatial covariances and two models

for prior class probabilities are presented in Table 3.
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Table 3. Local and average empirical error rates for ∆ = |µp+1
1i(m)

− µp+1
0i(m)

| = 1, ϕ = 3 and
various α.

i π1t(si, p+ 1) π1ts(si, p+ 1)

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.1 α = 0.3 α = 0.5 α = 0.7

exponential case
1 0 0 0.03 0 0 0 0.03 0
2 0 0 0.03 0.10 0 0 0.03 0
3 0 0 0.03 0 0 0 0 0
4 0 0 0.03 0 0 0 0.03 0
5 0 0 0 0 0 0 0 0
6 0 0 0.03 0 0 0 0.03 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0.07 0.17 0 0 0.07 0.10
11 0 0 0.03 0.33 0 0 0.03 0.33
12 0 0 0 0.23 0 0 0 0.23
13 0 0 0 0 0 0 0 0
14 0 0 0 0.13 0 0 0 0.03
15 0 0 0.13 0.37 0 0 0.13 0.37
16 0 0 0 0 0 0 0 0
17 0 0 0.10 0.23 0 0 0.10 0.23
18 0 0 0 0 0 0 0 0
19 0 0 0.07 0.27 0 0 0.07 0.27
20 0 0 0.13 0.20 0 0 0.13 0.20

ALO 0 0 0.034 0.102 0 0 0.033 0.088

squared-exponential case
1 0 0 0.03 0 0 0 0.03 0
2 0 0 0.03 0.10 0 0 0.03 0
3 0 0 0.03 0 0 0 0 0
4 0 0 0.03 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0.03 0 0 0 0.03 0
7 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0

10 0 0 0.07 0.17 0 0 0.07 0.10
11 0 0 0.03 0.33 0 0 0.03 0.33
12 0 0 0 0.23 0 0 0 0.23
13 0 0 0 0 0 0 0 0
14 0 0 0 0.13 0 0 0 0
15 0 0 0.13 0.37 0 0 0.13 0.37
16 0 0 0 0 0 0 0 0
17 0 0 0.10 0.23 0 0 0.10 0.23
18 0 0 0 0 0 0 0.03 0
19 0 0 0.07 0.27 0 0 0.07 0.27
20 0 0 0.13 0.20 0 0 0.13 0.20

ALO 0 0 0.034 0.102 0 0 0.033 0.087

As it might be seen from Table 3, for all values of α, classifiers with STWMA
and TWMA in majority locations have the similar empirical error rates for both spatial
covariance models.
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The last raw of Tables 2 and 3 (i.e., AP and ALO) allow us to compare averages of
Bayes and empirical error rates for various combinations of spatial covariance and prior
class probability models and to make optimal decisions in construction for the classifiers
of spatio-temporal Gaussian data.

5 Conclusions

In this paper, we propose approach to classification of spatio-temporal data in the frame-
work of Bayes discriminant for separable spatio-temporal covariance case stations. Sev-
eral simulation studies were conducted to estimate and compare empirically the classifiers
for various separable stationary spatio-temporal covariance and prior class probabilities
models. Numerical analysis showed that:

(i) Bayes and empirical error rates increases when temporal correlation increases;
(ii) Incorporation spatial correlation in class prior probabilities improves the perfor-

mances of classifiers;
(iii) Classifiers with spatial squared-exponential covariance have an advantage against

classifiers with exponential covariance.

The results of performed calculations in all examples give us the strong argument
to encourage the users do not ignore the spatial, temporal dependency and locational
information from training sample in classification of spatio-temporal data and to apply
the proposed approach in deep learning for spatio-temporal data mining.
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