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Abstract. In this paper, we study the stability of Caputo-type fractional stochastic differential
equations. Stochastic stability and stochastic asymptotical stability are shown by stopping time
technique. Almost surly exponential stability and pth moment exponentially stability are derived by
a new established Itô’s formula of Caputo version. Numerical examples are given to illustrate the
main results.
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1 Introduction

Recently, fractional derivative is used to study the properties of memory and genetic
for complex systems in different fields of application; see [2, 6]. Wu et al. [23] intro-
duced a new result for Mittag-Leffler stability analysis of fractional discrete-time neural
networks via fixed point technique. Huang et al. [10] gave the analysis for variable-
order fractional discrete-time recurrent neural networks. For more details on fractional
differential equations, we refer to the monographs [12, 25].

Stochastic is one of the essential properties of the world, and the stability is a top
priority to the system application in practice. Stability analysis of stochastic systems is
very necessary. Lyapunov direct method and frequency analysis method have been pop-
ular among scholars for their intuitive concept, general method, clear physical meaning
and rigorous theory and have become the main tools to study the stability of differential
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systems. At the same time, Burton et al. [3–5] presented the application of fixed point
technology to stability analysis and fractional differential equations. Existence, unique-
ness and stability of solutions to stochastic partial differential equations have been studied
by many researchers; see [2, 8, 15, 17, 20]. Many new achievements have been used in
dealing with stochastic integral and differential equations; see [1, 9, 11, 18, 19, 21, 24].
For more details regarding functional analysis and mathematical analysis, we refer to
[13, 14, 22].

Recently, Doan et al. [8] studied asymptotic separation between solutions of the fol-
lowing Caputo fractional stochastic differential equations:

CDα
0+X(t) = f

(
t,X(t)

)
+ g
(
t,X(t)

)dW (t)

dt
, t > 0, α ∈ (0, 1],

X(0) = X0,
(1)

where CDα
0+ denotes the Caputo fractional derivative, f, g : [0,+∞) × R → R are

measurable functions, and {W (t), t ∈ [0,+∞)} is a standard scalar Brownian motion on
an underlying complete filtered probability space (Ω,F ,F := {Ft}t∈[0,+∞),P).

For each t ∈ [0,+∞), Xt := L2(Ω,Ft,P) denotes the space of all Ft-measurable,
mean-squared integrable functions u : Ω → R with ‖u‖2 = E|u|2. A process X :
[0,+∞)→ L2(Ω,F ,P) is called F-adopted if X(t) ∈ Xt, t ∈ [0,+∞).

Doan et al. [8, Thm. 1] applied contraction mapping principle to derive the existence
and uniqueness result of (1) by imposing the Lispschitz condition on f and g.

Note that asymptotic behavior and exponential stability of fractional stochastic differ-
ential equations in the sense of expected have been studied in [6,16]. However, fractional
Itô formula of Caputo version, stochastic stability and stochastic asymptotic stability
of (1) in a probabilistic sense have not been established.

In this paper, we present stochastic stability, stochastic asymptotical stability, almost
surly exponential stability and pth moment exponential stability for (1). In Section 3, we
establish a new established fractional Itô’s formula of Caputo version, and in Section 4
we present the main results. Numerical simulation illustrates our theoretical results in the
final section.

2 Preliminaries

Definition 1. (See [12].) Let α ∈ (0, 1], T > 0, f : [0, T ] → R be a differentiable
function. The Caputo fractional derivative of f is defined as

CDα
0+f(t) =

1

Γ(1− α)

t∫
0

f ′(τ)

(t− τ)α
dτ, t ∈ [0, T ],

where Γ(α) :=
∫∞
0
τα−1e−τ dτ is Gamma function.
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Definition 2. (See [12].) Let α ∈ (0, 1], f : [0,+∞)→ R. The Caputo fractional integral
of f is defined as

Iα0+f(t) =
1

Γ(α)

t∫
0

(t− τ)α−1f(τ) dτ, t ∈ [0, T ].

Definition 3. (See [8].) For each X0 ∈ X0, a F-adopted X is called a solution of (1) if
the following holds for t ∈ [0,+∞):

X(t) := X(t;X0)

= X0 +
1

Γ(α)

( t∫
0

(t− τ)α−1f
(
τ,X(τ)

)
dτ

+

t∫
0

(t− τ)α−1g
(
τ,X(τ)

)
dW (τ)

)
. (2)

We introduce the following assumptions:

(H1) There exists a constant L > 0 such that for all X, X̂ ∈ R, t ∈ [0,+∞),∣∣f(t,X)− f(t, X̂)
∣∣+
∣∣g(t,X)− g(t, X̂)

∣∣ 6 L|X − X̂|.

(H2) g(·, 0) is essentially bounded, i.e.,∥∥g(t, 0)
∥∥
∞ := ess sup

t∈[0,+∞)

∣∣g(t, 0)
∣∣ < +∞,

and g(·, 0) is L2 integrable, i.e.,
∫ +∞
0
|g(t, 0)|2dt < +∞.

Lemma 1. (See [8, Thm. 1].) Suppose that (H1) and (H2) hold. Then for α ∈ (1/2, 1),
(1) has a unique solution X(·) ∈ Xt := L2(Ω,Ft,P) given by (2).

Definition 4. (See [15, Def. 2.1].)

(i) The trivial solution of (1) is said to be stochastically stable or stable in probability
if for every pair of ε ∈ (0, 1) and r > 0, there exists a δ = δ(ε, r, 0) > 0 such
that P{|X(t)| < r} > 1 − ε, t > 0, whenever |X0| < δ. Otherwise, it is said to
be stochastically unstable.

(ii) The trivial solution of (1) is said to be stochastically asymptotically stable if it
is stochastically stable and, moreover, for every ε ∈ (0, 1), there exists a δ0 =
δ0(ε) > 0 such that P{limt→+∞X(t) = 0} > 1 − ε whenever |X0| < δ0 and
0 denotes n-dimensional zero vector.

Definition 5. (See [15, Def. 3.1].) The trivial solution of (1) is said to be almost surely
exponentially stable if

lim
t→+∞

sup
1

t
ln
∣∣X(t)

∣∣ < 0 a.s.

for all X0 ∈ Rn, where “a.s.” means “almost surely”.
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Definition 6. (See [15, Def. 4.1].) The trivial solution of (1) is said to be pth moment
exponentially stable if there is a pair of positive constants λ andC such that E(|X(t)|p) 6
C|X0|pe−λt for all t > 0, X0 ∈ R. If p = 2, then it reduces to exponentially stable in
mean square.

Lemma 2. (See [15, Lemma 2.4].) Let F is a σ−algebra, and let {Ak} ⊂ F and∑∞
k=1 P(Ak) < +∞. Then P{limk→+∞ supAk} = 0.

3 Itô’s formula of Caputo version

In this part, we introduce the Itô’s formula of Caputo fractional version. It pointed out the
rules for differentiating a function of Caputo fractional stochastic process.

LetW (t), t > 0, be a standard scalar Brownian motion, and let Y ∈ C2,1(R×R+,R)
denotes the family of all real-valued functions Y (z(·), ·) defined on R×R+ such that they
are continuously twice differentiable in z and once in t.

Let Z(t), t > 0, be an Itô process for dZ(t) = f̃(t)dt + g̃(t)dW (t), where f̃ ∈
L1(R+,R) and g̃ ∈ L2(R+,R).

We recall the standard one-dimensional Itô formula.

Lemma 3. (See [15, p. 32, Thm. 6.2].) Let Y (·) := Y (Z(·), ·) ∈ C2,1(R×R+,R). Then
Y (t), t > 0 is an Itô process given by

dY (t) =

[
Yt
(
Z(t), t

)
+ YZ

(
Z(t), t

)
f̃(t) +

1

2
YZZ

(
Z(t), t

)
g̃2(t)

]
dt

+ YZ
(
Z(t), t

)
g̃(t)dW (t) a.s.

Now, set T > 0. Suppose that X̃(t) is an Itô process for

CDα
0+X̃(t) = f(t) + g(t)

dW (t)

dt
, t ∈ [0, T ], α ∈

(
1

2
, 1

)
, (3)

with the initial condition X̃(0) = X0.
From Lemma 1, (3) has the following unique solution for t ∈ [0, T ]:

X̃(t) = X0 +
1

Γ(α)

( t∫
0

(t− τ)α−1f(τ) dτ +

t∫
0

(t− τ)α−1g(τ) dW (τ)

)
.

Note that when t ∈ [0, T ], (3) has an equivalent form

dX̃(t) = X̃ ′(t)dt

=
α− 1

Γ(α)

( t∫
0

(t− τ)α−2f(τ) dτ +

t∫
0

(t− τ)α−2g(τ) dW (τ)

)
dt, (4)

where f(·)(t− ·)α−2 ∈ L1[0, T ] and g(·)(t− ·)α−2 ∈ L2[0, T ].
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Now, we are ready to introduce the following fractional Itô’s formula of the Caputo
version.

Theorem 1. Let Y (·) := Y (X̃(·), ·) ∈ C2,1(R × R+,R). Then Y (·) is an Itô process
given by

dY
(
X̃(t), t

)
= Yt

(
X̃(t), t

)
dt

+
α− 1

Γ(α)
YX̃
(
X̃(t), t

) t∫
0

(t− τ)α−2f(τ) dτ dt

+
α− 1

Γ(α)
YX̃
(
X̃(t), t

) t∫
0

(t− τ)α−2g(τ) dW (τ) dt.

Proof. From Lemma 3 via (4) we can derive that

dY
(
X̃(t), t

)
=
∂Y (X̃(t), t)

∂t
dt+

∂Y (X̃(t), t)

∂X̃
dX̃(t) +

1

2

∂Y 2(X̃(t), t)

∂X̃2

(
dX̃(t)

)2
= Yt

(
X̃(t), t

)
dt+

α− 1

Γ(α)
YX̃
(
X̃(t), t

) t∫
0

(t− τ)α−2f(τ) dτ dt

+
α− 1

Γ(α)
YX̃
(
X̃(t), t

) t∫
0

(t− τ)α−2g(τ) dW (τ) dt.

The proof is completed.

4 Stability results

Let k > 0 be arbitrary, denote Sk := {X(·) ∈ R: |X(·)| < k}, a∧b denotes the minimum
of a and b, a ∨ b denotes the maximum of a and b, I{·} is indicative function.

(V1) There exists a positive definite function V ∈ C2,1(Sk× [0,+∞);R+) such that
for all (X(t), t) ∈ (Sk × [0,+∞)), α ∈ (1/2, 1),

LαV
(
X(t), t

)
:= Vt

(
X(t), t

)
+
α−1

Γ(α)
VX
(
X(t), t

) t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ

6 0. (5)

From (V1), V (0, t) ≡ 0, and there is a continuous nondecreasing function µ such that
V (X(t), t) > µ(|X(t)|) for all (X(t), t) ∈ (Sk × [0,+∞)).

The following result is motivated by [15, p. 111, Thm. 2.2].
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Theorem 2. Assume (H1), (H2) and (V1) hold, α ∈ (1/2, 1). Then the trivial solution
of (1) is stochastically stable.

Proof. Since the proof is similar to [15, p. 111, Thm. 2.2], we only give the sketch of
proofs.

Let ε ∈ (0, 1) and r > 0 be arbitrary and assume that r < k. By the continuity of V
and V (0, 0) = 0 one can find δ = δ(ε, r) > 0 such that

1

ε
sup
X∈Sδ

V
(
X(t), t

)
6 µ(r). (6)

Obviously, δ < r. Fix X0 ∈ Sδ and let η be the first exit time of X(t) from Sr, i.e.,
η = inf{t > 0: X(t) /∈ Sr}.

By Theorem 1, for any t > 0, we can get

V
(
X(η ∧ t), η ∧ t

)
= V (X0, 0) +

τ∧t∫
0

Vs
(
X(s), s

)
ds

+
α− 1

Γ(α)

η∧t∫
0

VX
(
X(s), s

) s∫
0

(s− τ)α−2f
(
X(τ), τ

)
dτ ds

+
α− 1

Γ(α)

η∧t∫
0

VX
(
X(s), s

) s∫
0

(s− τ)α−2g
(
X(τ), τ

)
dW (τ) ds

= V (X0, 0) +

η∧t∫
0

LαV
(
X(τ), τ

)
dτ dt

+
α− 1

Γ(α)

η∧t∫
0

VX
(
X(s), s

) s∫
0

(s− τ)α−2g
(
X(τ), τ

)
dW (τ) ds. (7)

Take the expectation on (7) and note LαV 6 0. By modulus inequality, for any t > 0,
1/2 < α < 1, we can get

α− 1

Γ(α)

∣∣∣∣∣E
( η∧t∫

0

VX
(
X(s), s

) s∫
0

(s− τ)α−2g
(
X(τ), τ

)
dW (τ) ds

)∣∣∣∣∣
6
α− 1

Γ(α)
E

∣∣∣∣∣
η∧t∫
0

VX
(
X(s), s

)( s∫
0

(s− τ)α−2g
(
X(τ), τ

)
dW (τ)

)
ds

∣∣∣∣∣
6 0.

Following the same procedure in the proof of [15, p. 111, Thm. 2.2] via (6), one has
P{η 6 t} 6 ε. Let t→ +∞, i.e., P{η < +∞} 6 ε.
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Then we have P{|X(t)| 6 r} > 1 − ε for all t > 0. By Definition 4(i) the trivial
solution of (1) is stochastically stable.

(V2) The positive definite decreasing function V ∈ C2,1(Sk × [0,+∞);R+) such
that LαV < 0, α ∈ (1/2, 1), where LαV is defined in (5).

From (V2), V (0, t) ≡ 0, and there exist continuous nondecreasing functions µ1, µ2,
µ3 such that

µ1

(∣∣X(t)
∣∣) 6 V

(
X(t), t

)
6 µ2

(∣∣X(t)
∣∣), LαV

(
X(t), t

)
6 −µ3

(∣∣X(t)
∣∣)

for all (X(t), t) ∈ (Sk × [0,+∞)).
The following result is motivated by [15, p. 112, Thm. 2.3].

Theorem 3. Assume (H1), (H2) and (V2) hold. Then the trivial solution of (1) is sto-
chastically asymptotically stable.

Proof. From Theorem 2 the trivial solution of (1) is stochastically stable. Following the
same procedure in the proof of [15, p. 112, Thm. 2.3] and using Theorem 1, one can show
that there exists δ0 = δ0(ε) > 0 such that P{limt→+∞X(t) = 0} > 1−ε for |X0| < δ0,
ε ∈ (0, 1).

Based on Definition 4(ii), the trivial solution of (1) is stochastically asymptotically
stable.

(V3) V ∈ C2,1(R× [0,+∞);R+), and there exist constants c1 > 1, c2 ∈ R, c3 > 0
such that

(i) c1|X(t)| 6 V (X(t), t),
(ii) LαV (X(t), t) 6 c2V (X(t), t),

(iii) |VX(X(t), t)|2
∫ t
0
|g(X(t), t)(s − τ)α−2|2 dτ > c3V

2(X(t), t) for all
X(t) 6= 0, α ∈ (1/2, 1) and t > 0.

The following result is motivated by [15, p. 121, Thm. 3.3].

Theorem 4. Assume (H1), (H2) and (V 3) hold. Then

lim
t→+∞

sup
1

t
ln |X(t)| 6 − 1

ln c1

1− α
Γ(α)

(c2 + c3) a.s. (8)

In particular, if c2 + c3 > 0, the trivial solution of (1) is almost surely exponentially
stable.

Proof. Fix any X0 6= 0. From Theorem 1 and (V3)(ii), (iii), for α ∈ (1/2, 1), we have

lnV
(
X(t), t

)
= lnV (X0, 0) +

t∫
0

(Vs(X(s), s)

V (X(s), s)
ds

+
α− 1

Γ(α)

t∫
0

VX(X(s), s)
∫ s
0
f(X(τ), τ)(s− τ)α−2 dτ

V (X(s), s)
ds
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+
α− 1

Γ(α)

t∫
0

VX(X(s), s)
∫ s
0
g
(
X(τ), τ

)
(s− τ)α−2) dW (τ)

V (X(s), s)
ds

6 lnV (X0, 0) +

t∫
0

LαV (X(s), s)

V (X(s), s)
ds

+
α− 1

Γ(α)

t∫
0

VX(X(s), s)
∫ s
0
g(X(τ), τ)(s− τ)α−2 dW (τ)

V (X(s), s)
ds.

SetM(t) =
∫ t
0
(VX(X(s), s)

∫ s
0
g(X(τ), τ)(s−τ)α−2 dW (τ)/V (X(s), s)) ds. Then

let n = 1, 2, . . . . For arbitrary ε ∈ (0, 1), by (V3)(iii) we can get

P

{
sup

06t6n

∣∣∣∣∣M(t) + ε

t∫
0

V 2
X(X(s), s)

∫ s
0
|g(X(τ), τ)(s− τ)α−2|2 dτ

V 2(X(s), s)
ds

∣∣∣∣∣ > c3t

}
6 ε.

Using Lemma 2, we get that almost surely

M(t) 6 c3t− ε
t∫

0

V 2
X(X(s), s)

∫ s
0
|g(X(τ), τ)(s− τ)α−2|2 dτ

V 2(X(s), s)
ds

= (1− ε)c3t. (9)

Thus, by (V3)(iii) and (9) we have

lnV
(
X(t), t

)
6 lnV (X0, 0)− 1− α

Γ(α)

[
c2 + (1− ε)c3)

]
t.

Then we can get

1

t
lnV

(
X(t), t

)
6 −1− α

Γ(α)

[
c2 + (1− ε)c3)

]
+

lnV (X0, 0)

t
.

Thus
lim

t→+∞
sup

1

t
lnV

(
X(t), t

)
6 −1− α

Γ(α)

[
c2 + (1− ε)c3

]
.

Using (V3)(i),

lim
t→+∞

sup
1

t
ln c1

∣∣X(t)
∣∣ 6 lim

t→∞

1

t
lnV

(
X(t), t

)
6 −1− α

Γ(α)

[
c2 + (1− ε)c3

]
.

Finally, we get

lim
t→+∞

sup
1

t
ln
∣∣X(t)

∣∣ 6 − 1

ln c1

1− α
Γ(α)

[
c2 + (1− ε)c3

]
.

Since ε is arbitrarily, we have (8).
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Note that c1 > 1, then, if c2 + c3 > 0, we have −(1/ ln c1)((1 − α)/Γ(α)) ×
(c2 + c3) < 0. By Definition 5 the trivial solution of (1) is almost surely exponentially
stable.

(V4) V ∈ C2,1(R× [0,+∞);R+), and there exist constants c1 > 1, c2 ∈ R, c3 > 0
such that

(i) c1|X(t)| > V (X(t), t) > 0,
(ii) LαV (X(t), t) > c2V (X(t), t),

(iii) |VX(X(t), t)|2
∫ t
0
|g(X(t), t)(s− τ)ρ−1|2 dτ 6 c3V

2(X(t), t)

for all X(t) 6= 0 and t > 0, 1/2 < α < 1.

The following result is motivated by [15, p. 123, Thm. 3.5].

Remark 1. Assume (H1), (H2) and (V4) hold. Then

lim
t→+∞

inf
1

t
ln
∣∣X(t)

∣∣ > − 1

ln c1

1− α
Γ(α)

(c2 + c3) a.s. (10)

If c2 + c3 < 0, then −(1/ ln c1)((1 − α)/Γ(α))(c2 + c3) > 0. Thus, almost all
the sample paths of X(·) will tend to infinity (see (10)), i.e., the trivial solution of (1) is
almost surely exponentially unstable.

(H3) The following inequality holds for K > 0:

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ 6 K

∣∣X(t)
∣∣, (X, t) ∈ R× [0,+∞). (11)

The following result is motivated by [15, p. 128, Thm. 4.2].

Theorem 5. Assume (H1), (H2) and (H3) hold. Then the travail solution of (1) is pth
moment exponentially stable (also almost surely exponentially stable).

Proof. Let n = 1, 2, . . . . By Theorem 1 and (11), for any n− 1 6 t 6 n,

∣∣X(t)
∣∣p = |X0|p +

α− 1

Γ(α)

t∫
0

p
∣∣X(s)

∣∣p−1 s∫
0

f
(
X(τ), τ

)
(s− τ)α−2 dτ ds

+
α− 1

Γ(α)

t∫
0

p
∣∣X(s)

∣∣p−1 s∫
0

g
(
X(τ), τ

)
(s− τ)α−2 dW (τ) ds

6 |X0|p + pK
α− 1

Γ(α)

t∫
0

∣∣X(s)
∣∣p ds

+
α− 1

Γ(α)

t∫
0

p
∣∣X(s)

∣∣p−1 s∫
0

g
(
X(τ), τ

)
(s− τ)α−2 dW (τ) ds.
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Since 1/2 < α < 1, by modulus inequality we obtain

α− 1

Γ(α)

∣∣∣∣∣E
( t∫

0

p
∣∣X(s)

∣∣p−1 s∫
0

g
(
X(τ), τ

)
(s− τ)α−2 dW (τ) ds)

∣∣∣∣∣
6
p(α− 1)

Γ(α)
E

∣∣∣∣∣
t∫

0

∣∣X(s)
∣∣p−1( s∫

0

g
(
X(τ), τ

)
(s− τ)α−2 dW (τ)

)
ds

∣∣∣∣∣
6 0.

Hence,

E
(

sup
06t6n

∣∣X(t)
∣∣p) 6 |X0|p + pK

α− 1

Γ(α)

t∫
0

E
(

sup
06t6n

∣∣X(s)
∣∣p)ds.

Using Gronwall’s inequality,

E
(

sup
06t6n

∣∣X(t)
∣∣p) 6 |X0|pe−λt, λ =

1

Γ(α)
pK(1− α) > 0.

By Definition 6 the trivial solution of (1) is pth moment exponentially stable.
Now, let ε ∈ (0, 1) be arbitrary, then

P
{

sup
06t6n

∣∣X(t)
∣∣p > e−(λ−ε)t

}
6 e(λ−ε)t ·E

(
sup

06t6n

∣∣X(t)
∣∣p)

6 |X0|pe−εt.

By Lemma 2 we get

sup
n−16t6n

∣∣X(t)
∣∣p 6 e−(λ−ε)t a.s.

Consequently, for almost all ω ∈ Ω, n− 1 6 t 6 n,

1

t
ln
∣∣X(t)

∣∣ 6 1

pt
ln
∣∣X(t)

∣∣p 6 − 1

pt
(λ− ε)t 6 − (λ− ε)t

pn
.

Hence,

lim
t→+∞

sup
1

t
ln
∣∣X(t)

∣∣ 6 −λ− ε
p

a.s.

Since ε > 0 is arbitrary, we obtain

lim
t→+∞

sup
1

t
ln
∣∣X(t)

∣∣ 6 −λ
p

a.s.

By Definition 5 the trivial solution of (1) is almost surly exponential stability.
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5 Examples

Example 1. Consider the stochastic differential equation on

CDα
0+X(t) = f

(
X(t), t

)
+ g
(
X(t), t

)dW (t)

dt
, t > 0, α ∈

(
1

2
, 1

)
,

X(0) = X0,

(12)

where X0 ∈ R and X0 6=∞, f : R× R+ → R, g : R× R+ → R.
Let the functions f , g satisfy assumptions (H1) and (H2), and for any t > 0,

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ < +∞. (13)

Then for any t > 0, there is a pair of positive constants θ and K such that

−K 6
α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ + θ 6 K. (14)

Next, let t > 0, we define

V
(
X(t), t

)
= e|X(t)| exp

[
−α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ + θ

]
.

By (14), for t > 0, we can get

e|X(t)|e−εK 6 V
(
X(t), t

)
6 e|X(t)|eεK .

Hence, V is positive definite. Next, by (13), for t > 0, we have

LαV
(
X(t), t

)
= e|X(t)| exp

[
−α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ + θ

]

×

(
α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ + θ

)

+ e|X(t)| exp

[
−α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ + θ

]

× α− 1

Γ(α)

t∫
0

f
(
X(τ), τ

)
(t− τ)α−2 dτ

6 −θe−Ke|X(t)| < 0.
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Figure 1. Brownian motion W (t) and white noise dW (t)/dt, t ∈ [0, 500].

Figure 2. Stochastic stability and unstability when α = 1.

From above (V2) holds. By Theorem 2 we can conclude that under (13) and (14), the
trivial solution of (12) is stochastically stable.

Let r and β be constants when α = 1, f(X, t) = rX and g(X, t) = βX , the solution
of (12) can be see in [15, Ex. 5.5]. Our chosen Brownian motion and white noise are shown
in Fig. 1. Using MATLAB software, trajectories of stochastically stable on r < β2/2 and
r > β2/2 and corresponding unstable results are shown in Fig. 2.

Example 2. We consider the one-dimensional fractional Langevin equation on t > 0

CDα
0+X(t) = −rX(t) + σ

dW (t)

dt
, α ∈

(
1

2
, 1

)
, r > 0,

X(0) = X0.

(15)

The solution of (15) can be expressed as

X(t) = X0t
α−1Eα,α

(
−rtα

)
+ σ

t∫
0

(t− τ)α−1Eα,α
(
−r(t− τ)α

)
dW (τ), t > 0.
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Figure 3. Almost surly exponential stability of fractional Langevin equation when α = 0.6 and 0.7.

Figure 4. Almost surly exponential stability of fractional Langevin equation when α = 0.8 and 0.9.

If X0 > 0 and X0 6= ∞, according to the results for asymptotic behavior of Mittag-
Leffler functions in [7], the solution of (15) is exponentially decaying under the distur-
bance of white noise.

On the other hand, from Lemma 1 X(t) ∈ Xt := L2(Ω,Ft,P). Since r > 0, we can
get

t∫
0

−rX(τ)(t− τ)α−2 dτ < +∞, t > 0.

Obviously, there are a pair of positive constants θ and K such that

−K 6
α− 1

Γ(α)

t∫
0

−rX(τ)(t− τ)α−2 dτ + θ 6 K, t > 0.

From Example 1 the solution of (15) is stochastically stable. Using MATLAB soft-
ware, the solution trajectories for α = 0.6, 0.7, 0.8, 0.9 are shown in Figs. 3 and 4. When

Nonlinear Anal. Model. Control, 26(4):581–596, 2021

https://doi.org/10.15388/namc.2021.26.22421


594 G. Xiao, J. Wang

Figure 5. Almost surly exponential stability of fractional Langevin equation when α = 1 and white noise
vanishes in (15) when α = 0.6.

α = 1, the solution of (15) can be directly expressed as

X(t) = X0e−rt + σ

t∫
0

e−r(t−τ) dW (τ), t > 0,

and its trajectory is shown in Fig. 5.

6 Conclusion

This paper studies the stability of Caputo-type fractional stochastic differential equations.
The Itô’s formula of Caputo version is established and used to prove the stochastic sta-
bility, stochastic asymptotical stability, almost surly exponential stability and pth moment
exponential stability. Numerical examples are given to illustrate the stability results.
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