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Abstract. Consider an abstract Problem P in a metric space (X, d) assumed to have a unique
solution u. The aim of this paper is to compare two convergence results u′n → u and u′′n → u,
both in X , and to construct a relevant example of convergence result un → u such that the two
convergences above represent particular cases of this third convergence. To this end, we use the
concept of Tykhonov triple. We illustrate the use of this new and nonstandard mathematical tool
in the particular case of hemivariational inequalities in reflexive Banach space. This allows us to
obtain and to compare various convergence results for such inequalities. We also specify these
convergences in the study of a mathematical model, which describes the contact of an elastic body
with a foundation and provide the corresponding mechanical interpretations.

Keywords: Tykhonov triple, well-posedness, hemivariational inequality, contact problem,
unilateral constraint.

1 Introduction

In this paper, we study various convergence results at three different levels. The first one
concerns generic abstract problems in metric spaces. The second one concerns hemivari-
ational inequalities in abstract reflexive Banach space. Finally, the third level concerns
boundary value problems, which model the contact of an elastic body with an obstacle,
the so-called foundation. For this reason, we use notation and arguments arising from the
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abstract well-posedness theory in the sense of Tykhonov, the theory of hemivariational
inequalities and the mathematical theory of contact mechanics. A brief description of
these three topics is the following.

The concept of well-posedness in the sense of Tykhonov was introduced in [29] for
a minimization problem. It is based on two main ingredients: the existence and uniqueness
of the solution and the convergence to the unique solution of any approximating sequence.
This concept was generalized to variational inequalities in [15,16] and to hemivariational
inequalities in [8]. References in the field include [1, 13, 27, 28, 31]. An extension of
this concept in the study of generic problems in metric spaces was considered in our
recent paper [26]. There some abstract results have been proved and then used in the study
of nonlinear equations, history-dependent equations, variational and hemivariational in-
equalities. In this way, a number of convergence results have been obtained.

Hemivariational inequalities represent a special class of inequalities, which arise in
the study of nonsmooth boundary value problems. In contrast with the variational in-
equalities (which are governed by convex functions), hemivariational inequalities are
governed by locally Lipschitz functions, which could be nonconvex. For this reason,
their study requires prerequisites on nonsmooth analysis. Hemivariational inequalities
have been introduced by Panagiotopoulos in early eighties in the context of applications
in engineering problems. Later, they have been studied in a large number of papers, in-
cluding the books [17,19,22]. The mathematical literature on hemivariational inequalities
concerns existence, uniqueness, regularity and convergence results, among others. It grew
up rapidly in the last decade, motivated by important applications in physics, mechanics
and engineering sciences. A recent reference is the book [25], which provides the state of
the art in the field together with relevant applications in contact mechanics.

The mathematical theory of contact mechanics deals with the study of systems of
partial differential equations, which describe processes of contact with different constitu-
tive laws, different geometries and different interface laws. Such kind of processes arise
in industry and daily life, and therefore, a large effort has been put into their modeling,
analysis and numerical simulations. The literature on this field is extensive. It deals with
the analysis of various models of contact, which are expressed in terms of strongly elliptic,
time-dependent or evolutionary nonlinear boundary value problems. References in the
field include [4, 5, 10, 14, 20, 22] and, more recently, [2, 3, 17, 23–25]. There various
existence and uniqueness results have been proved by using arguments of variational
and hemivariational inequalities. Once existence and uniqueness of solutions have been
established, related important questions arise, such as convergence results, which provide
the link between the solutions of different models.

The aim of this paper is to introduce a functional framework in which various con-
vergence results can be studied. More precisely, if u represents the solution of a given
problem, we provide a framework in which two convergence results u′n → u and u′′n → u
can be compared.

To this end, we use arguments and ingredients on Tykhonov well-posedness, including
a new result in the study of Tykhonov triples, Theorem 2. The theorem is nonstandard
and represents the first trait of novelty of this current paper. Then we illustrate the use of
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Theorem 2 in the study of hemivariational inequalities of the form

u ∈ K, 〈Au, v − u〉+ j0(u; v − u) > 〈f, v − u〉 ∀v ∈ K. (1)

Here X is a real reflexive Banach space, 〈·, ·〉 denotes the duality pairing between X and
its dual X∗, K ⊂ X , A : X → X∗, j : X → R and f ∈ X∗. We assume that j is
a locally Lipschitz function, and we denote by j0(u; v) the Clarke directional derivative
of j at the point u in the direction v. Using Theorem 2 in the study of inequality problems
of the form (1) allows us to recover, to compare and to complete our convergence results
in [18, 25–27] obtained by using different functional methods. Presenting these results in
a unified way consists the second trait of novelty of this paper. Finally, we provide a new
and nonstandard model of contact for which our results hold, which consists the third
novelty of this work.

The rest of the paper is structured as follows. In Section 2, we provide several elemen-
tary convergence results for inequalities of the form (1) in the particular case when j van-
ishes. Moreover, we establish the link between these convergence results. In Section 3,
we introduce the concept of Tykhonov triple, and based on the examples in Section 2, we
prove our main abstract result, Theorem 2. It provides sufficient conditions which allow
us to construct a majorant for a finite family of Tykhonov triples which can be used in
the proof of convergence results. In Sections 4 and 5 we apply Theorem 2 in the study
of hemivariational inequalities of the form (1) and establish a general convergence result,
respectively. Finally, in Section 6 we consider a mathematical model which describes the
equilibrium of an elastic body in contact with a foundation. In a variational formulation,
the model leads to a hemivariational inequality for the displacement field. We illustrate
the use of the abstract results in Section 4 in the study of this inequality and provide the
corresponding mechanical interpretations.

We end this section with the remark that in Sections 4 and 5 of this paper, X is a real
reflexive Banach space, unless stated otherwise. We use ‖·‖X and ‖·‖X∗ for the norm
on X and its dual X∗ and 0X , 0X∗ for the zero element of X and X∗, respectively.
We denote by Kn

M→ K the convergence in the sense of Mosco recalled in (M1), (M2),
and ∂j will represent the Clarke subdifferential of the function j assumed to be locally
Lipschitz. All the limits, upper and lower limits will be considered as n → ∞ even if
we do not mention it explicitly. Moreover, the symbols “⇀” and “→” denote the weak
and the strong convergence in various spaces, which will be specified. In addition, for
a nonempty set F , we use the notation S(F ) for the set of sequences whose elements
belongs to F and 2F for the set of nonempty parts of F .

2 Problem statement

We start with an existence and uniqueness result for a class of hemivariational inequalities,
which extends (1) and which is needed in the rest of the paper. Thus, besides the data K,
A, j and f , we consider a function ϕ : X × X → R. Then we formulate the following
inequality problem: find an element u ∈ K such that

〈Au, v − u〉+ ϕ(u, v)− ϕ(u, u) + j0(u; v − u) > 〈f, v − u〉 ∀v ∈ K. (2)
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Note that the function ϕ is supposed to be convex with respect to the second argument,
and for this reason, following the terminology in [21], we refer to inequality (2) as
a variational-hemivariational inequality. In the case when j vanishes, it represents a pure
variational inequality, and in the case when ϕ vanishes, it is a pure hemivariational
inequality.

In the study of (2), we consider the following assumptions:

(A1) K is nonempty, closed and convex subset of X;
(A2) A : X → X∗ is pseudomonotone and strongly monotone, i.e.,

(i) if A is bounded and un ⇀ u in X with lim sup〈Aun, un − u〉 6 0, then
lim inf〈Aun, un − v〉 > 〈Au, u− v〉 for all v ∈ X ,

(ii) there exists mA > 0 such that for all u, v ∈ X ,

〈Au−Av, u− v〉 > mA‖u− v‖2X ;

(A3) j : X → R is such that

(i) j is locally Lipschitz,
(ii) ‖ξ‖X∗ 6 c0 + c1‖v‖X for all v ∈ X , ξ ∈ ∂j(v) with c0, c1 > 0,

(iii) there exists αj > 0 such that for all v1, v2 ∈ X ,

j0(v1; v2 − v1) + j0(v2; v1 − v2) 6 αj‖v1 − v2‖2X ;

(A4) f ∈ X∗;
(A5) ϕ : X ×X → R is such that

(i) ϕ(η, ·) : X → R is convex lower semicontinuous for all η ∈ X ,
(ii) for all η1, η2, v1, v2 ∈ X , there exists αϕ > 0 such that

ϕ(η1, v2)− ϕ(η1, v1) + ϕ(η2, v1)− ϕ(η2, v2)

6 αϕ‖η1 − η2‖X‖v1 − v2‖X ;

(A6) αϕ + αj < mA.

Concerning condition (A2), we follow [25] and recall that an operatorA : X → X∗ is
pseudomonotone, i.e., it satisfies condition (A2)(i) if and only if it is bounded and un→u
weakly inX together with lim sup〈Aun, un−u〉 6 0 implies lim〈Aun, un−u〉 = 0 and
Aun → Au weakly in X∗.

The unique solvability of inequality (2) is given by the following result [18, 25].

Theorem 1. Assume (A1)–(A6). Then inequality (2) has a unique solution u ∈ K.

We now consider the following versions of inequality (2):

u ∈ K, 〈Au, v − u〉 > 〈f, v − u〉 ∀v ∈ K, (3)
un ∈ K, 〈Aun, v − un〉+ θn‖v − un‖X > 〈f, v − un〉 ∀v ∈ K, (4)
un ∈ K, 〈Aun, v − un〉+ ϕn(v)− ϕn(un) > 〈f, v − un〉 ∀v ∈ K, (5)
un ∈ K, 〈Aun, v − un〉 > 〈fn, v − un〉 ∀v ∈ K, (6)
un ∈ Kn, 〈Aun, v − un〉 > 〈f, v − un〉 ∀v ∈ Kn, (7)

where

(A7) Kn ⊂ X , fn ∈ X∗, θn > 0, ϕn is a seminorm on X for each n ∈ N.
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Then, assuming (A1), (A2) and (A4), we deduce the unique solvability of inequality (3).
Denote in what follows by u the unique solution to this inequality and consider the
following assumptions:

(B1) un is a solution to inequality (4), and θn → 0;
(B2) un is a solution to inequality (5), for each n ∈ N, there exists εn > 0 such that

ϕn(v) 6 εn‖v‖X for all v ∈ X and, moreover, εn → 0;
(B3) un is a solution to inequality (6) and fn → f in X∗;
(B4) un is a solution to inequality (7) and Kn

M→ K.

Recall that notation Kn
M→ K represents a short-hand notation for the convergence in

the sense of Mosco, i.e., by definition it means that the following properties hold:

(M1) For every v ∈ K, there exists a sequence {vn} ⊂ X such that vn ∈ Kn for
each n ∈ N and vn → v in X;

(M2) For each sequence {vn} such that vn ∈ Kn for each n ∈ N and vn ⇀ v in X ,
we have v ∈ K.

Then we have the following result.

Proposition 1. Under conditions (A1), (A2), (A4) and (A7), each of assumptions (B1)–
(B4) above implies the convergence

un → u in X. (8)

The proof of the convergence (8) under assumptions (B1)–(B3) is standard, and there-
fore, we skip it. We restrict ourselves to mention that it follows by using estimates based
on the strong monotonicity of the operator A, (A2)(ii). The proof of the convergence
(8) under assumptions (B4) is more delicate since it is based on arguments of compact-
ness and pseudomonotonicity. Nevertheless, it follows from the proof of a more general
convergence result in the study of variational-hemivariational inequality (2) obtained
in [30, 32], and therefore, we skip it, too.

We now complete Proposition 1 with the following remark.

Remark 1. Assume (A1), (A2), (A4) and (A7) and let n ∈ N. Then:

(a) If ϕn is a seminorm on X , then assumption (B2) implies (B1) with θn = εn;
(b) If fn ∈ X∗, then assumption (B3) implies (B1) with θn = ‖fn − f‖X∗ ;
(c) If fn ∈ X∗, then assumption (B3) implies (B2) with ϕn(v) = 〈f − fn, v〉 for all

v ∈ V ;
(d) In general, if (B4) holds, we cannot find θn > 0 such that (B1) holds. Similarly,

we cannot find a seminorm ϕn such that (B2) is satisfied nor an element fn ∈ X∗
such that (B3) holds.

The proof of statements (a)–(c) is elementary. For instance, assume that ϕn is a semi-
norm and (B2) holds. We have ϕn(v) − ϕn(un) 6 ϕn(v − un) 6 εn‖v − un‖X for
all v ∈ K, and therefore, inequality (5) implies (4) with θn = εn, which proves (a).
In addition, the proof of (b) and (c) can be easily obtained, so we omit it. The proof
of (d) is a consequence of the following counter-example. Let X = R, K = [−1, 1],
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Kn = [−1 − 1/n, 1 + 1/n], Au = u and f > 2. Then it is easy to see that Kn
M→ K.

Moreover, the solution of inequality (7) is the projection of f in the set Kn, i.e., un =
1 + 1/n. This shows that un cannot satisfy inequalities (4)–(6) since un /∈ K.

It follows from Remark 1 that the convergence (8) under assumptions (B2) or (B3) is
a consequence of the convergence (8) under assumption (B1). Also, the convergence (8)
under assumption (B3) can be viewed as a consequence of the convergence (8) under as-
sumption (B2). Moreover, the convergence (8) under assumption (B4) cannot be deduced
from fact that it holds under assumptions (B1), (B2) or (B3). In other words, it follows
from above that some of the convergences imply other convergences and some do not.

Assume now that (X, d) is a metric space and consider ProblemP , which has a unique
solution denoted by u. An example of Problem P is given by the problem of finding a so-
lution to the variational inequality (3) in a reflexive space X . It follows from the results
above in this section that, in general, there exist several sequences {un}, which converge
to u in X . Moreover, for each n ∈ N, un is a solution of Problem Pn, which represents a
perturbation of Problem P . Examples are provided by the variational inequalities (4)–(7).
Nevertheless, these convergences do not have the same status since, as shown above, some
of the convergences could imply others and some of the convergences cannot be implied
by others. Therefore, there is a need to compare two convergences, i.e., to establish an
order relation between them. And on this matter, we formulate the following question:

(Q) Is it possible to compare two convergence results u′n → u and u′′n → u, both in
X , in the study of Problem P?

A possible answer to this question will be provided in the next section. There we also
construct a relevant example of convergence un → u such that the two convergences in
the statement of the question Q represent particular cases of this third convergence.

3 Tykhonov triples for abstract problems

Everywhere in this section, we assume that (X, d) is a metric space and P is an ab-
stract mathematical object called generic “problem”. We also assume that Problem P has
a unique “solution” u ∈ X , and we use the notation SP = {u}. Next, following our
previous paper [31] and using the notation S(F ) and 2F in introduction, we recall the
following definition.

Definition 1.

(a) A Tykhonov triple is a mathematical object of the form T = (I,Ω, C), where I is
a given nonempty set, Ω : I → 2X and C is a nonempty subset of the set S(I).

(b) Given a Tykhonov triple T = (I,Ω, C), a sequence {un} ∈ S(X) is called
a T -approximating sequence if there exists a sequence {θn} ∈ C such that
un ∈ Ω(θn) for each n ∈ N.

(c) Given a Tykhonov triple T = (I,Ω, C), Problem P is said to be well-posed
with T or, equivalently, T -well-posed if it has a unique solution and every T -ap-
proximating sequence converges in X to this solution.
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Below in this paper, we refer to I as the set of parameters. A typical element of I will
be denoted by θ. We refer to the family of sets {Ω(θ)}θ∈I as the family of approximating
sets, and moreover, we say that C define the criterion of convergence. Note that T -ap-
proximating sequences always exist since, by assumption, C 6= ∅ and, moreover, for any
sequence {θn} ∈ C and any n ∈ N, the set Ω(θn) is not empty. We also remark that in
most of the references in introduction, including [26], the well-posed of a problem was
studied with respect to a canonical triple, and for this reason, in that papers, the termi-
nology “approximating sequence” and ”well-posedness” was used without any reference
to that Tykhonov triple. In contrast, in the current paper, we consider several Tykhonov
triples in the study of the same problem, which implicitly requires the use of terminology
“T -approximating sequence” and “T -well-posedness”.

Let T = (I,Ω, C) be a Tykhonov triple. We denote S̃P the set of sequences of X ,
which converge to u and by S̃T the set of T -approximating sequences, that is,

S̃P =
{
{un} ∈ S(X): un → u in X

}
, (9)

S̃T =
{
{un} ∈ S(X): {un} is a T -approximating sequence

}
. (10)

Next, we use Definition 1(c) and equalities (9), (10) to see that

(C) Problem P is T -well-posed if and only if S̃T ⊂ S̃P .

Moreover, the set S̃T of T -approximating sequences suggests us to introduce the follow-
ing definition.

Definition 2. Given two Tykhonov triples T1 = (I1, Ω1, C1) and T2 = (I2, Ω2, C2), we
say that:

(a) T1 and T2 are equivalent if their sets of approximating sequences are the same,
i.e., S̃T1 = S̃T2 . In this case, we use the notation T1 ≈ T2.

(b) T1 is smaller than T2 if S̃T1 ⊂ S̃T2 . In this case, we use the notation T1 6 T2.

It is easy to see that “≈” represents an equivalence relation on the set of Tykhonov
triples, while “6” defines a relation of order on the same set. Moreover, using (C), we
deduce that the following statements hold:

(C1) If T1 ≈ T2, then Problem P is T1-well-posed if and only if it is T2-well posed.
(C2) If T1 6 T2 and Problem P is T2-well-posed, then Problem P is T1-well-posed,

too.

Next, we remark that any Tykhonov triple such that Problem P is T -well-posed gives rise
to a convergence result to the solution of Problem P since, following Definition 1(c), we
have

(C3) If {un} ∈ S̃T and Problem P is T -well-posed, then un → u in X .

Assume in what follows that the converse of this implication is also true, i.e.,

(C4) If un → u in X , then there exists a Tykhonov triple T such that Problem P is
T -well-posed and {un} ∈ S̃T .

Nonlinear Anal. Model. Control, 26(2):271–292
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Note that condition (C4) is valid for the examples presented below in this paper as well
as for most of the convergence results in the literatures, see, for instance [26, 27] and
the references therein. Moreover, in all these examples, T can be chosen in a canonical
way. Then, using implications (C3) and (C4), we can associate to each convergence result
un → u in X a (canonical) Tykhonov triple T such that Problem P is T -well-posed and
vice versa. This allows us to replace the study of the convergence results by the study of
the Tykhonov triples. Moreover, since the implications above are governed by the set S̃T ,
using Definition 2(a), we deduce that a convergence result to the solution of Problem P is
characterized by an equivalence class of Tykhonov triples with whom Problem P is well-
posed. In addition, since Definition 2(b) allows us to compare two (equivalence classes
of) Tykhonov triples, we deduce that it allows us to compare two convergence results, too.
This provides a possible answer to the question Q formulated at the end of Section 2.

We turn now to the construction of a relevant example of Tykhonov triple, which will
be used in the next sections. Let p ∈ N, Ti = (Ii, Ωi, Ci) be Tykhonov triples with
i = 1, . . . , p and consider the following assumptions:

(D1) For each i = 1, . . . , p, there exists ci ∈ Ii such that the sequence θi = {θin}
defined by θin = ci for each n ∈ N belongs to Ci;

(D2) There exists a multifunction Ω : I1 × I2 × · · · × Ip → 2X such that

Ω1(θ1) ⊂ Ω(θ1, c2, c3, . . . , cp−1, cp) ∀θ1 ∈ I1,
Ω2(θ2) ⊂ Ω(c1, θ2, c3, . . . , cp−1, cp) ∀θ2 ∈ I2,

· · ·
Ωp(θp) ⊂ Ω(c1, c2, c3, . . . , cp−1, θp) ∀θp ∈ Ip.

Our main result in this section is the following.

Theorem 2. Assume (D1) and (D2). Then there exists a Tykhonov triple T = (I,Ω,C)
such that Ti 6 T for all i = 1, . . . , p.

Proof. Define I = I1 × I2 × · · · × Ip, C = C1 × C2 × · · · × Cp, and let T = (I,Ω, C),
where Ω : I → 2X is the multifunction provided by assumption (D2). We shall prove
that Ti 6 T for all i = 1, . . . , p.

Let {u1n} be a T1-approximating sequence for Problem P . Then it follows from
Definition 1(b) that there exists a sequence {θ1n} ∈ C1 such that u1n ∈ Ω1(θ1n) for each
n ∈ N. We now use the first inclusion in assumption (D2) to see that

u1n ∈ Ω(θ1n, c2, c3, . . . , cp) ∀n ∈ N. (11)

On the other hand, assumption (D1) guarantees that the sequence θ = {θn} with θn =
(θ1n, c2, c3, . . . , cp) belongs to C. Combining this result with (11), we deduce that

θ = {θn} ∈ C and u1n ∈ Ω(θn) ∀n ∈ N. (12)

We now use (12) and Definition 1(b) to see that the sequence {u1n} is a T -approximating
sequence for Problem P . It follows from here that S̃T1 ⊂ S̃T , and using Definition 2(b),
we find that T1 6 T . A similar argument leads to the inequalities T2 6 T , . . . , Tp 6 T ,
which concludes the proof.
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We now use implication (C2) and end this section with the following remark: under
the assumption of Theorem 2, if Problem P is T -well-posed, then it is Ti-well-posed
for each i = 1, 2, . . . , p. In terms of convergence, this remark can be stated as follows:
the convergence generated by T implies each of the convergences generated by Ti with
i = 1, 2, . . . , p. The importance of this abstract result arises in the fact that it can be
used in order to obtain various convergence results in an unified way as we exemplify in
Sections 4–6 below.

4 The case of hemivariational inequalities

In this section, we assume that X is a reflexive Banach space, and we apply Theorem 2 in
the study of the hemivariational inequality (1). Therefore, Problem P under consideration
is as follows.

Problem P . Find u ∈ X such that (1) holds.

Everywhere in this section, we assume that (A1)–(A4) hold, and moreover,

(A6′) αj < mA.

Then, using Theorem 1 with ϕ ≡ 0, we deduce that Problem P has a unique solution
denoted in what follows by u. Next, we consider a function h : [0,+∞)×X → R such
that

(E1) h(ε, u) > 0 and h(0, u) = 0 for all u ∈ X , ε > 0,
(E2) h(εn, un)→ 0 whenever 0 6 εn → 0, and {un} ⊂ X is bounded,
(E3) there exists Lh : [0,+∞)→ R such that

(i) |h(ε, u)− h(ε, v)| 6 Lh(ε)‖u− v‖X for all u, v ∈ X , ε > 0,
(ii) Lh(εn)→ 0 whenever 0 6 εn → 0.

Moreover, we assume the following additional condition on the function j:

(E4) For all sequences {un}, {vn} ⊂ X such that un ⇀ u in X , vn → v in X , we
have lim sup j0(un; vn − un) 6 j0(u; v − u).

Note that this condition can be avoided in the proof of Theorem 3 below. Nevertheless,
we keep it for two reasons: first, it allows us to simplify the proof of this theorem; second,
it is satisfied in the example we present in Section 6 below. Moreover, we mention that
examples of functions j, which satisfy this conditions, are given in [25].

Next, we consider the Tykhonov triples T1 = (I1, Ω1, C1), T2 = (I2, Ω2, C2), T3 =

(I3, Ω3, C3) defined as follows: I1 = [0,+∞), I2 = {g: g ∈ X∗}, I3 = {K̃: K̃ is a non-
empty closed convex subset of X},

Ω1(ε) =
{
u ∈ K: 〈Au, v − u〉+ j0(u; v − u) + h(ε, u)‖v − u‖X
> 〈f, v − u〉 ∀v ∈ K

}
∀ε ∈ I1,

C1 =
{
{εn}: εn ∈ I1 ∀n ∈ N, εn → 0 as n→∞

}
;

(13)
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Ω2(g) =
{
u ∈ K: 〈Au, v − u〉+ j0(u; v − u)

> 〈g, v − u〉 ∀v ∈ K
}
∀g ∈ I2,

C2 =
{
{gn}: gn ∈ I2 ∀n ∈ N, gn → f in X∗ as n→∞

}
;

(14)

Ω3(K̃) =
{
u ∈ K̃: 〈Au, v − u〉+ j0(u; v − u)

> 〈f, v − u〉 ∀v ∈ K̃
}
∀K̃ ∈ I3,

C3 =
{
{Kn}: Kn ∈ I3 ∀n ∈ N, Kn

M→ K as n→∞
}
.

(15)

Our main result in this section is the following.

Theorem 3. Assume (A1)–(A4), (A6′), (E1)–(E4), and let T1, T2, T3 be defined by
(13)–(15), respectively. Then there exists a Tykhonov triple T = (I,Ω, C) such that:

(a) T1 6 T , T2 6 T and T3 6 T ;
(b) Problem P is T -well-posed.

Proof. (a) Consider the sequences θ1 = {θ1n}, θ2 = {θ2n}, θ3 = {θ3n} defined by θ1n = 0,
θ2n = f , θ3n = K for all n ∈ N. Then, using definitions (13)–(15) and assumptions (A1),
(A4), we see that 0 ∈ I1, f ∈ I2, K ∈ I3 and, moreover, θ1 ∈ C1, θ2 ∈ C2, θ3 ∈ C3.
We conclude from here that condition (D1) is satisfied with p = 3, c1 = 0, c2 = f and
c3 = K.

On the other hand, define the multifunction Ω : I1 × I2 × I3 → 2X by equality

Ω(θ) =
{
u ∈ K̃: 〈Au, v − u〉+ j0(u; v − u) + h(ε, u)‖v − u‖X
> 〈g, v − u〉 ∀v ∈ K̃

}
∀θ = (ε, g, K̃) ∈ I1 × I2 × I3. (16)

Then, using assumptions (E1)–(E3) and (13)–(16), it is easy to see that

Ω1(ε) = Ω(ε, f,K) ∀ε ∈ I1, Ω2(g) = Ω(0, g,K) ∀g ∈ I2,

Ω3(K̃) = Ω(0, f, K̃) ∀K̃ ∈ I3,

which shows that condition (D2) is satisfied, too.
It follows from above that we are in a position to apply Theorem 2. Therefore, we

conclude that the Tykhonov triple T = (I,Ω, C), defined by

I = I1 × I2 × I3 =
{
θ = (ε, g, K̃): ε ∈ I1, g ∈ I2, K̃ ∈ I3

}
,

Ω(θ) =
{
u ∈ K̃: 〈Au, v − u〉+ j0(u; v − u) + h(ε, u)‖v − u‖X
> 〈g, v − u〉 ∀v ∈ K̃

}
∀θ ∈ I,

C = C1 × C2 × C3
=
{
{θn}: θn = (εn, gn,Kn), {εn} ∈ C1, {gn} ∈ C2, {Kn} ∈ C3

}
,

(17)

satisfies the inequalities T1 6 T , T2 6 T and T3 6 T , which concludes the proof of the
first part of the theorem.
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(b) For the second part of the theorem, we consider a T -approximating sequence
of Problem P denoted by {un}. Then Definition 1(a) and (17) show that there exists
a sequence θ = {θn} ∈ C with θn = (εn, gn,Kn) such that

un ∈ Kn, 〈Aun, v − un〉+ j0(un; v − un) + h(εn, un)‖v − un‖X
> 〈gn, v − un〉 ∀v ∈ Kn. (18)

Recall also that inclusion θ = {θn} ∈ C implies the following convergences:

εn → 0, (19)
gn → f in X∗, (20)

Kn
M→ K. (21)

We shall prove that un → u in X , and to this end, we divide the proof in three steps
described below.

Step 1. The sequence {un} is bounded in X .
Let v ∈ K be a given element. Then the convergence Kn

M→ K as n → ∞, guar-
anteed by (21), implies that there exists a sequence {vn} ⊂ X such that vn ∈ Kn for all
n ∈ N and vn → v in K. Letting v = vn in inequality (18), we have

〈Aun, vn − un〉+ j0(un; vn − un) + h(εn, un)‖vn − un‖X
> 〈gn, vn − un〉. (22)

We now use assumption (A2)(ii) to see that

mA‖vn − un‖2X 6 〈Avn −Aun, vn − un〉
= 〈Avn, vn − un〉 − 〈Aun, vn − un〉,

and therefore, inequality (22) yields

mA‖vn − un‖2X 6
(
‖Avn − gn‖X∗ + h(εn, un)

)
‖vn − un‖X

+ j0(un; vn − un). (23)

Moreover, note that condition (E3)(i) implies that

h(εn, un) 6 Lh(εn)‖vn − un‖X + h(εn, vn). (24)

On the other hand, using assumption (A3) and the properties of the Clarke directional
derivative, we have

j0(un; vn − un) = j0(un; vn − un) + j0(vn;un − vn)− j0(vn;un − vn)

6 j0(un; vn − un) + j0(vn;un − vn) +
∣∣j0(vn;un − vn)

∣∣
6 αj‖un − vn‖2X +

∣∣max
{
〈ξ, un − vn〉: ξ ∈ ∂j(vn)

}∣∣
6 αj‖un − vn‖2X +

(
c0 + c1‖vn‖X

)
‖un − vn‖X . (25)
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We now combine inequalities (23)–(25) to see that(
mA − αj − Lh(εn)

)
‖un − vn‖X

6 ‖Avn − gn‖X∗ + h(εn, vn) + c0 + c1‖vn‖X ,

and using assumptions (E3)(ii) and (A6′), we find that there exists a positive constant C0,
which does not depend on n such that

‖un − vn‖X 6 C0

(
‖Avn − gn‖X∗ + h(εn, vn) + c0 + c1‖vn‖X

)
(26)

for n large enough. Therefore, since the sequences {vn} and {gn} are bounded in X
and X∗, respectively, and A is a bounded operator, using the convergence (19) and
assumption (E2), we deduce from inequality (26) that the sequence {un−vn} is bounded
in X . This implies that {un} is a bounded sequence in X , which concludes the proof of
this step.

Step 2. The sequence {un} converges weakly to the solution u of Problem P .
Using the step 1 and the reflexivity of the space X , we deduce that passing to a sub-

sequence if necessary, we have that

un ⇀ ũ as n→∞ (27)

with some ũ ∈ X . Our aim in what follows is to prove that ũ is a solution to Problem P .
To this end, we remark that the convergences (21) and (27) imply that

ũ ∈ K. (28)

Consider now an arbitrary element v ∈ K and a sequence {vn} ⊂ X such that
vn ∈ Kn for all n ∈ N and vn → v in K. Then we use inequality (22) to see that

〈Aun, un − vn〉 6 j0(un; vn − un) + h(εn, un)‖vn − un‖X + 〈gn, un − vn〉.

Passing to the upper limit in this inequality, we find that

lim sup〈Aun, un − vn〉
6 lim sup j0(un; vn − un) + lim suph(εn, un)‖vn − un‖X

+ lim sup〈gn, un − vn〉. (29)

We now use the convergences (19), (20), (27), vn → v in X and assumptions (E2), (E4)
to deduce that

lim sup j0(un; vn − un) 6 j0(ũ; v − ũ), (30)

h(εn, un)‖vn − un‖X → 0, (31)

〈gn, un − vn〉 → 〈f, ũ− v〉. (32)

We now combine relations (29)–(32) to find that

lim sup〈Aun, un − vn〉 6 j0(ũ; v − ũ) + 〈f, ũ− v〉. (33)
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Next, we write

〈Aun, un − vn〉 = 〈Aun, un − v〉+ 〈Aun, v − vn〉,

then use assumptions (A2)(i) and the convergence vn → v inX to see 〈Aun, v−vn〉 → 0,
and therefore,

lim sup〈Aun, un − vn〉 = lim sup〈Aun, un − v〉. (34)

We now combine inequalities (33) and (34) to obtain that

lim sup〈Aun, un − v〉 6 j0(ũ; v − ũ) + 〈f, ũ− v〉. (35)

Next, we take v = ũ in (35) and use the property j0(ũ; 0X) = 0 of the Clarke directional
derivative to deduce that

lim sup〈Aun, un − ũ〉 6 0. (36)

Exploiting now the pseudomonotonicity of the operator A, from (27) and (36) we have

〈Aũ, ũ− v〉 6 lim inf〈Aun, un − v〉 ∀v ∈ X. (37)

Next, from (28), (35) and (37) we obtain that ũ is a solution to Problem P as claimed.
Thus, by the uniqueness of the solution we find that ũ = u.

A careful analysis of the results presented above indicates that every subsequence of
{un}, which converges weakly in X , has the same weak limit u. On the other hand, {un}
is bounded in X . Therefore, we deduce that the whole sequence {un} converges weakly
to u in X as n→∞, which concludes the proof of this step.

Step 3. The sequence {un} converges strongly to the solution u of Problem P .
We take v = ũ ∈ K in both (35) and (37), then we use equality ũ = u to obtain

0 6 lim inf〈Aun, un − u〉 6 lim sup〈Aun, un − u〉 6 0,

which shows that lim〈Aun, un−u〉 = 0. Therefore, using the strong monotonicity of the
operator A and the convergence un ⇀ u in X , we have

mA‖un − u‖2X 6 〈Aun −Au, un − u〉
= 〈Aun, un − u〉 − 〈Au, un − u〉.

Taking limit at both sides of the above inequality yields un → u in X , which concludes
the proof of this step.

So, we proved that any T -approximating sequence converges to the solution of Prob-
lem P . Therefore, using Definition 1(c) it follows that Problem P is T -well-posed, which
concludes the proof of the theorem.

We end this section with the following corollary, which represents a direct conse-
quence of Theorem 3.

Corollary 1. Assume (A1)–(A4), (A6′), (E1)–(E4), and let T1, T2 and T3 be the Tykhonov
triples defined by (13), (14) and (15), respectively. Then Problem P is Ti-well-posed for
each i = 1, 2, 3.
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5 A convergence result

In this section, we provide a consequence of Theorem 3. To this end, besides the data
K, A, j and f in Problem P , for each n ∈ N, we consider a set Kn, an operator An,
a function ϕn and an element fn such that the following hold:

(F1) Kn is nonempty, closed and convex subset of X , and Kn
M→ K as n→∞;

(F2) An : X → X∗, and there exist T : X → X∗ and ωn > 0 such that

(i) Anv = Av + ωnTv for all v ∈ X ,
(ii) ‖Tu− Tv‖X∗ 6 LT ‖u− v‖X for all u, v ∈ X with LT > 0,

(iii) 〈Tu− Tv, u− v〉 > 0 for all u, v ∈ X ,
(iv) ωn → 0 as n→∞;

(F3) ϕn : X×X → R satisfies condition (A5) with αn = αϕn > 0, and there exists
δn > 0 such that

(i) ϕn(η, v1)− ϕn(η, v2) 6 δn‖η‖X‖v1 − v2‖X for all η, v1, v2 ∈ X ,
(ii) δn → 0 as n→∞;

(F4) αj + αn < mA;
(F5) fn ∈ X∗ and fn → f in X∗ as n→∞;
(F6) αn → 0 as n→∞.

With this data, we consider a perturbation of the variational-hemivariational inequali-
ty (2),

un ∈ Kn, 〈Anun, v − un〉+ ϕn(un, v)− ϕn(un, un) + j0(un; v − un)

> 〈fn, v − un〉 ∀v ∈ Kn (38)

together with the following problem.

Problem Pn. Find un ∈ X such that (38) holds.

Our main result in this section is the following.

Theorem 4. Assume (A1)–(A4), (E4) and (F1)–(F6). Then the following statements hold:

(a) There exists a unique solution u to Problem P , and for each n ∈ N, there exists
a unique solution un to Problem Pn;

(b) The sequence {un} converges to the unique solution u in X .

Proof. (a) Note that since αn > 0, assumption (F4) implies (A6′). Therefore, the ex-
istence of the unique solution to Problem P is a direct consequence of Theorem 1 with
ϕ ≡ 0.

Let n ∈ N. It is well known that a monotone and Lipschitz continuous operator is
pseudomonotone and the sum of two pseudomonotone operators is pseudomonotone.
Therefore, assumptions (A2) and (F2) show that the operator An is pseudomonotone.
Moreover, it is strongly monotone with the constant mA. It follows from here that op-
erator An satisfies condition (A2), too. On the other hand, assumption (F3) implies that
(A5) holds and (F4) implies (A6), both with αϕ = αn. Recall also thatKn is a nonempty,
closed and convex subset of X , fn ∈ X∗ and j satisfies (A3). All these ingredients show
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that we are in a position to use Theorem 1 with Kn, An, ϕn and fn instead of K, A, ϕ
and f , respectively. In this way, we deduce the unique solvability of Problem Pn, which
concludes the proof of the first part of the theorem.

(b) For this part of the proof, we use the Tykhonov triple T = (I,Ω, C) defined
by (17). Let n ∈ N and v ∈ X . We use assumption (F2)(i) and (38) to see that

un ∈ Kn, 〈Aun, v − un〉+ ωn〈Tun, v − un〉+ ϕn(un, v)− ϕn(un, un)

+ j0(un; v − un) > 〈fn, v − un〉 ∀v ∈ Kn. (39)
Then we write

ωn〈Tun, v − un〉 6 ωn‖Tun‖X∗‖v − un‖X
6 ωn

(
‖Tun − T0X‖X∗ + ‖T0X‖X∗

)
‖v − un‖X ,

and using assumption (F2)(ii), we find that

ωn〈Tun, v − un〉 6 ωn
(
LT ‖un‖X + ‖T0X‖X∗

)
‖v − un‖X . (40)

Next, assumption (F3)(i) implies that

ϕn(un, v)− ϕn(un, un) 6 δn‖un‖X‖v − un‖X . (41)

We now denote
εn = max{ωn, δn}, (42)

and then we combine (39)–(42) to see that un satisfies inequality (18) with gn = fn and

h(ε, u) = ε
(
(LT + 1)‖u‖X + ‖T0X‖X∗

)
.

Note that the function h satisfies assumptions (E1)–(E3) with Lh(ε) = ε(LT + 1). On
the other hand, (F2)(iv), (F3)(iii) and (42) show that εn → 0, and therefore, (19) holds.
Moreover, (F5) implies (20) with gn = fn, and (F1) implies (21). It follows from here
that the sequence {θn} with θn = (εn, fn,Kn) belongs to the set C defined in (17), and
therefore, {un} is a T -approximating sequence for Problem P . The convergence un → u
in X follows from the T -well-posedness of Problem P guaranteed by Theorem 3.

We end this section with the following comments. First, the convergence of the
solution of inequality (38) to the solution of inequality (2) was obtained in [30, 32] under
different assumptions on the data. The aim of these papers was to obtain results on the
variational-hemivariational inequality (2). In contrast, in the current paper, we focus on
the hemivariational inequality (1), and we consider its perturbation (38) in order to show
that its solution approaches the solution of (1) as n → ∞. Such kind of results are
important in various applications since they could establish the link between the solutions
of different mathematical models. An example arising in contact mechanics will be
provided in Section 6 below.

Next, consider the following particular versions of inequalities (18) and (38):

un ∈ Kn, 〈Aun, v − un〉+ j0(un; v − un) > 〈f, v − un〉 ∀v ∈ Kn, (43)

un ∈ K, 〈Aun, v − un〉+ j0(un; v − un) > 〈fn, v − un〉 ∀v ∈ K, (44)
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un ∈ K, 〈Anun, v − un〉+ j0(un; v − un) > 〈f, v − un〉 ∀v ∈ K, (45)

un ∈ K, 〈Aun, v − un〉+ j0(un; v − un) + εn‖v − un‖X
> 〈f, v − un〉 ∀v ∈ K. (46)

Then, using Theorem 3 and Theorem 4(b), we can obtain the convergence of the solu-
tion of each of inequalities (43)–(46) to the solution of inequality (1) under appropriate
assumptions. The convergence of the solution of (44) and (45) to the solution of inequal-
ity (1) stands for a continuous dependence result of the solution of ProblemP with respect
to the element f and the operator A, respectively. Moreover, the convergence of the
solution of (46) to the solution of inequality (1) extends a result proved in [27] in the
particular case when h(ε, u) = ε.

The convergence of the solution of inequality (43) to the solution of (1) shows the
continuous dependence of the solution of Problem P with respect to the convex set K.
This result is important in the numerical analysis of the hemivariational inequality (1).
There assumption Kn

M→ K shows that Kn represents an approximation of the set K
in the sense used in [6, 7]. The approximation is external if Kn 6⊂ K and is internal
if Kn ⊂ K. The internal approximation of hemivariational inequalities with the choice
Kn = Xn ∩ K, where Xn is a finite dimensional subspace of X , was used in [12],
for instance. More details on abstract approximation of hemivariational inequalities can
be found in [9, 11, 12]. There, besides the convergence of the solution of the discrete
scheme (38) to the solution of Problem P , various error estimates have been obtained.

6 A contact problem

Hemivariational inequalities of the forms (1), (2) arise in the study of a number of contact
problems with elastic materials. Details on the construction and variational analysis of
these problems, including some technical results, can be found in our books [17, 23, 25],
and therefore, we skip them. We restrict in this section to illustrate the convergence result
provided by Theorem 4 in the study of two contact models.

Let d ∈ {2, 3}. We denote by Sd the space of second-order symmetric tensors on
Rd and use the notation “·”, ‖·‖ for the inner product and norm on Rd and Sd. The zero
element of the spaces Rd and Sd will be denoted by 0. Also, consider a domain Ω ⊂ Rd
with smooth boundary Γ divided into three measurable disjoint parts Γ1, Γ2 and Γ3 such
that meas(Γ1) > 0 and denote by ν the unit outward normal vector to Γ .

We use the standard notation for Sobolev and Lebesgue spaces associated toΩ and Γ ,
and for an element v ∈ H1(Ω)d, we still write v for the trace of v to Γ . In addition,
we consider the space V = {v ∈ H1(Ω)d: v = 0 on Γ1}, which is real Hilbert
space endowed with the canonical inner product (u,v)V =

∫
Ω
ε(u) · ε(v) dx and the

associated norm ‖·‖V . Here and below ε represents the symmetric part of the gradient
of v. We denote by 0V the zero element of V and, for an element v ∈ V , vν and
vτ will represent its normal and tangential components on Γ given by vν = v · ν and
vτ = v−vνν, respectively. Finally, V ∗ represents the dual of V , 〈·, ·〉 denotes the duality
pairing between V ∗ and V , and ‖γ‖ is norm of the trace operator γ : V → L2(Γ )d. Recall
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that the following inequality holds:

‖v‖L2(Γ )d 6 ‖γ‖‖v‖V ∀v ∈ V. (47)

The first contact model we consider in this section is constructed by using the data F ,
f0, f2, k and p assumed to satisfy the following conditions:

(G1) F : Sd → Sd and

(i) there exists LF > 0 such that ‖F(ε1) − F(ε2)‖ 6 LF‖ε1 − ε2‖ for all
ε1, ε2 ∈ Sd,

(ii) there existsmF > 0 such that (F(ε1)−F(ε2))·(ε1−ε2) > mF‖ε1−ε2‖2
for all ε1, ε2 ∈ Sd,

(iii) F(0) = 0;

(G2) f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d;
(G3) k > 0;
(G4) p : R→ R is a continuous function such that

(i) |p(r)| 6 c̄0 + c̄1|r| for all r ∈ R with c̄0, c̄1 > 0,
(ii) (p(r1)− p(r2))(r2 − r1) 6 αp|r1 − r2|2 for all r1, r2 ∈ R with αp > 0.

Let q : R→ R is the function defined by

q(r) =

r∫
0

p(s) ds ∀r ∈ R, (48)

and introduce the following notations:

K =
{
v ∈ V : vν 6 k a.e. on Γ3

}
, (49)

A : V → V ∗, 〈Au,v〉 =

∫
Ω

Fε(u) · ε(v) dx, (50)

j : V → R, j(v) =

∫
Γ3

q(vν) da, (51)

f ∈ V ∗, 〈f ,v〉 =

∫
Ω

f0 · v dx+

∫
Γ2

f2 · γv da

for all u,v ∈ V . Then we consider the following problem.

Problem S. Find a displacement field u ∈ K such that

〈Au,v − u〉+ j0(u;v − u) > 〈f ,v − u〉 ∀v ∈ K.

Following the arguments in [25], it can be shown that Problem S represents the
variational formulation of a mathematical model, which describes the equilibrium of an
elastic body in frictionless contact with a foundation under the action of external forces. It
is assumed that the foundation is made of a rigid material covered by a layer of deformable
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material. The function F is a constitutive function, while f0 and f2 denote the density of
body forces and applied tractions, which act on the body and the surface Γ2, respectively.
Finally, k represents the thickness of the deformable layer, and p is a normal compliance
function, which describes its reaction towards the elastic body.

For the second contact model, we consider a set B such that

(H1) B is a closed convex subset of Sd and 0 ∈ B.

Moreover, for each n ∈ N, we assume that ωn, µn, f0n, f2n, kn are given and satisfy

(H2) ωn > 0, ωn → 0;
(H3) µn > 0, µn → 0;
(H4) f0n ∈ L2(Ω)d, f2n ∈ L2(Γ2)d;
(H5) f0n → f0 in L2(Ω)d, f2n → f2 in L2(Γ2)d;
(H6) kn > 0, kn → k;
(H7) (αp + µn)‖γ‖2 < mF .

Note that here we consider only the homogeneous case, for simplicity. Nevertheless,
we remark that the results below can be easily extended to the case when the functions F ,
p, as well as ωn, µn, depend on the spatial variable x ∈ Ω ∪ Γ .

We now introduce the following notations:

Kn =
{
v ∈ V : vν 6 kn a.e. on Γ3

}
, (52)

An : V → V ∗, 〈Anu,v〉 = 〈Au,v〉+ ωn

∫
Ω

(
ε(u)− PBε(u)

)
· ε(v) dx, (53)

ϕn : V × V → R, ϕn(u,v) = µn

∫
Γ3

u+ν ‖vτ‖da, (54)

fn ∈ V ∗, 〈fn,v〉 =

∫
Ω

f0n · v dx+

∫
Γ2

f2n · γv da

for all u,v ∈ V . Here and below PB : Sd → B denotes the projection operator on the set
B, and r+ represents the positive part of r, i.e., r+ = max{r, 0}. Then, for each n ∈ N,
we consider the following problem.

Problem Sn. Find a displacement field un such that

un ∈ Kn, 〈Anun,v − un〉+ ϕn(un,v)− ϕn(un,un) + j0(un;v − un)

> 〈fn,v − un〉 ∀v ∈ Kn.

Note that, in contrast to Problem S, Problem Sn represents the variational formu-
lation of a mathematical model, which describes the equilibrium of an elastic body in
frictional contact. The friction is described with the function ϕn in which µn represents
the coefficient of friction. Moreover, in the statement of Problem Sn, the constitutive law
is perturbed by using the elasticity coefficient ωn and the projection on the convex set
B, the densities of body forces and surface tractions are replaced by their perturbation

http://www.journals.vu.lt/nonlinear-analysis
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f0n and f2n, respectively, and the thickness of the deformable material is replaced by its
perturbation kn.

Our result in the study of Problem S and Problem Sn is the following.

Theorem 5. Assume (G1)–(G4), (H1)–(H6). Then the following statements hold:

(a) There exists a unique solution u to Problem S, and for each n ∈ N, there exists
a unique solution un to Problem Sn.

(a) The sequence {un} converges to the unique solution u in V .

Proof. We use Theorem 4 with X = V , and to this end, we have check the validity
of conditions (A1)–(A4), (E4) and (F1)–(F6). First, we remark that condition (A1) is
obviously satisfied. Moreover, the operator A defined by (50) satisfies condition (A2).
Indeed, using assumption (G1)(i), we find that

〈Au−Av,w〉 6 LF‖u− v‖V ‖w‖V ∀u,v,w ∈ V.

This implies that

‖Au−Av‖V ∗ 6 LF‖u− v‖V ∀u,v ∈ V

and shows that A is Lipschitz continuous. On the other hand, using assumption (G1)(ii)
yields

〈Au−Av,u− v〉V ∗×V > mF‖u− v‖2V ∀u,v ∈ V.
This shows that condition (A2)(ii) is satisfied with mA = mF . Since A is Lipschitz
continuous and monotone, it follows that A is pseudomonotone, and therefore, (A2)(i)
holds.

On the other hand, it is obvious to see that the function q defined by (48) is a locally
Lipschitz function. Moreover, using the properties of p and equality q0(r; s) = p(r)s,
valid for all r, s ∈ R, it follows that the function q satisfies condition (A3) on X = R.
Therefore, using the arguments in [25, p. 219], we deduce that the function j given by (51)
satisfies (A3) with αj = αp‖γ‖2. In addition, condition (A4) is guaranteed by assumption
(G2). Next, we remark condition (F1) is a direct consequence of definitions (49), (52) and
assumption (H5).

Consider now the operator T : V → V ∗ given by

〈Tu,v〉 =

∫
Ω

(
ε(u)− PBε(u)

)
· ε(v) dx ∀u,v ∈ V.

Then using the nonexpansivity of the projection yields

‖Tu− Tv‖V ∗ 6 2‖u− v‖V , 〈Tu− Tv,u− v〉 > 0 ∀u,v ∈ V.

Therefore, assumption 6 and notation (53) imply that condition (F2) is satisfied.
Next, we apply the trace inequality (47) to see that the function ϕn defined by (54)

satisfies condition (F3) with αn = δn = µn‖γ‖2, and therefore, assumption (H6) shows
that condition (F4) holds. Moreover, we note that assumptions (H3) and (H4) imply
condition (F5) and, since αn = µn‖γ‖2, (H2) shows that (F6) holds, too.

Nonlinear Anal. Model. Control, 26(2):271–292
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Finally, condition (E4) follows from the compactness of the trace operator γ. Indeed,
since the function q is regular, Lemma 8 in [25] guarantees that

j0(u;v) =

∫
Γ3

q0(uν ; vν) da =

∫
Γ3

p(uν)vν da ∀u,v ∈ V. (55)

Therefore, if un ⇀ u and vn → v in V , using (55), we deduce that

lim sup j0(un;vn − un)

= lim sup

∫
Γ3

p(unν)(vnν − unν) da >
∫
Γ3

p(uν)(vν − uν) da

= j0(u;v − u),

which shows that condition (E4) holds, as claimed.
It follows from above that we are in a position to use Theorem 4 in order to conclude

the proof of Theorem 5.

We end this section with the following mechanical interpretations. First, Theorem 5
provides the unique weak solvability of two contact models: a frictionless model in which
the stress tensor σ satisfies the elastic constitutive law σ = Fε(u) and a frictional
model in which the stress tensor σ satisfies the elastic constitutive law σ = Fε(u) +
ω(ε(u) − PBε(u)). Second, it establishes the link between the weak solutions of these
contact models constructed by using different mechanical assumptions. Third, it provides
the continuous dependence of the weak solution of the first model with respect to the
density of body forces, the surface tractions and the thickness of the deformable layer.
All these ingredients show that, in addition of the mathematical interest in Theorem 5, it
is important from mechanical point of view.
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5. C. Eck, J. Jarušek, M. Krbeč, Unilateral Contact Problems: Variational Methods and Existence
Theorems, Pure Appl. Math., Vol. 270, Chapman/CRC Press, Boca Raton, FL, 2005, https:
//doi.org/10.1201/9781420027365.

http://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1080/02331934.2020.1808646
https://doi.org/10.1515/anona-2020-0107
https://doi.org/10.1515/anona-2020-0107
https://doi.org/10.1007/978-3-319-10163-7
https://doi.org/10.1115/1.3424078
https://doi.org/10.1115/1.3424078
https://doi.org/10.1201/9781420027365
https://doi.org/10.1201/9781420027365
http://www.journals.vu.lt/nonlinear-analysis


Tykhonov triples and convergence results for HIV 291

6. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer, New York,
1984, https://doi.org/10.1115/1.3169136.

7. R. Glowinski, J.L. Lions, R. Trémolières, Numerical Analysis of Variational Inequalities,
North-Holland, Amsterdam, 1981, https://doi.org/10.1016/S0168-2024(08)
70199-1.

8. D. Goeleven, D. Mentagui, Well-posed hemivariational inequalities, Numer. Funct. Anal.
Optim., 16(7):909–921, 1995, https://doi.org/10.1080/01630569508816652.

9. W. Han, Numerical analysis of stationary variational-hemivariational inequalities with
applications in contact mechanics, Math. Mech. Solids, 23(3):279–293, 2018, https:
//doi.org/10.1177/1081286517713342.

10. W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity,
AMS/IP Studies in Advanced Mathematics, Vol. 30, AMS/International Press, Providence,
RI/Somerville, MA, 2002, https://doi.org/10.1090/amsip/030.

11. W. Han, M. Sofonea, Numerical analysis of hemivariational inequalities in contact
mechanics, Acta Numerica, 28:175–286, 2019, https://doi.org/10.1017/
S0962492919000023.

12. W. Han, M. Sofonea, D. Danan, Numerical analysis of stationary variational-hemivariational
inequalities, Numer. Math., 139(3):563–592, 2018, https://doi.org/10.1007/
s00211-018-0951-9.

13. R. Hu, M. Sofonea, Y.-B. Xiao, A Tykhonov-type well-posedness concept for elliptic
hemivariational inequalities, Z. Angew. Math. Phys., 71(4):120, 2020, https://doi.org/
10.1007/s00033-020-01337-1.

14. N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and
Finite Element Methods, SIAM, Philadelphia, 1988, https://doi.org/10.1137/1.
9781611970845.

15. R. Lucchetti, F. Patrone, A characterization of Tykhonov well-posedness for minimum prob-
lems with applications to variational inequalities, Numer. Funct. Anal. Optim., 3(4):461–476,
1981, https://doi.org/10.1080/01630568108816100.

16. R. Lucchetti, F. Patrone, Some properties of “well–posed” variational inequalities governed
by linear operators, Numer. Funct. Anal. Optim., 5(3):349–361, 1983, https://doi.org/
10.1080/01630568308816145.

17. S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities:
Models and Analysis of Contact Problems, Adv. Mech. Math., Vol. 26, Springer, New York,
2013, https://doi.org/10.1007/978-1-4614-4232-5.

18. S. Migórski, A. Ochal, M. Sofonea, A class of variational-hemivariational inequalities in
reflexive Banach spaces, J. Elasticity, 127(2):151–178, 2017, https://doi.org/10.
1007/s10659-016-9600-7.

19. Z. Naniewicz, P. D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities
and Applications, CRC Press, Boca Raton, FL, 1994.

20. P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser,
Boston, MA, 1985, https://doi.org/10.1007/978-1-4612-5152-1.

21. P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics,
Z. Angew. Math. Mech., 65(1):29–36, 1985, https://doi.org/10.1002/zamm.
19850650116.

Nonlinear Anal. Model. Control, 26(2):271–292

https://doi.org/10.1115/1.3169136
https://doi.org/10.1016/S0168-2024(08)70199-1
https://doi.org/10.1016/S0168-2024(08)70199-1
https://doi.org/10.1080/01630569508816652
https://doi.org/10.1177/1081286517713342
https://doi.org/10.1177/1081286517713342
https://doi.org/10.1090/amsip/030
https://doi.org/10.1017/S0962492919000023
https://doi.org/10.1017/S0962492919000023
https://doi.org/10.1007/s00211-018-0951-9
https://doi.org/10.1007/s00211-018-0951-9
https://doi.org/10.1007/s00033-020-01337-1
https://doi.org/10.1007/s00033-020-01337-1
https://doi.org/10.1137/1.9781611970845
https://doi.org/10.1137/1.9781611970845
https://doi.org/10.1080/01630568108816100
https://doi.org/10.1080/01630568308816145
https://doi.org/10.1080/01630568308816145
https://doi.org/10.1007/978-1-4614-4232-5
https://doi.org/10.1007/s10659-016-9600-7
https://doi.org/10.1007/s10659-016-9600-7
https://doi.org/10.1007/978-1-4612-5152-1
https://doi.org/10.1002/zamm.19850650116
https://doi.org/10.1002/zamm.19850650116
https://doi.org/10.15388/namc.2021.26.22429


292 R. Hu et al.

22. P.D. Panagiotopoulos, Hemivariational Inequalities: Applications in Mechanics and
Engineering, Springer, Berlin, 1993, https://doi.org/10.1007/978-3-642-
51677-1.

23. M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, Lond. Math. Soc. Lect.
Note Ser., Vol. 398, Cambridge Univ. Press, Cambridge, 2012, https://doi.org/10.
1017/CBO9781139104166.

24. M. Sofonea, A. Matei, Y.-B. Xiao, Optimal control for a class of mixed variational problems,
Z. Angew. Math. Phys., 70(4):127, 2019, https://doi.org/10.1007/s00033-019-
1173-4.

25. M. Sofonea, S. Migórski, Variational-Hemivariational Inequalities with Applications, Pure
Appl. Math., Chapman & Hall/CRC Press, Boca Raton, FL, 2018, https://doi.org/
10.1201/9781315153261.

26. M. Sofonea, Y.-B. Xiao, On the well-posedness concept in the sense of Tykhonov, J. Optim.
Theory Appl., 183(1):139–157, 2019, https://doi.org/10.1007/s10957-019-
01549-0.

27. M. Sofonea, Y.-B. Xiao, Tykhonov well-posedness of elliptic variational-hemivariational
inequalities, Electron. J. Differ. Equ., 2019:64, 2019, https://doi.org/1912.11340.

28. M. Sofonea, Y.-B. Xiao, Tykhonov well-posedness of a viscoplastic contact problem, Evol.
Equ. Control Theory, 9(4):1167–1185, 2020, https://doi.org/10.3934/eect.
2020048.

29. A.N. Tykhonov, On the stability of functional optimization problems, U.S.S.R Comput.
Math. Math. Phys., 6(4):28–33, 1966, https://doi.org/10.1016/0041-5553(66)
90003-6.

30. Y.-B. Xiao, M. Sofonea, On the optimal control of variational-hemivariational inequalities,
J. Math. Anal. Appl., 475(1):364–384, 2019, https://doi.org/10.1016/j.jmaa.
2019.02.046.

31. Y.-B. Xiao, M. Sofonea, Tykhonov triples, well-posedness and convergence results,
Carpathian J. Math., to appear.

32. B. Zeng, Z. Liu, S. Migorski, On convergence of solutions to variational-hemivariational
inequalities, Z. Angew. Math. Phys., 69(3):87, 2018, https://doi.org/10.1007/
s00033-018-0980-3.

http://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1007/978-3-642-51677-1
https://doi.org/10.1007/978-3-642-51677-1
https://doi.org/10.1017/CBO9781139104166
https://doi.org/10.1017/CBO9781139104166
https://doi.org/10.1007/s00033-019-1173-4
https://doi.org/10.1007/s00033-019-1173-4
https://doi.org/10.1201/9781315153261
https://doi.org/10.1201/9781315153261
https://doi.org/10.1007/s10957-019-01549-0
https://doi.org/10.1007/s10957-019-01549-0
https://doi.org/1912.11340
https://doi.org/10.3934/eect.2020048
https://doi.org/10.3934/eect.2020048
https://doi.org/10.1016/0041-5553(66)90003-6
https://doi.org/10.1016/0041-5553(66)90003-6
https://doi.org/10.1016/j.jmaa.2019.02.046
https://doi.org/10.1016/j.jmaa.2019.02.046
https://doi.org/10.1007/s00033-018-0980-3
https://doi.org/10.1007/s00033-018-0980-3
http://www.journals.vu.lt/nonlinear-analysis

	Introduction
	Problem statement
	Tykhonov triples for abstract problems
	The case of hemivariational inequalities
	A convergence result
	A contact problem
	References

