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Abstract. In this paper, we establish the results of multiple solutions for a class of modified
nonlinear Schrödinger equation involving the p-Laplacian. The main tools used for analysis are
the critical points theorems by Ricceri and the dual approach.
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1 Introduction

LetΩ be a nonempty bounded open set of the real Euclidean space RN (N > 2) with C1-
boundary ∂Ω, consider the multiple solutions for the following quasilinear Schrödinger
elliptic equation with the p-Laplacian and nonsquare diffusion term:

−∆pu+ V (x)|u|p−2u−∆p

(
|u|2α

)
|u|2α−2u = λf(x, u) in Ω,

u = 0 on ∂Ω,
(1)

where ∆pu = div(|∇u|p−2∇u), N < p 6 2α, λ > 0 is a parameter, f : Ω × R→ R is
a continuous function.
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Multiple solutions for a modified quasilinear Schrödinger elliptic equation 703

Equation (1) involves a quasilinear and nonconvex diffusion term ∆p(|u|2α) |u|2α−2u.
In the literature, it is referred as so-called modified nonlinear Schrödinger equation. For
the case p = 2, the solution of (1) is related to standing wave solutions of the following
quasilinear Schrödinger equation:

izt + ∆z − V (x)z + κ∆
(
h
(
|z|2
))
h′
(
|z|2
)
z + g(x, z) = 0, x ∈ Rn, (2)

where z : R×Rn → C, V : Rn → R is a given potential, h and g are real functions, κ is
a real constant. Putting z(t, x) = e−iβtu(x) in (2), where β ∈ R and u(x) > 0 is a real
function, the quasilinear equation (2) reduces to the following modified elliptic form:

−∆u+ V (x)u− κ∆
(
h
(
|u|2
))
h′
(
|u|2
)
u = f(x, u), x ∈ Rn. (3)

If h(s) = s, then (3) turns into a superfluid film equation in plasma physics

−∆u+ V (x)u− κ∆(u2)u = f(x, u), x ∈ Rn. (4)

Kurihara [8] used this equation to model the time evolution of the condensate wave
function in superfluid film. Moreover, if h(s) = (1 + s)1/2, equation (3) is transformed
to the following elliptic form:

−∆u+ V (x)u− κ∆
[(

1 + u2
)1/2] u

(1 + u2)1/2
= f(x, u), x ∈ Rn,

which is a model of the self-channeling of a high-power ultrashort laser in matter [7, 16].
Many mathematical methods, such as dual approach [3, 22, 24–26], iterative tech-

niques [19,27–30], fixed point theorem [5,14,21], variational methods [6,15,23] and nor-
mal boundary intersection method [9,10], have been employed to solve the properties and
control problems for various differential equations. In particular, by using a constrained
minimization argument Poppenberg et al. [15] established the existence of positive ground
state solution for quasilinear Schrödinger equation (4). Colin and Jeanjean [3], João
Marcos and Severo [6] studied the existence of positive solutions for (4) by the change of
variables. The Nehari method and the symmetric mountain pass lemma were also used to
establish the existence of solutions in [2, 4, 11]. In [13], Liu et al. studied the following
quasilinear Schrödinger equation:

−∆u+ V (x)u−∆
(
|u|2α

)
|u|2α−2u = λ|u|p−1u, x ∈ RN , (5)

where λ > 0, 4α < p+ 1 < 4αN/(N − 2), α > 1/2, V ∈ C(RN ) and

(Ṽ) There exists V0 > 0 such that V (x) > V0 in RN . Moreover, V (x) → ∞ as
|x|→∞, or more generally, for every M > 0, meas{x∈RN : V (x)6M}<∞,
where “meas” denotes the Lebesgue measure in RN .

Condition (Ṽ) is an essential assumption, which guarantees that the embedding
E ↪→ Ls(RN ) is compact for 2 6 s < 2N/(N − 2), where

E =

{
u ∈W 1,2

(
RN
)
:

∫
RN

V (x)|u|2 dx <∞

}
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is a subspace of W 1,2(RN ) with the norm

‖u‖E =

( ∫
RN

(
|∇u|2 + V (x)|u|2

)
dx

)1/2

.

Clearly, assumption (Ṽ) fails to hold for a general continuous and bounded function.
Thus, if the potential V (x) fails to satisfy (Ṽ), whether the multiple solutions of prob-
lem (5) still exist or not? In order to answer this question, in this paper, we investigate the
more general modified nonlinear Schrödinger equation (1) and get a positive answer, i.e.,
if the potential V (x) is a general continuous and bounded function, then there exist the
multiple solutions to the quasilinear Schrödinger elliptic equation with the p-Laplacian
and nonsquare diffusion term (1) under suitable growth conditions.

The rest of this paper is organized as follows. In Section 2, with help of a change of
variables, we set up the variational framework for problem (1) and give some lemmas of
the functional associated with problem (1). In Sections 3 and 4, by using Riccer’s critical
point theorem we give the proof of main results.

2 Dual approach

Let E = W 1,p(Ω) (p > 1) be the Sobolev spaces with the norm

‖u‖ =

(∫
Ω

(
|∇u|p

)
+ V (x)|u|p dx

)1/p

.

We focus on the existence of nontrivial weak solutions of problem (1). A function u is
called a weak solution of problem (1) if u ∈W 1,p

0 (Ω) and for any ϕ ∈ C∞0 (Ω), one has∫
Ω

[
1 + (2α)p−1|u|(2α−1)p|∇u|p−2∇u∇ϕ

+ (2α)p−1(2α− 1)|u|p(2α−1)−2u|∇u|pϕ
]

dx

= −
∫
Ω

V (x)|u|p−2uϕdx+ λ

∫
Ω

F (x, u) dx,

where F (x, u) =
∫ u
0
f(t, ξ) dξ. But we notice that the natural functional of problem (1)

I(u) =
1

p

∫
Ω

[
1 + (2α)p−1|u|(2α−1)p|∇u|p

]
dx

+
1

p

∫
Ω

V (x)|u|p dx− λ
∫
Ω

F (x, u) dx

may not be well defined and not Gâteaux-differentiable in the corresponding Sobolev
space E.
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Multiple solutions for a modified quasilinear Schrödinger elliptic equation 705

Thus, inspired by [12], we define a function h by

h′(t) =
1

p
√

1 + (2α)p−1|h(t)|p(2α−1)
, t > 0,

h(0) = 0, h(−t) = −h(t), t 6 0.

(6)

Let u = h(v), then

J(v) = I
(
h(v)

)
=

1

p

∫
Ω

|∇v|p + V (x)
∣∣h(v)

∣∣p dx− λ
∫
Ω

F
(
x, h(v)

)
dx.

Moreover, the corresponding energy functional J(v) is well defined on W 1,p(Ω). Since
C∞0 (Ω) is dense in W 1,p(Ω), if v ∈ W 1,p(Ω) is a critical point of the functional J , i.e,
for any ϕ ∈W 1,p(Ω),

〈
J ′(v), ϕ

〉
=

∫
Ω

|∇v|p−2∇v∇ϕ+ V (x)
∣∣h(v)

∣∣p−2h(v)h′(v)ϕdx

− λ
∫
Ω

f
(
x, h(v)

)
h′(v)ϕdx,

then v is a weak solution of the equation

−∆pv = −V (x)
∣∣h(v)

∣∣p−2h(v)h′(v) + λf
(
x, h(v)

)
h′(v), x ∈ Ω. (7)

Thus, from (6) and (7) it is easy to know that u = h(v) is a weak solution of problem (1).
As the result, it is sufficient to consider the existence of solutions of (7) in W 1,p(Ω).

The following lemma can be found in [2]:

Lemma 1. The function h(t) enjoys the following properties:

(h1) h ∈ C2 is uniquely defined, odd, increasing and invertible in R;
(h2) 0 < h′(t) 6 1 for all t ∈ R;
(h3) |h(t)| 6 |t| for all t ∈ R;
(h4) limt→0 h(t)/t = 1;
(h5) |h(t)| 6 (2α)1/(2pα)|t|1/(2α) for all t ∈ R;
(h6) h(t)/2 6 αth′(t) 6 αh(t), t > 0, αh(t) 6 αth′(t)| 6 h(t)/2, t 6 0;
(h7) There exists a ∈ (0, (2α)1/(2pα)] such that h(t)t−1/(2α) → a as t→ +∞;
(h8) There exists b0 > 0 such that

∣∣h(t)
∣∣ > {b0|t| if |t| 6 1,

b0|t|1/(2α) if |t| > 1;
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(h9) For each τ > 0, there exists

χ(τ) =

{
m if τ = m,

m+ 1 if τ ∈ (m, m+ 1),

m ∈ N, such that |h(τt)| 6 χ(τ)|h(t)| for all t ∈ R;
(h10) h2(t)/2 6 αth′(t)h(t) 6 αh2(t) for all t ∈ R.

Notice that p > N , W 1,p(Ω) ↪→ C(Ω) is compact. Thus, there exists a constant
c > 0 such that

‖u‖∞ 6 c‖u‖, u ∈W 1,p(Ω), (8)

where ‖u‖∞ = supx∈Ω |u(x)|.
Different from [4, 11, 13], the following assumption on potential is adopted in this

paper:

(V) V ∈ C(Ω), and there exist two constants V0, V1 > 0 such that V0 6 V (x) 6 V1,
x ∈ Ω.

Now define two functionals Φ, Ψ : E → R as follows:

Φ(v) =
1

p

∫
Ω

(
|∇v|p + V (x)

∣∣h(v)
∣∣p)dx, Ψ(v) = −

∫
Ω

F
(
x, h(v)

)
dx.

For any v, w ∈ E, we have Φ, Ψ ∈ C1(E,R) and

〈
Φ′(v), w

〉
=

∫
Ω

(
|∇v|p−2∇v∇w + V (x)

∣∣h(v)
∣∣p−2h(v)h′(v)w

)
dx,

〈
Ψ ′(v), w

〉
= −

∫
Ω

f
(
x, h(v)

)
h′(v)w dx.

Lemma 2. For fixed r > 0 with Φ(v) 6 r, v ∈ E, there exists a constant % > 0
independent of r such that

Φ(v) > %‖v‖p. (9)

Proof. Let v 6= 0, otherwise, the conclusion holds. In the following, we argue by contra-
diction to prove (9).

Suppose that there exists a sequence {vn} ⊂ E satisfying vn 6= 0 for all n ∈ N such
that ∫

Ω

|∇vn|p

‖vn‖p
dx+

∫
Ω

V (x)|h(vn)|p

‖vn‖p
dx→ 0 as n→∞. (10)

Set wn = vn/‖vn‖, then ‖wn‖ = 1. Noticing the compactness of embedding E ↪→ Ls

for s ∈ [1,+∞) up to a subsequence, we have wn(x) ⇀ w(x) in E, wn(x) → w(x) in

https://www.journals.vu.lt/nonlinear-analysis
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Ls(Ω) for s ∈ [1,+∞) and wn(x)→ w(x) a.e. on Ω. It follows from (10) and

1 = ‖wn‖ =

(∫
Ω

(
|∇wn|p + V (x)|wn|p

)
dx

)1/p

that ∫
Ω

|∇wn|p dx→ 0,

∫
Ω

V (x)|h(vn)|p

‖vn‖p
dx→ 0,

∫
Ω

V (x)wpn dx→ 1.

Now according to the strategy in [26], we claim that for any ε > 0, there exists
a constant τ > 0 independent of n such that meas(Bn := {x ∈ Ω: |vn| > τ}) 6 ε,
where meas(·) denotes the standard Lebesgue measure.

In fact, if not, there exists ε0 > 0 such that meas(An) > ε0, where An = {x ∈ Ω:
|vn| > n}. By (h8) and the Fatou lemma we get∫

Ω

(
|∇vn|p + V (x)

∣∣h(vn)
∣∣p)dx >

∫
Ω

V (x)
∣∣h(vn)

∣∣p dx >
∫
Ω

V0b0|vn|p/(2α) dx

> V0b0n
p/(2α)ε0 → +∞ as n→∞.

The above fact contradicts with the boundedness of {Φ(vn)}. Therefore, the above con-
clusion is valid.

Next, it follows from the Hölder inequality and the Sobolev embedding theorem that
there exists ε small enough such that∫

Bn

V (x)wpn dx 6
[
V1 meas(Bn)

]1/2‖wn‖p2p 6 [V1 meas(Bn)]1/2‖wn‖p2p

6 C1ε
1/2 6

1

4
, n ∈ N, (11)

where C1 is a constant, which is independent of ε.
On the other hand, noticing that if |vn(x)| 6 τ , then |vn(x)|/τ 6 1, by (h8) we have∣∣∣∣h( |vn(x)|

τ

)∣∣∣∣ > b0
|vn(x)|
τ

. (12)

Thus, it follows from (h9) of Lemma 1, (12) and (10) that∫
Ω\Bn

V (x)wpn dx =

∫
Ω\Bn

V (x)
|vn|p

‖vn‖p
dx = τp

∫
Ω\Bn

V (x)
|vnτ |

p

‖vn‖p
dx

6

(
τ

b0

)p ∫
Ω\Bn

V (x)
|h( vnτ )|p

‖vn‖p
dx

6 χ

(
1

τ

)(
τ

b0

)p ∫
Ω\Bn

V (x)
|h(vn)|p

‖vn‖p
dx→ 0 as n→∞. (13)
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Combining (11) and (13), one has∫
Ω

V (x)wpn dx =

∫
Bn

V (x)wpn dx+

∫
Ω\Bn

V (x)wpn dx 6
1

4
+ o(1),

which implies that 1 6 1/4, a contradiction. So the proof is completed.

Lemma 3. Assume that V (x) satisfies (V), then Φ′ is coercive, hemicontinuous and
uniformly monotone.

Proof. Firstly, by (h4) and (h7) of Lemma 1 we have

lim
t→0

|h(t)|p

tp
= 1, lim

t→∞

|h(t)|p

tp/(2α)
= ap,

which implies that for any sufficiently small ε > 0, there exists a constant Cε > 0 such
that ∣∣h(t)

∣∣p > (1− ε)tp − Cεtp/(2α), t ∈ (0,+∞). (14)

On the other hand, for any v ∈ E with ‖v‖ > 1, (h10) of Lemma 1 and (14) yield

〈Φ′(v), v〉
‖v‖

=

∫
Ω

(|∇v|p + V (x)|h(v)|p−2h(v)h′(v)v) dx

‖v‖

>

∫
Ω

(|∇v|p + V (x)|h(v)|p) dx

2α‖v‖

>

∫
Ω

(|∇v|p + V (x)[(1− ε)vp − Cεvp/(2α)]) dx

2α‖v‖
. (15)

Notice that E ↪→ Ls for s ∈ [p, p∗) is continuous, then for any v ∈ E with ‖v‖ > 1,
choose sufficiently small ε such that∫

Ω

(
|∇v|p + V (x)

[
(1− ε)vp − Cεvp/(2α)

])
dx

>
1

2
‖v‖p − CεV1

∫
Ω

vp/(2α) dx >
1

2
‖v‖p − CεV1|Ω|1−1(2α)‖v‖p/(2α)Lp

>
1

2
‖v‖p − C̃ε‖v‖p/(2α). (16)

It follows from N < p 6 2α, N > 2, (15) and (16) that lim‖v‖→∞〈Φ′(v), v〉/‖v‖ =∞,
which implies that Φ′ is coercive. The fact that Φ′ is hemicontinuous can be verified using
standard arguments. In addition, with the help of Theorem 26(A) in [20], as well as
J(v) = I(h(v)) and the inequality(

|ξ|p−2ξ − |η|p−2η
)
(ξ − η) > cp|ξ − η|p, p > 2, cp > 0, ξ, η ∈ RN ,

we know that Φ′ exists and is continuous.

https://www.journals.vu.lt/nonlinear-analysis
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3 The existence of three solutions

In this section, we show the existence of three solutions of (1). The main tool used for
analysis is the Riccer’s critical point theorem [1, 18], which is given below for reader’s
convenience.

Lemma 4. LetE be a separable and reflexive real Banach space, Φ : E → R be a contin-
uously Gâteaux-differentiable and sequentially weakly lower semicontinuous functional
whose Gâteaux derivative admits a continuous inverse on E∗, and Ψ : X → R be
a continuously Gâteaux-differentiable functional whose Gâteaux derivative is compact.
Assume that

(i) lim‖u‖→+∞(Φ(z) + λΨ(z)) = +∞ for all λ ∈ (0,+∞);
(ii) There are r > 0, z0, z1 ∈ E such that Φ(z0) < r < Φ(z1);

(iii) inf
u∈Φ−1((−∞,r))

Ψ(z) >
(Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)− Ψ(z0)
.

Then there exist an open interval Λ ⊂ (0,∞) and a positive real number ρ such that for
each λ ∈ Λ, the equation

Φ′(z) + λΨ ′(z) = 0

has at least three solutions in E whose norms are less than ρ.

Before stating our main results, we firstly denote two constants

k = c

(
V0|Ω|
p%

)1/p

, µ =
V0

V1|Ω|
,

where c, V0, V1 and % are defined by (8), (V) and Lemma 1, |Ω| is the Lebesgue measure
of Ω. Then some assumptions on F (x, s) to be used are also listed below:

(F1) There exist a function a(x) ∈ L1(Ω) and 0 < σ < p such that for all (x, s) ∈
Ω × R, F (x, s) 6 a(x)(1 + |s|σ);

(F2) F (x, 0) = 0 for any x ∈ Ω;
(F3) There exists t0 ∈ R with |t0| > 1 such that

sup
(x,|z|)∈Ω×[0,k]

F (x, z) < µ

∫
Ω
F (x, t0) dx

|t0|p
.

Now we state our main result here.

Theorem 1. Suppose (V) and (F1)–(F3) hold. Then there exist an open interval Λ ⊂
(0,∞) and a positive real number ρ > 0 such that for any λ ∈ Λ, the quasilinear elliptic
equation (1) has at least three weak solutions whose norms are less than ρ.

Proof. By the definitions of Φ and Ψ we know that Ψ ′ is compact and Φ is weakly
lower semicontinuous. Further, from Lemma 3 we know that (Φ′)−1 is well defined and
continuous. Now we show that the hypotheses of Lemma 4 are fulfilled.

Nonlinear Anal. Model. Control, 26(4):702–717, 2021
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It follows from (F1), (7) and (15)–(16) that for any λ > 0,

Φ(z) + λΨ(z) >
1

2p
‖z‖p − C̃ε

2
‖z‖p/(2α) − λc‖a‖L1‖z‖σ − λ‖a‖L1 , z ∈ E.

Since 0 < σ < p 6 2α, we have lim‖v‖→∞(Φ(z) + λΨ(z)) =∞, and (i) is verified.
Now let z0 = 0, z1 = s0 = h−1(t0), |t0| > 1, then |t0| = |h(s0)|. We denote

r = V0|Ω|/p, then

Φ(z1) =
1

p

∫
Ω

V (x)
∣∣h(s0)

∣∣p dx >
1

p
V0|Ω|

∣∣h(s0)
∣∣p > 1

p
V0|Ω| = r > 0 = Φ(z0).

Thus, (ii) of Lemma 4 is satisfied.
On the other hand, from (F2) and (F3) we get

∫
Ω
F (x, t0) dx > 0 and

− (Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)− Ψ(z0)

= −rΨ(z1)

Φ(z1)
=
pr
∫
Ω
F (x, h(s0)) dx∫

Ω
V (x)|h(s0)|p dx

=
pr
∫
Ω
F (x, t0) dx∫

Ω
V (x)|t0|p dx

>
pr
∫
Ω
F (x, t0) dx

|Ω|V1|t0|p
=
V0
V1

∫
Ω
F (x, t0) dx

|t0|p
. (17)

Next, we focus our attention on the case when v ∈ E with Φ(v) 6 r. By (7) and (8)
we have r > Φ(v) > %‖v‖p > %(‖v‖∞/c)p, which implies that |v(x)| 6 c(r/%)1/p =
c(V0|Ω|/(p%))1/p = k for all x ∈ Ω. The above inequality and (h3) of Lemma 1 yield

− inf
v∈Φ−1((−∞,r])

Ψ(v)

= sup
v∈Φ−1((−∞,r])

−Ψ(v) 6
∫
Ω

sup
|v|∈[0,k]

F
(
x, h(v)

)
dx

6 |Ω| sup
(x,|v|)∈Ω×[0,k]

F
(
x, h(v)

)
6 |Ω| sup

(x,|h(v)|)∈Ω×[0,k]
F
(
x, h(v)

)
= |Ω| sup

(x,|z|)∈Ω×[0,k]
F (x, z). (18)

From (17), (18) and (F3) it is easy to get that condition (iii) of Lemma 4 holds.
Thus, all the hypotheses of Lemma 4 are satisfied, and hence, according to Lemma 4,

there exist an open interval Λ ⊂ (0,∞) and a positive real number ρ > 0 such that for
any λ ∈ Λ, the quasilinear elliptic equation (1) has at least three weak solutions whose
norms are less than ρ.

Theorem 2. Assume (V), (F1)–(F2) and the following condition hold:

(F3∗) There exists a constant M > 0 such that F (x, z) 6 0, (x, |z|) ∈ Ω × [0,M ]
and lim|z|→∞ F (x, z) > 0 for x ∈ Ω uniformly holds.
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Then there exist an open interval Λ ⊂ (0,∞) and a positive real number ρ > 0 such
that for any λ ∈ Λ, the quasilinear elliptic equation (1) has at least three weak solutions
whose norms are less than ρ.

Proof. By (F1), similar as the proof of Theorem 1, it is easy to know that hypothesis (i)
of Lemma 4 holds. Thus, we only need to verify hypotheses (ii) and (iii). In fact, it follows
from (F3∗) that for any x ∈ Ω, there exists a sufficiently large

|t0| > max

{
1,
M

c

(
p%

V0|Ω|

)1/p}
such that F (x, t0) > 0. We take z0 = 0, z1 = s0 = h−1(t0), then 1 < |t0| = |h(s0)|.
Denote r = %(M/c)p, we have

Φ(z1) =
1

p

∫
Ω

V (x)|h(s0)|p dx >
1

p
V0|Ω‖t0|p > %

(
M

c

)p
= r > 0 = Φ(z0).

Thus, hypothesis (ii) of Lemma 4 is satisfied.
On the other hand, from (F2) and (F3∗) we have

− (Φ(z1)− r)Ψ(z0) + (r − Φ(z0))Ψ(z1)

Φ(z1)− Ψ(z0)

= −rΨ(z1)

Φ(z1)
=
pr
∫
Ω
F (x, h(s0)) dx∫

Ω
V (x)|h(s0)|p dx

=
pr
∫
Ω
F (x, t0) dx∫

Ω
V (x)|t0|p dx

>
p%(Mc )p

∫
Ω
F (x, t0) dx

|Ω|V1|t0|p
> 0.

Moreover, for Φ(v) 6 r, v ∈ E, by (8) and Lemma 2 we have

|v(x)| 6 ‖v‖∞ 6 c‖v‖ 6 c

(
Φ(v)

%

)1/p

6 c

(
r

%

)1/p

= M, x ∈ Ω.

The above inequality and (h3) of Lemma 1 show that

− inf
v∈Φ−1((−∞,M ])

Ψ(v)

= sup
v∈Φ−1((−∞,r])

−Ψ(v) 6
∫
Ω

sup
|v|∈[0,M ]

F
(
x, h(v)

)
dx

6 |Ω| sup
(x,|v|)∈Ω×[0,M ]

F
(
x, h(v)

)
6 |Ω| sup

(x,|h(v)|)∈Ω×[0,M ]

F
(
x, h(v)

)
= |Ω| sup

(x,|z|)∈Ω×[0,M ]

F (x, z) 6 0. (19)

(18) and (19) show that condition (iii) of Lemma 4 holds.
According to Lemma 4, the conclusion of Theorem 2 also holds.
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4 The existence of infinitely many solutions

In this section, we use an infinitely many critical points theorem to obtain the multiple
solutions result of problem (1).

Let E be a reflexive real Banach space, Φ : E → R be a (strongly) continuous, co-
ercive sequentially weakly lower semicontinuous and Gâteaux-differentiable functional,
Ψ : E → R be a sequentially weakly upper semicontinuous and Gâteaux-differentiable
functional.

For all r > infE Φ, let

ϕ(r) = inf
z∈Φ−1((−∞,r))

(supz∈Φ−1((−∞,r)) Ψ(z))− Ψ(z)

r − Φ(z)

and
γ = lim inf

r→+∞
ϕ(r), δ = lim inf

r→(infE Φ)+
ϕ(r).

Lemma 5. (See [17].) Suppose E, Φ, Ψ satisfy the above assumptions, then the following
conclusions hold:

(i) If γ < +∞ then, for each λ ∈ (0, 1/γ), the following alternative holds: either
the functional Φ− λΨ has a global minimum, or there exists a sequence {zn} of
critical points (local minima) of Φ− λΨ such that limn→+∞ Φ(zn) = +∞.

(ii) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either
there exists a global minimum of Φ, which is a local minimum of Φ − λΨ , or
there exists a sequence {zn} of pairwise distinct critical points (local minima)
of Φ − λΨ with limn→+∞ Φ(zn) = infE Φ, which weakly converges to a global
minimum of Φ.

Suppose f : Ω × R→ R+ is continuous and denote

l = lim inf
κ→+∞

∫
Ω

max|t|6κ F (x, t) dx

κp
, L = lim sup

κ→+∞

∫
Ω
F (x, κ) dx

κp
.

We state the result of the multiple solutions as follows:

Theorem 3. Assume that l/L < p%/(cpV1|Ω|) hold. Then for any λ ∈ (V1|Ω|/(pL),
%/(cpl), the quasilinear elliptic equation (1) has an unbounded sequence of weak solu-
tions in W 1,p(Ω).

Proof. Firstly, for any v ∈ E, define

Φ(v) =
1

p

∫
Ω

(
|∇v|p + V (x)

∣∣h(v)
∣∣p) dx, Ψ(v) =

∫
Ω

F
(
x, h(v)

)
dx.

Then Φ : E → R is a continuous, coercive sequentially weakly lower semicontinuous
and Gâteaux-differentiable functional, Ψ : E → R is a sequentially weakly upper semi-
continuous and Gâteaux-differentiable functional.
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Take λ ∈ (V1|Ω|/(pL), 1/(pcpl)), and let {κn} be a real sequence satisfying
limn→∞ κn =∞, and so we have

l = lim inf
n→+∞

∫
Ω

max|t|6κn
F (x, t) dx

κpn
. (20)

Let rn = %(κn/c)
p, n ∈ N, and consider Φ(z) < rn. According to (8) and Lemma 2,

we have

∣∣z(x)
∣∣ 6 ‖z‖∞ 6 c‖z‖ 6 c

(
Φ(z)

%

)1/p

6 c

(
rn
%

)1/p

= κn, x ∈ Ω.

Consequently, from (20) and (h3) of Lemma 1 one has

ϕ(rn) = inf
z∈Φ−1((−∞,rn))

(supz∈Φ−1((−∞,rn)) Ψ(z))− Ψ(z)

rn − Φ(z)

= inf
Φ(z)<rn

(supΦ(z)<rn Ψ(z))− Ψ(z)

rn − Φ(z)
6

supΦ(z)<rn
∫
Ω
F (x, h(z)) dx

rn

6

∫
Ω

max|z|6κn
F (x, h(z)) dx

rn
6

∫
Ω

max|h(z)|6κn
F (x, h(z)) dx

rn

=

∫
Ω

max|t|6κn
F (x, t) dx

rn
=
cp
∫
Ω

max|t|6κn
F (x, t) dx

%κpn
, n ∈ N,

which implies that

γ = lim inf
r→+∞

ϕ(r) 6
cpl

%
< +∞.

Now we show that the functional Φ − λΨ is unbounded from below. To do this, we
take a real sequence {en} such that limn→∞ en = +∞. Noticing (h8) of Lemma 1, we
have h(en) > b0e

1/(2α)
n →∞, n→∞, and then

L = lim
n→+∞

∫
Ω

F (x, en)

epn
dx = lim

n→+∞

∫
Ω

F (x, h(en))

h(en)p
dx. (21)

Let wn(x) = en, n ∈ N, x ∈ Ω, then we have

Φ(wn) =
1

p

∫
Ω

V (x)
∣∣h(wn)

∣∣p dx 6
V1|Ω|
p

hp(en)

and

Φ(wn)− λΨ(wn) 6
V1|Ω|
p

hp(en)− λ
∫
Ω

F
(
x, h(en)

)
dx.

We divide into two cases for L to prove that Φ− λΨ is unbounded from below.
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Case 1. If L < +∞, choose 0 < ε < L − V1|Ω|/(λp), then by (21) there exists
N0 > 0 such that for any n > N0, we have∫

Ω

F
(
x, h(en)

)
dx > (L− ε)h(en)p.

Thus,

Φ(wn)− λΨ(wn) 6
V1|Ω|
p

hp(en)− λ
∫
Ω

F
(
x, h(en)

)
dx

6
V1|Ω|
p

hp(en)− λ(L− ε)hp(en)

= hp(en)

(
V1|Ω|
p
− λ(L− ε)

)
.

It follows from the choice of ε that V1|Ω|/p − λ(L − ε) < 0, and then one gets
limn→∞(Φ(wn)− λΨ(wn)) = −∞.

Case 2. If L = +∞, we can choose sufficiently large M0 > V1|Ω|/(λp), and from
(21) there exists NM0 > 0 such that for any n > NM0 , we have∫

Ω

F
(
x, h(en)

)
dx > M0h

p(en).

Consequently,

Φ(wn)− λΨ(wn) 6
V1|Ω|
p

hp(en)− λ
∫
Ω

F
(
x,
∣∣h(en)

∣∣) dx

6
V1|Ω|
p

hp(en)− λM0h
p(en)

= hp(en)

(
V1|Ω|
p
− λM0

)
.

It follows from the choice of M0 that

lim
n→∞

(
Φ(wn)− λΨ(wn)

)
= −∞.

The above facts show that the functional Φ−λΨ is unbounded from below. According
to (i) of Lemma 5, the functional Φ − λΨ admits a sequence {vn} of critical points, that
is, {h(vn)} are exactly the weak solutions of the quasilinear elliptic equation (1).

It follows from Theorem 3 that we have the following corollary:

Corollary 1. Assume (V) holds, and l < +∞, L = +∞. Then for any λ ∈ (0, %/(cp l̃)),
the quasilinear elliptic equation (1) has an unbounded sequence of weak solutions in
W 1,p(Ω).
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Denote

l̃ = lim inf
κ→0+

∫
Ω

max|t|6κ F (x, t) dx

κp
, L̃ = lim sup

κ→0+

∫
Ω
F (x, κ) dx

κp
,

then, with help of (h3)–(h4) of Lemma 1 and arguing as in the proof of Theorem 3, we
easily obtain the following results:

Theorem 4. Assume (V) holds, and cpV1|Ω|l̃ < L̃p%. Then for any λ ∈ (V1|Ω|/(pL̃),

%/(cp l̃)), the quasilinear elliptic equation (1) has an unbounded sequence of weak solu-
tions in W 1,p(Ω).

Theorem 5. Assume (V) holds, and l̃ < +∞, L̃ = +∞. Then for any λ ∈ (0, %/(cp l̃)),
the quasilinear elliptic equation (1) has an unbounded sequence of weak solutions in
W 1,p(Ω).
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