Nonlinear Analysis: Modelling and Control, Vol. 26, No. 3, 502-521 S,

-1579+

https://doi.org/10.15388/namc.2021.26.22538 s S | Vilnius
. Essdl . | University
% & | Press
6‘0&/TAS \‘\\\A‘o

Solvability for a system of Hadamard fractional
multi-point boundary value problems*

Jiafa Xu®P®, Lishan Liu®'®, Shikun Bai"®, Yonghong Wu°

#School of Mathematical Sciences, Qufu Normal University,
Qufu 273165, Shandong, China
mathlls@163.com

PSchool of Mathematical Sciences, Chongging Normal University,
Chongqing 401331, China

“Department of Mathematics and Statistics, Curtin University,
Perth, WA 6845, Australia

Received: February 28, 2020 / Revised: September 2, 2020 / Published online: May 1, 2021

Abstract. In this paper, we study a system of Hadamard fractional multi-point boundary value
problems. We first obtain triple positive solutions when the nonlinearities satisfy some bounded
conditions. Next, we also obtain a nontrivial solution when the nonlinearities can be asymptotically
linear growth. Furthermore, we provide two examples to illustrate our main results.
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1 Introduction

In this paper, we use some fixed point theorems to study the existence of solutions for the
system of Hadamard fractional multi-point boundary value problems

Du(t) + f1(t,u(t),v(t)) =0, 1<t<e,
Di(t) + fo(t,u(t),v(t)) =0, 1<t<e,

u(1l) = du(l) =0, u(e) = z_: a;u(&), (1

n—1
v(1) =6dv(1) =0,  w(e)= Z bjv(n;),
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where ¢ € (2, 3] is a real number, D? is the g-order Hadamard fractional derivatives, and
0 means the delta derivative, i.e., du(1l) = (tdu/dt)|i=1, dv(1) = (¢tdv/dt)|s=1. The
constants a;, bj, &, n; 0 =1,2,...,m—1,5=1,2,...,n—1,m,n = 2)and fi, fo
satisfy the conditions:

(HO) a;,b; >0, &,m; € (1,¢) with 37" a;(log&;)?" € [0,1), and
Y i1 bj(logn;) 7t € [0,1);
H1) fi € C([1,¢] x RT x Rt, RT), Rt = [0, +00),i =1,2.

Fractional-order equations, as a generalization of the case of integer order, can accu-
rately characterize some complex phenomena in nature. It has been proved that there
are many special advantages in some fields, such as physics, chemistry, aerodynam-
ics, electrodynamics of complex medium, polymer rheology, economics, control theory,
signal and image processing, biophysics, blood flow phenomena, which has become a
hot research topic of common concern in the world. For example, in [5], the authors
investigated the following fractional-order advection—diffusion—reaction boundary value
problem:

€D +na’ + f(x) = S(1), te[0.1],  2(0)=wr, 2(1)=zn,

where l < a<2,0<e<1,veR, D is the fractional derivative of Caputo sense,
and S(t) is a spatially dependent source term.

It has been observed that most of papers in the literature on the fractional-order
equations involves either Riemann—Liouville- or Caputo-type fractional derivative. Apart
from the two derivatives, Hadamard derivative is another kind of fractional derivative
that was introduced by Hadamard [9]. This fractional derivative differs from the other
ones in the sense that the kernel of the integral contains logarithmic function of arbitrary
exponent. For detailed materials of Hadamard fractional derivative and integral, we refer
to the papers [1-4, 8, 10, 11, 13-23,25-29] and references therein. In [14], the authors
studied the Riemann—Liouville fractional differential inclusion with Hadamard fractional
integral boundary conditions

reD%(t) € F(t,x(t), 0<t<T,1<q<2,
2(0)=0,  a(T) = alPx(n),
i=1

where 1 < ¢ < 2, g, D? is the Riemann—Liouville fractional derivative, ;1P is the
Hadamard fractional integral, 7; € (0,T) with 7 a;n?™"/(q — 1) # T9~*. In [29],
Zhang et al. utilized the Guo—Krasnosel’skii fixed point theorem to obtain the multiple

positive solutions for the Hadamard fractional integral boundary value problems
D? (g, (Du(t))) = f(t,u(t)), 1<t<e,
u(l) = u'(l) = u/(e) — Dau(l) =0,

e

©p(D%u(e)) :u/cpp(l7°‘1t(t))g

t )
1
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where o € (2,3], 8 € (1,2], u € [0, 8], pp is the p-Laplacian, and the nonlinearity f
grows (p — 1)-superlinearly and (p — 1)-sublinearly.

On the other hand, we note that coupled systems of fractional-order equations have
also been investigated by many authors, we refer to [2,4,8,11,13,17-21,23,25-27]. Ah-
mad and Ntouyas in [2] investigated some results for the system of Hadamard fractional
differential equations

Du(t) = f(t,u(t),v(t)), 1<t<e 1<a<2,
Dﬁu(t):g(t,u(t),v(t)), l<t<e 1<p<2,
u(l) =0, ufe) = INu(o1),

0,
v(1l) =0, v(e) = Mv(o2),

where I” is the Hadamard fractional integral with v > 0. By using Leray—Schauder’s
alternative and Banach’s contraction principle the authors obtained the existence and
uniqueness of solutions, respectively. In [11], Jiang et al. adopted the fixed point index to
study the existence of positive solutions for the system of nonlinear Hadamard fractional
differential equations involving coupled integral boundary conditions

DPu(t) + fi(t, u(t),v(t)) = 1<t<e,
B
(

)
v(t) + fa(t u(t),v(t) = 1<t<e,
u(l) =v(1) =4/ (1) =2'(1 ) 0,

- / o) = [ atsyuts) .

where the nonlinearities f; (i = 1,2) can grow superlinearly and sublinearly.

Inspired by the works above, in this paper, we use some fixed point methods to
study the existence of solutions for (1). We first obtain triple positive solutions when
the nonlinearities satisfy some bounded conditions. Next, we also obtain a nontrivial
solution when the nonlinearities can be asymptotically linear growth. Finally, we offer
two examples to illustrate our main results.

The outline of the paper is organized as follows. In Section 2, we give revelent defini-
tions and lemmas, and some important properties of the corresponding Green’s function
are also obtained. In Section 3, we give the detailed proofs for the existence theorems.
In Section 4, we present two examples to illustrate our main results.

2 Preliminaries

In this section, we only provide the definition of the Hadamard fractional derivative, for
more details we refer the reader to [1].

http://www.journals.vu.lt/nonlinear-analysis
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Definition 1. (See [1].) The Hadamard derivative of fractional order ¢ for a function

g:[1,00) — Ris defined as

dt

¢
1 d\" d
Dig(t) = ——— (t> /(1ogt —log s)”*qflg(s)?s, n—1<gqg<n,
1

['(n—q)

where n = [q] + 1, [¢] denotes the integer part of the real number ¢, and log(-) = log, ().

Lemma 1. Ler y € C[1,e]. Then the Hadamard fractional multi-point boundary value

problems

Diu(t) +y(t) =0, 1<t<e,
u(1l) = du(l) =0, u(e) = i: a;u(&;)

has a solution, which can take the form u(t) = [ G1(t, s)y(s)(ds/s), where

(logt)a—1
1- Zmllaz(bgfz

G1(t,s) = Go(t,s) + p— Z a;Go(&,s), t,sell,el,

Golt,s) = — § (ogt) (1 —log )" — (logt —log )™, 1
e I'(q) | (logt)9=1(1 —logs)?~t, )

Proof. Using Lemmas 2-3 of [27], we have

u(t) = c1(logt)? + co(log t)?2 + c3(log t)13
t

1 ds

— —— [ (logt —log s)? 'y (s)—

w17 [ tort =10z ()
1

where ¢; € R (i = 1,2,3). Note that from u(1) = du(l) = 0 we have c; = ¢3 = 0.

Consequently, we obtain

t
1 ds
1 — [ (1 —log s)4™ ! —.
u(t) = c1(logt)*~ T / ogt —logs)* y(s)—
1
From u(e) = 27" a;u(€;) we obtain
1 f ds
- 1-1 q-1 =
T ) /( ogs)* y(s)—
1
m— 1 m—1 & d
S
Z (log &)™ — 775 az/log& log 5)7~'y(s) -
i=1 =1
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This, together with (HO), implies that

1

J. Xu et al.

1=

(172 I ai(Ingz q 1

1

/1—10gsq ! ()ds

S
1

&
ds

(1 - Zz 1 az(IOggz
Therefore, by (2) we have

1

uo= (1- 27 as(log &)a)

(logt)—*

Z az/ log & —log s)* ™'y (s) —

1

(1- ZZ” 11 a;(log&;)e

R
F(q)1

1

/ (log — logs)*y(s) 22

T -2 w(log &) 1I(g)

e

S / (log 1)1 1(1 — log )7 1y (s)

I'(q) /

(logt)a—!

d
/logt =11 —log s)? 1y(s)— 5
S
1
& d
Z al/ log & — log s)*y(s) =
S
1
ds
S
f d
/(log DT (1~ log s)0y(s) =
S

1

ds
s

i
ds

(-2 a(log &) )

t
1
—— [ (logt —logs)4~! —— [ (log )1 (1 —1 q—1,\ 25
- o7 [ fomt —tog sy 1yl T + F(q/ogt (1~ log )1 y(s)
1

o

Z::ll a;i(log &)1

Z az/ log & —log )"~ 'y (s)—

1

% 1 ds

1

ds

+

(logt)?~!

(1- 27;11 a;(log &)1

[ [ om0 o) ()T

i
ds

(=2 a(log &)

Zaz/ - s

log & —log s)? y(s)
1
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e

~ [ Gottshu)

s
1
(log#)a~! L= /el &)1 —logs)?? ()ds
+ progn a; og ogs)? Ty(s)—
1_21:11%(10%&)(171 F(Q) i=1 §
m—1 &i
1 d
g - al/ log& —logs)™"y(s );1
i=1 1
/ ds (logt)?=1 e /e ds
= | Go(t,s)y(s)— + a; | Go(&,s)y(s)—
1/ o WO+ gt gy 2 [ OolGe O
i d
s
~ [Guttss)
1
This completes the proof. O

Lemma 2. (See [24].) The function Gy has the following inequalities:
i) (logt)?'(1—1lo

F(Q)GO (t7 S

(i) (logt)? (1 —1lo

< F(q)GQ(t7 S

t)log s(1 —log s)7*
<(g—1)logs(l —logs)?™t, t,se(l,e],
t)log s(1 —log s)7*
<(g—1)(logt)? (1 —logt), t,s€l,e].

= 0

= 0

Lemma 3.

1
Gl(t75) = w(t)Gl(T7 5)7 w(t) = 1(logt)q71(1 710gt), l,s,T € [176]'
q—
Proof. From Lemma 2(i) we have

-1
Gi(t,s) < Llog s(1 —logs)?™*

I'(q)
qg—1

+ - F azGO gm )

(1= 27 aillog &)~ Z
and
Gi(t,s) = %(logt)‘kl(l —logt)logs(1 —logs)?!
q
(log t)q_l m—1

Tr CLiG iy S
+(1—Zm11az(log§) )(q); ()aiCol&i )
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1
> @(log )47 1(1 — logt) log s(1 — log s)?~*
(logt)?~ 1(1—logt ZF JaiGol&i, 5)
(1— 7" as(log &)7~1)T'(q) e
1 qg—1 g—1 g—1
= 1 (logt)?=*(1 — logt) Q) log s(1 —log s)
q-— 1 m—1
+ m F(Q)aiGO(gia 3)
(1- Y7 ai(log &)a~1)T(q) ;
1
> — 1(10ng)‘1_1(1 —logt)Gi(7,s), t,s,7€[l,el.
This completes the proof. O

Let £ := C[1,e], [|u]| = maxyepy o |u(t)], and P := {u € E: u(t) >0 Vt € [1,e]}.
Then (E, ||-||) becomes a real Banach space, and P is a cone on E. Moreover, E X FE is
a Banach space with the norm ||(u, v)|| = ,and P x Pisaconeon E x FE. Let

n—1

1
(og #)7" Zb Go(nj,s), t,s€l,e].

1 _ijl j(logm;)a=t

Then from Lemma 1 we obtain that (1) is equivalent to the following system of Hammerstein-
type integral equations:

(Mﬂ>:<ﬁ%h@ﬁﬁﬂ&wﬁwwnf>
o(t))  \ S Galt, 8) fals, uls), v(s)) &

_ (Ax(u,v)(2) w v o
‘(&wwwﬁ’ webiellel

Gg(t, 8) = Go(t, 8) +

Therefore, we can define an operator A : P x P — P x P as follows:
A(u,v)(t) = (A1, A2)(u,v)(t), wu,v € P, te][lel]

Note that G; and f; ( = 1,2) are nonnegative continuous functions, so the operators
A;i: Px P — PG =1,2)and A: P x P — P x P are three completely continuous
operators. Moreover, if (7,7) € (P x P) \ {0} is a fixed point of A, then (u,7) is
a positive solution for (1). Therefore, in what follows, we turn to study the existence of
fixed points of the operator A.

Lemma 4. Let ) = mingc(5/4,3¢/4) w(t). Then A;(P, P) C Py (i = 1,2), where

j2 :{ € P > }
0 =1y [51}11113}/4] y(t) = nllyll

http://www.journals.vu.lt/nonlinear-analysis
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Proof. From Lemma 3 we have

Ay, 0)(t) = /Gl(t, ) fi (s,u(s), o(s))

S

t)/Gl(T, s)fl(s,u<s>,v(s))§

s
> w(t)Ar(u,v)(1), u,v € P, t,7 €[1,e].
This implies that
Ay, 0)() > 0@l As ()], ¢ € [1,e].
Consequently, if t € [5/4, 3e/4], we obtain

0] Ar(u, )] >

> i )40 0)]| = nll )]

and then

te[;}ii’gem A1 (u,v)(t) = n||Ar(u,v)||.

On the other hand, using the method of Lemma 3, we also have G (t, s) > w(t)Ga(7, s)
fort,s, 7 € [1,e], and thus A2 (P, P) C Py. This completes the proof. O

Let v, B, 6 be nonnegative continuous convex functionals on P, and let o, v be
nonnegative continuous concave functionals on P; then for nonnegative numbers b/, a’
b, d’ and ¢, convex sets are defined:

P(y,d)={ye P:y(y) <},
P(y,a,d',c) ={y e P: d’ <aly); 7(y) <},
Q. B,d',¢)={y e P: Bly) <d; y(y) <},
P(v,0,0,d' b, ) ={y € P: d' <a(y); 0(y) <b; y(y) <},
Q(v, B, b d' ) = {y € P: I <9(y); Bly) <d's v(y) <}

Lemma 5. (See [6].) Let P be a cone in the real Banach space E. Suppose that o
and 1) are nonnegative continuous concave functionals on P and v, 3,0 are nonnegative
continuous convex functionals on P such that, for some positive numbers ¢’ and ¢,
a(y) < B(y) and ||ly|| < €v(y) forally € P(y,c"). Suppose further that T: P(~y,c') —
P(v, ) is completely continuous and there exist constants b/, d', o/, and v > 0 with
0 < d' < a such that each of the following is satisfied:

B1) {y € P(v,0,a,d,0,c): aly) > o'} # 0 and o(Ty) > o fory €
P(Py’g’a’a/’b/’cl);

B2) {y € Qv B,9,1,d,c): Bly) > d'} # 0 and 5(Ty) > d fory €
Q(’V,B,’(/J,h/,d/,c/);

Nonlinear Anal. Model. Control, 26(3):502-521
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(B3) a(Ty) > a provided that y € P(~y,a,ad’, ") with 0(Ty) > V;
(B4) B(Ty) < d provided that y € Q(~, 8,v,h',d', ") with p(Ty) < }'.

Then T has at least three fixed pomts Y1, Y2,y € P(y,c) such that B(y,) < d', o’ <
a(yz) and d' < B(ys3) with a(ys) < a'.

Lemma 6. (See [12].) Let E be a Banach space, and A: E — E be a completely
continuous operator. Assume that T': E — E is a bounded linear operator such that 1 is
not an eigenvalue of T' and lim, |- ||Au — Tu||/||u|| = 0. Then A has a fixed point
in E.

Remark 1. (i) If we use t, s to replace logt, log s in Gg of Lemma 1, respectively, we
can obtain a function

éO(ta 8) =

//\ //\

L,
1.

//\ //\
//\ //\

T(q) |ta=1(1 — s)a~ 1,

This function happens to be the Green’s function for the Riemann-Liouville fractional
boundary value problem

1 {tql(ls)ql(ts)ql, 0
0

Df u(t)+y(t)=0, 0<t<l1,
u(0) = u/(0) = u(1) =0,

where ¢ € (2,3], and Dg, is the Riemann—Liouville fractional derivative, y € C0,1].
For details, please refer to Lemma 3.1 in [24].

(i) Note that for multi-point boundary value problems, the Green’s functions may be
complicated. For example, in [7], Bai studied the fractional three-point boundary value
problem

D§ , =0, O<z<],
ox(@) + f(z, x(x) ): x )

x(0) =0, Bx(n
where o € (1,2], fn*~1, n € (0,1). The Green’s function is
G(z,y)

2(1—gy)]e— 1 _gge—1 a=1, a—1 a—1

[z(1—y)] T (%no‘y) 1)Féa) ) (1—Bn ) 0 < Yy < T < 17 Yy < 7,
[2(1=p)]" " ~—y)* (=) 0<n 7

_ (1-An==1)T(a) 4)
[z(1—y]* =Bz (np—y)*~*

N
<
N
8
N
—_

(T=F7™ 1T a) ’ O<zsysn<l,
A 0<z<y<l,n<y

Note that if 5 = 0, then (3) reduces to the problem

Dy, x(x) + f(x,x(m)) =0, O<zx<l,

¥(0) = x(1) = 0. ®

http://www.journals.vu.lt/nonlinear-analysis
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The Green’s function is

g(x,y) =

//\ //\
//\ //\

L,
L (6)

1 <y
(o) e -yl <z

Now, if the three-point problem (3) is considered as a perturbation of the two-point
problem (5), we can use (6) to obtain (4), i.e.,

1 {[x(l P =@ -yl 0
0

a—1
G(x,y) = g(x,y) + %g(n,y)-

This simple idea motivates our study in Lemma 1.
Combining the above, we do not need to construct new Green’s functions to obtain
the equivalent Hammerstein-type integral equations for our problem (1).

3 Main results
Now, we state our main theorems, and provide their proofs.
Theorem 1. Let 0 < a’ <V < b'/n < ¢, (HO)-(H1) and the following conditions hold:

(H2) fi(t,u(t),v(t)) < d'Ly, fo(t,u(t),v(t)) < a’'La, t € [l,e] and u + v €

[na’, a'l;
(H3) fi(t,u(t),v(t)) > b' My, fo(t,u(t),v(t)) > b My, t € Iandu+v € [V, /n);
HA) f1(t,u(t),v(t)) < Ly, falt,u(t),v(t)) < Lo, t € [1,e] and u+ v € [0, ],
where
m—1 —1
ler(q+2){1+ L } ,
2((17 1) 1-— Z =1 az(loggz)
Ly -1
Ly — I'(g+2) {1 n n§j:1 j ] 7
2(g—=1) 1- Zj:l bj(logn;)e-1
m—1 Ng—1 _ 11
]\41 36/1 |:1+ Zi:l az(:%fz)q (]- l_og&)} ,
2n f (S 1= ai(log &)1
Z?_lb-(logm)q‘l(l—logm) -
M, 3e/4 d 1 1 ’
2 [570 k() 1= 3207 by(logm; )a-
and
q—1 —1
k(s) = logs(1 —logs)?™", se€][l,e].

T(q)

Then (1) has at least triple positive solutions.

Nonlinear Anal. Model. Control, 26(3):502-521
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Proof. From Lemma 4 we have

t€[5r/r}1i,r31e/4] {41, v)(®) + Az(u,0)(0)}

> ([ Ar (. 0)[| + Az, 0)][) = nll A, o)

Therefore, for our conclusions, we need to define the nonnegative continuous concave
functionals «, ¥ and the nonnegative continuous convex functionals (3, 8, v on Py by

a(u,v) = min {|u(t)| +[o(0)]},
U, 0) = min {u(t)| + [o(0)[},
Y(w,v) = max {[u(®)] + [o(@)]},
Blu,v) = max {|u(®)] + [v()]},

O(u,v) = 1?621;({|u(t)| + [v(®)]},

where I = [5/4,3e/4], I = [3/2,2]. For any (u,v) € Py, we have

a(u,v) = 1}161}1{|u(t)| + |v(t)‘} < max {|u(t)]| + ’v(t)|} = B(u,v),

tely
! i 1 —1 u, v
o)< min { )]+ [o(0)]} < max ()] + [o(0)]} = Ly 0)

We show that A: P(v,c’) — P(v,¢'). Indeed, if (u,v) € P(y,c’), then we have 0 <
u(t) + v(t) < ¢ fort € [1,e]. Consequently, (H4) is used to obtain

'y(A(u,v))(t) = max {Al(u, v)(t) + Az (u, v)(t)}

te(l,e]

<jmﬁkk SN PR
) 1 1 - 221_11 a;(log&;)a—t e 7 §
r S ds
+/¢@>1+ L fo (s, u(s), (s))
/ 1— ijl b;(logn;)i— 5
m—1
< qg—1 mXE;‘:1 a; Ly
I'(q+2) 1= ai(log&;)a—t
n—1
_ by
+ 7 L TE:lj_l d C/LQ
I'(g+2) 1= 5= bj(logn;)e—t
/
=C.

http://www.journals.vu.lt/nonlinear-analysis
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Now, (B1) and (B2) of Lemma 5 are to be verified. Note that

/ / /
%b/n) € {(uw) € P<7,9,a7b’,b,

ML ¢ {(uv) € Q. Buvna ! ): Bluw) < a'} £

Therefore, if (u,v) € P(y,0,a,b,b'/n,c), then b’ < u(t) +v(t) < V' /nfort € I,
if (u,v) € Q(v,B,%¥,nd’,a’, '), then na’ < u(t) + v(t) < o fort € I;. As a result,
(H3) enables us to find

a(A(u,v))(t)
= min { |41 (u,0)(5)] + [As(u,0) (1)}

c’): a(u,v) > b’} # 0,

mm{/Gl (t,s)f1(s,u(s),v(s ))(18+/G2(t,s)f2(s,u(s),v(s))}

> logt)?~1(1 —1
min(logt)™"(1 — logt)

{1

1

1+

Z:n;l a;(log 51)‘171(1 —log&;) | logs(1 —logs)?™!
1- Y7 ai(log )7 I'(q)
X fl(s7u(s)7v(s))%

s
Z] 1 b (log%)q '(1 —logn;) | log s(1 — log s)4~*
1- Z b j(logn;)a—1 I'(g)

e
+ [+

1

X fa (s, u(s), 11(5)) ds}

S

_ Zzn—ll az(log gz)q_l(l — log 51) log 8(1 — log S) , ds
= 1)77{1/ |:1 ! 1- Zz _1 ai(log&;)11 ] F(Q) b My S
«f

32 by (log ;)™ 1<1logm>]1ogs<1—1ogs>q ! ds}
I

1+ b My—
1= 3207 by(logm;)a-? I'(q)
— b,

Moreover, (H2) implies that
B(A(u,v))(t) = max {A1(u,v)(t) + Ag(u,v)(t) }

/ S as ds
< | k(s T 1(s,u(s),v(s))—
< o) g az-(loga)ql]f( )

S
1

1+
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e n—1
b d
+/k(s) 1+ Eﬁ‘l - 1] Fa(s.u(s), v(s) =
/ 1= =1 bj(logn;)e~ §
1 m—1 ;
< q —+ mg:i:l a a’Ll
I(g+2) 1->0 ai(log&;)a—t
n—1
+ q— 1 Z]:l b] CL/LQ
Plg+2) | 1- Y72 b;(logn;)s!
/
=a.

Next, (B3) of Lemma 5 is satisfied. Let (u,v) € P(y, o, ', ) with 8(A(u,v))(t) >
b’ /n. Therefore, for all T € [1, ¢], we have
o(A(u, v))(t)
= min {|A1(u,v)(t)| + |A2(u, v)(t)]}

tel

>minw(t){/G1(T, s)fl(s,u(s),v(s))%+/Gg(7’, s)fg(s,u(s),v(s))ds}
1

tel S
1

S

:U{/Gl(ﬂ S)fl(&u(s)yv(s))%+/G2(7‘, s)fg(s,u(s),v(s))ds},

Note that the last line of the above is independent of the variable ¢, and thus we obtain

Oz(A(u7 v)) (t)

= 7 max {
TE[1,€]

G1(r, s)fl(s,u(s),v(s))% +/G2(T, s)fg(s,u(s)w(s))ds}

S

O»—A\
(]

1
> nmaX{ [armonts .o+ | G2<T,s>f2(s,u<s>,v<s>>ds}

> nb(A(u,v))(T) > V.

Finally, we prove that (B4) holds. Let (u,v) € Q(v, 8,d’,¢") with ¢(A(u,v))(t) <
na’. Note that mingey G;(t, s) = nG;(r, s) for 7, s € [1, €], and thus minge; G;(t,s) >
nmax, e Gi(7,s) for s € [1,e], i = 1,2. Therefore, we have

B(A(u,v))(t)
=max { A (u,v)(t) + Az(u,v)(t) }

—rt%z}i({/Gl(t,s)fl (s,u(s),v(s))is+/G2(t75)f2(8,u(5)a”(3))f}
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< max {/Gl(t s)fl(s u(s), v(s))% +/GQ(t,S)fQ(S,U(S),’U(S))dS}

telel J s
ds / ds

7@3{/@ ﬁsm><»s+/am@h@wwwms}
ds f ds

< n?eulrll{/Gl (t,s)f1(s,u(s),v (s))? +1/G2(t,s)f2(s,u(s),v(s))S}

= 57/)(14(“’”))(75) <ad.

Up to now, we have proved that all the assumptions of Lemma 5 are satisfied. There-
fore, (1) has at least triple positive solutions, (x1,22), (y1,¥2), and (z1, z2) such that
B(z1,22) < ', b < afy1,y2), and o’ < B(z1,z2) with a(z1, z2) < V'. This completes
the proof. O

Theorem 2. Suppose that (HO) and the following conditions hold:
H1) f; € C([1,e] x RxR,R), i =1,2;

(H5) hm|u+v|_)oO fi(t,u,v)/(u+v) = o; uniformly fort € [1,¢|, where |o;| < 2L;,
1=1,2;
(H6) f;(£,0,0) 2 0fort e [1,e],i=1,2.

Then (1) has at least one nontrivial solution.

Proof. Define operators T; : £ x I — E as follows:
ds ;
T;(u,v)(t) = 0; | Gi(t,s)(u(s) +v(s))—, wveE, tele, i=12
s

Now, we prove that 1 is not an eigenvalue of 7; (¢ = 1, 2), and we only need to consider
the case ¢ = 1 (the case ¢ = 2 can be dealt with a similar method). Argument by contrary.
If let w + v = w, then we have

o [t syuls)S = wio), ™

and by Lemma 1 we obtain
Diw(t) + o1w(t) =0, 1<t<e,
m—1 (8)
w(1l) = dw(l) =0, w(e) = Z a;w(&:),
i=1
where q, 8, a;, & (1 = 1,2,...,m — 1) satisfy (HO). We distinguish two cases.
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Case 1. 01 = 0. From (8) and Lemma 1 of [23] we have
Diw(t) =0 and w(t) = c;(logt)?™ ' + co(logt)?™2 + c3(logt)?3,

where ¢; € R (¢ = 1,2,3). By the boundary conditions in (8) we have co = c3 = 0.
Therefore, we find

Z (log &),

and (HO) indicates that ¢; = 0. Consequently, we have w(t) = 0 for t € [1,e]. This
contradicts to the definition of eigenvalue and eigenfunction.

Case 2. o1 # 0. From (7) we have

/Glts ()%

|lw]| = |o1] max
ds
< o] m[ax G1 t,s)|w(s ’ < |oa]||w]| max G1 t,s)
tell

St ds
<|al|||w\|/k<s> T =
1 1_2 =1 az(log&) $

— o] o < [leo]

= |oq|||w oL w

This has a contradiction.

Above all, 1 is not an eigenvalue of T; (¢ = 1,2) as required. Hence, if we let the
operator T : E x E — E x E as follows:

T(u,v)(t) = (T1,Ts) (u,v)(t), u,ve E te][l,e],

we know 1 := (1, 1) is not an eigenvalue of T
From (HS5), for all € > 0, there exist M; > 0 (¢ = 1, 2) such that

Mla te [LCL
Mg, t e [1,6}.

|fi(t,u,v) —o1(u+v

)| <elu+v], |u+tw
|f2(t,u, u—i—v’

< | 2
Lelutv], |Jutv >
Consequently, there are ¢; > 0, (2 > 0 such that

elut+v|+ G, u,veR, telel]
elu+v|+ ¢, u,veR, telle

’fl(t,u,v) — 01(u+ )
’fz(t,u, ’U) — JQ(’LL + )

<
<
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As a result, we have

||A(u7 U) — T(“? U)”

Oy ToPRP
_ HAl(u’ U) — Tl(uﬁv)” + ||A2(u,v) — TQ(uvv)”
 ull+Hivi—oo [Jull + l|v]|
g maXeele| J5 Ga(t,5)(f1(s,u(s),v(s)) — o1 (u(s) + v(s))) %]
= Jlull+ivli—oo [Jull + vl
PR maxeqr,e | [} Ga(t,5)(fa(s, u(s), v(s)) — oa(u(s) + v(s))) %]
llull+[v ]| o0 [[ull + [Jv]]
oy Eene J7 Ga(t, )| f1(s,u(s),v(s)) — o1 (u(s) + v(s))] 4
= Jull vl o0 [[ull + llv|
g eXie[lel J7 Ga(t, 9)| fa(s,u(s), v(s)) — oa(u(s) + v(s))| 4
lfull+[[o]| o0 [[wll + ol
< m max;e(q,e| fle G1(t, s)(e|lu(s) + v(s)| + C1)%
l[ull+]v]| —o0 [[wll + vl
b Xl J7 Ga(t, s)(elu(s) + v(s)| + (o) 4
llull+[[v]| o0 [Jull + vl
< lim el J7 Ga(t,8) 9 (e]lu+ vl + 1)
llull+l[v ]| o0 [[ull + ]l
1 maxer,q [, Ga(t, )% (ellu + v + )
llul|+[[o]| o0 [[wll + ol
. st (ellu+ o[l + ¢1) . 315 (ellu + o] + ¢)
< lim im
lull+- o]l — 00 lull + (vl llull v ]| o0 [Jwll + ]|
<< (1 + 1).
o\ L, " Lo
For the arbitrariness of &, we have lim(y,)||—oo | A(u,v) = T(u,v)||/||(u,v)|| = 0.

Note from (H6) that 0 = (0,0) is not a fixed point of A. Hence, from Lemma 6 we
have that A has a fixed point in F, and this fixed point is nontrivial, i.e., (1) has at least
one nontrivial solution. This completes the proof. O

4 Examples

In(l),letq =25, m=n=2,a; = by = 2,& = n = 1.5, and then we obtain the
system of Hadamard fractional three-point boundary value problems
D*5u(t) + fi(t,ut),v(t) =0, 1<t<e,

D*5u(t) + fo(t,u(t),v(t)) =0, 1<t<e, O
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u(1l) = du(l) =0, u(e) = 2u(1.5), )
v(l) =dév(l) =0, 2
By direct calculation we obtain
n = 0.055, a1(log &)1 = by (logn )7 = 0.516,
a1(log &) (1 —log &) = by (logm)? (1 — logny) = 0.307,

3e/4

/ log s(1 — log 5)1-5% = 0.081.

5/4

Therefore, we obtain
L, =Ly =0.755, My = M5 = 60.86.

Example 1. If we choose ' = 1,0 = 10, ¢ = 900, then 0 < o’ < ¥ < ¥ /n < .
Moreover, let

. 3
ft ey = {8 SR 0wt o <10, te (L)
1L, u,v) = N
L+ 650 + Leinlutel| u+v>10, te [l €,

and

ey = {7 R SRR 0<utu <10, e (Ll
%+630+%, u+v>10, t € [l,e.

Then we obtain

1
A St u),v() < — 5+ % +0.65 < a’Ly = 0.755,
Fa(t,u(t), v(t)) < 7% + @ +0.63<d'Ly=0.755 te[l,e,

u+ v € [0.055,1];
Qi) fi(tult), v(t)) > 650 > b M, = 608.6,

5 8
4’4

Bt u(t), v(t)) > 630 > ¥M; = 6086, ¢ € {

u+ v € [10, 181.82]-

1
(i) fi(tu®), o) < w0t % +650 < 'Ly = 679.5,
f2(t,u(t), v(t) < % +t 630 < 'Ly = 679.5, t¢€[l,e],
u+ v € [0,900].

Then all the assumptions of Theorem 1 are satisfied. So, (9) has at least triple positive
solutions.
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Example 2. Let
fi(t,u,v) = o1 (u~+v) + pat + vy,
fg(t,u,’U) = UQ(U’ + U) + M?t + v,

where |o;] < 1.51, u; # 0, v; # 0 foru,v € R, t € [1,e], i = 1,2. Then all the
conditions of Theorem 2 hold. Hence, (9) has at least one nontrivial solution.

Acknowledgment. The authors would like to thank the referee for his/her valuable
comments and suggestions.

References

1. B. Ahmad, A. Alsaedi, S.K. Ntouyas, J. Tariboon, Hadamard-Type Fractional Differential
Equations, Inclusions and Inequalities, Springer, Cham, 2017, https://doi.org/10.
1007/978-3-319-52141-1.

2. B. Ahmad, S.K. Ntouyas, A fully Hadamard type integral boundary value problem of a coupled
system of fractional differential equations, Fract. Calc. Appl. Anal., 17(2):348-360, 2014,
https://doi.org/10.2478/s13540-014-0173-5.

3. B. Ahmad, S.K. Ntouyas, A. Alsaedi, Existence theorems for nonlocal multivalued Hadamard
fractional integro-differential boundary value problems, J. Inequal. Appl., 2014:454, 2014,
https://doi.org/10.1186/1029-242X-2014-454.

4. S. Aljoudi, B. Ahmad, J.J. Nieto, A. Alsaedi, A coupled system of Hadamard type sequential
fractional differential equations with coupled strip conditions, Chaos Solitons Fractals, 91:
39-46, 2016, https://doi.org/10.1016/7j.chaos.2016.05.005.

5. L. Ates, P.A. Zegeling, A homotopy perturbation method for fractional-order advection-
diffusion-reaction boundary-value problems, Appl. Math. Model., 47:425-441, 2017, https:
//doi.org/10.1016/3.apm.2017.03.006.

6. R.I. Avery, A generalization of the Leggett-Williams fixed point theorem, Math. Sci. Res.
Hot-Line, 3(7):9-14, 1999.

7. Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear
Anal., Theory Methods Appl., 72(2):916-924, 2010, https://doi.org/10.1016/7.
na.2009.07.033.

8. Y. Ding, J. Jiang, D. O’Regan, J. Xu, Positive solutions for a system of Hadamard-type
fractional differential equations with semipositone nonlinearities, Complexity, 2020:9742418,
2020, https://doi.org/10.1155/2020/9742418.

9. J. Hadamard, Essai sur I’étude des fonctions données par leur d’éveloppement de Taylor,
Journ. de Math. (4), 8:101-186, 1892, http://eudml.org/doc/233965.

10. J. Jiang, D. O’Regan, J. Xu, Y. Cui, Positive solutions for a Hadamard fractional p-Laplacian
three-point boundary value problem, Mathematics, 2019:439, 2019, https://doi.org/
10.3390/math7050439.

11. J. Jiang, D. O’Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard
fractional differential equations involving coupled integral boundary conditions, J. Inequal.
Appl., 2019:204, 2019, https://doi.org/10.1186/s13660-019-2156~-x.

Nonlinear Anal. Model. Control, 26(3):502-521


https://doi.org/10.1007/978-3-319-52141-1
https://doi.org/10.1007/978-3-319-52141-1
https://doi.org/10.2478/s13540-014-0173-5
https://doi.org/10.1186/1029-242X-2014-454
https://doi.org/10.1016/j.chaos.2016.05.005
https://doi.org/10.1016/j.apm.2017.03.006
https://doi.org/10.1016/j.apm.2017.03.006
https://doi.org/10.1016/j.na.2009.07.033
https://doi.org/10.1016/j.na.2009.07.033
https://doi.org/10.1155/2020/9742418
http://eudml.org/doc/233965
https://doi.org/10.3390/math7050439
https://doi.org/10.3390/math7050439
https://doi.org/10.1186/s13660-019-2156-x
https://doi.org/10.15388/namc.2021.26.22538

520

12.

13.

14.

15.

16.

17.

19.

20.

21.

22.

23.

24,

25.

J. Xu et al.

M.A. Krasnosel’skii, P.P. Zabreiko, Geometrical Methods of Nonlinear Analysis, Grundlehren
Math. Wiss., Vol. 263, Springer, Berlin, Heidelberg, 1984, https://doi.org/10.1007/
978-3-642-69409-7.

Q. Ma, J. Wang, R. Wang, X. Ke, Study on some qualitative properties for solutions of a certain
two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Lett.,
36:7-13,2014, https://doi.org/10.1016/j.am1.2014.04.009.

S.K. Ntouyas, J. Tariboon, W. Sudsutad, Boundary value problems for Riemann-Liouville
fractional differential inclusions with nonlocal Hadamard fractional integral conditions,
Mediterr. J. Math., 13(3):939-954, 2016, https://doi.org/10.1007/s00009-015~-
0543-1.

S.K. Ntouyas, J. Tariboon, C. Thaiprayoon, Nonlocal boundary value problems for Riemann-
Liouville fractional differential inclusions with Hadamard fractional integral boundary
conditions, Taiwanese J. Math., 20(1):91-107, 2016, https://doi.org/10.11650/
£im.20.2016.5654.

K. Pei, G. Wang, Y. Sun, Successive iterations and positive extremal solutions for a Hadamard
type fractional integro-differential equations on infinite domain, Appl. Math. Comput., 312:
158-168, 2017, https://doi.org/10.1016/j.amc.2017.05.056.

S.N. Rao, M. Singh, M. Zico Meetei, Multiplicity of positive solutions for Hadamard fractional
differential equations with p-Laplacian operator, Bound. Value Probl., 2020:43, 2020, https:
//doi.org/10.1186/s13661-020-01341-4.

. U. Riaz, A. Zada, Z. Ali, M. Ahmad, J. Xu, Z. Fu, Analysis of nonlinear coupled systems

of impulsive fractional differential equations with Hadamard derivatives, Math. Probl. Eng.,
2019:5093572, 2019, https://doi.org/10.1155/2019/5093572.

U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive
fractional differential equations involving Hadamard derivatives, Adv. Difference Equ., 2019:
226, 2019, https://doi.org/10.1186/s13662-019-2163-8.

J. Tariboon, S.K. Ntouyas, W. Sudsutad, Coupled systems of Riemann-Liouville fractional
differential equations with Hadamard fractional integral boundary conditions, J. Nonlinear
Sci. Appl., 9(1):295-308, 2016, https://doi.org/10.22436/jnsa.009.01.28.

J. Wang, Y. Zhang, On the concept and existence of solutions for fractional impulsive systems
with Hadamard derivatives, Appl. Math. Lett., 39:85-90, 2015, https://doi.org/10.
1016/j.aml1.2014.08.015.

J. Xu, J. Jiang, D. O’Regan, Positive solutions for a class of p-Laplacian Hadamard fractional-
order three-point boundary value problems, Mathematics, 2020:308, 2020, https://doi.
org/10.3390/math8030308.

W. Yang, Positive solutions for singular coupled integral boundary value problems of nonlinear
Hadamard fractional differential equations, J. Nonlinear Sci. Appl., 8(2):110-129, 2015,
https://doi.org/10.22436/jnsa.008.02.04.

C. Yuan, Multiple positive solutions for (n — 1, 1)-type semipositone conjugate boundary
value problems of nonlinear fractional differential equations, Electron. J. Qual. Theory Differ.
Equ., 2010:36, 2010, https://doi.org/10.14232/ejgqtde.2010.1.36.

W. Yukunthorn, B. Ahmad, S.K. Ntouyas, J. Tariboon, On Caputo-Hadamard type fractional
impulsive hybrid systems with nonlinear fractional integral conditions, Nonlinear Anal. Hybrid
Syst., 19:77-92, 2016, https://doi.org/10.1016/j.nahs.2015.08.001.

http://www.journals.vu.lt/nonlinear-analysis


https://doi.org/10.1007/978-3-642-69409-7
https://doi.org/10.1007/978-3-642-69409-7
https://doi.org/10.1016/j.aml.2014.04.009
https://doi.org/10.1007/s00009-015-0543-1
https://doi.org/10.1007/s00009-015-0543-1
https://doi.org/10.11650/tjm.20.2016.5654
https://doi.org/10.11650/tjm.20.2016.5654
https://doi.org/10.1016/j.amc.2017.05.056
https://doi.org/10.1186/s13661-020-01341-4
https://doi.org/10.1186/s13661-020-01341-4
https://doi.org/10.1155/2019/5093572
https://doi.org/10.1186/s13662-019-2163-8
https://doi.org/10.22436/jnsa.009.01.28
https://doi.org/10.1016/j.aml.2014.08.015
https://doi.org/10.1016/j.aml.2014.08.015
https://doi.org/10.3390/math8030308
https://doi.org/10.3390/math8030308
https://doi.org/10.22436/jnsa.008.02.04
https://doi.org/10.14232/ejqtde.2010.1.36
https://doi.org/10.1016/j.nahs.2015.08.001
http://www.journals.vu.lt/nonlinear-analysis

Solvability for a system of Hadamard fractional multi-point BVP 521

26. C. Zhai, W. Wang, H. Li, A uniqueness method to a new Hadamard fractional differential
system with four-point boundary conditions, J. Inequal. Appl., 2018:207, 2018, https:
//doi.org/10.1186/s13660-018-1801-0.

27. H. Zhang, Y. Li, J. Xu, Positive solutions for a system of fractional integral boundary value
problems involving Hadamard-type fractional derivatives, Complexity, 2019:2671539, 2019,
https://doi.org/10.1155/2019/26715309.

28. K. Zhang, Z. Fu, Solutions for a class of Hadamard fractional boundary value problems with
sign-changing nonlinearity, J. Funct. Spaces, 2019:9046472, 2019, https://doi.org/
10.1155/2019/9046472.

29. K. Zhang, J. Wang, W. Ma, Solutions for integral boundary value problems of nonlinear
Hadamard fractional differential equations, J. Funct. Spaces, 2018:2193234, 2018, https:
//doi.org/10.1155/2018/2193234.

Nonlinear Anal. Model. Control, 26(3):502-521


https://doi.org/10.1186/s13660-018-1801-0
https://doi.org/10.1186/s13660-018-1801-0
https://doi.org/10.1155/2019/2671539
https://doi.org/10.1155/2019/9046472
https://doi.org/10.1155/2019/9046472
https://doi.org/10.1155/2018/2193234
https://doi.org/10.1155/2018/2193234
https://doi.org/10.15388/namc.2021.26.22538

	Introduction
	Preliminaries
	Main results
	Examples
	References

