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Abstract. Based on existing feedback control methods such as OGY and Pyragas, alternative
new schemes are proposed for stabilization of unstable periodic orbits of chaotic and hypercha-
otic dynamical systems by suitable modulation of a control parameter. Their performances are
improved with respect to: (i) robustness, (ii) rate of convergences, (iii) reduction of waiting time,
(iv) reduction of noise sensitivity. These features are analytically investigated, the achievements are
rigorously proved and supported by numerical simulations. The proposed methods result successful
for stabilizing unstable periodic orbits in some classical discrete maps like 1-D logistic and standard
2-D Hénon, but also in the hyperchaotic generalized n-D Hénon-like maps.

Keywords: chaos control, proportional feedback control, delayed feedback control, parameter
modulation, control of hyperchaos.

1 Introduction

Chaotic behavior is a very interesting nonlinear phenomena, but in many situations, it is
desirable to be avoided, for example, when it restricts the operating range of electronic
or mechanics devices. Moreover, this goal should be achieved with the only help of tiny
perturbations properly chosen [2].

The consagrated idea of Ott, Grebogi, and Yorke [24] consists on turning the presence
of chaos into an advantage. Indeed, the system may be stabilized on a particular unstable
periodic orbit (UPO) embedded in a strange attractor by applying a small time-dependent
feedback perturbation to some accessible parameter or variable system. The periodic orbit
is preserved, but its stability is modified keeping the trajectory to stay close to the UPO.
This control strategy is known as the OGY method.

A simple proportional feedback (SPF) control method basically consists on a per-
turbation proportional to the difference between the current system value and an unstable
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fixed point (or one of the UPO’s component), being the OGY method [24] a particular
case of it. It is well known that it can control chaos for some 1-D maps [2]. Its usefulness
arises when controlling chaos in highly dissipative systems; as there are cases in which it
loses validity because Poincaré sections changes in each iteration, a recursive proportional
feedback (RPF) has been proposed [36]. Both SPF and RPF methods require the exact
knowledge of the UPO to be stabilized and the linearized dynamics about it. This is
not always at one’s disposal in real-world implementations. Moreover, the OGY method
results very sensitive to nonlinearities and fluctuations of external noise, mainly for large
orbit periods. Nevertheless, the OGY method holds good, and extended versions of it
are still studied (for example, in [22], a two-controlling parameter extension is applied
on a coupled 2-D chaotic maps). With the aim to overcome the limitations of the OGY
method, Pyragas introduced a self-controlling delayed feedback [27], which, as the OGY,
does not modify the original UPO, but it does not depend explicitly on it. Its discrete-time
version results in a perturbation, which is proportional to the difference between the cur-
rent system value and a previous one. This delayed feedback control (DFC) successfully
controls chaotic behavior in a variety of experiments [6] (and its references). However,
the stabilization capability of the DFC may be weaker than the OGY’s. The domain of
system parameters for which stabilization can be achieved via DFC is limited, namely, the
method fails for highly UPO’s [32]. The Pyragas method is renamed in [32] as “time-delay
autosynchronization” (TDAS). Its extended versions (referred as ETDAS and EDFC) uses
information from many previous states improving on stabilization objectives achievement.
Recently published works aim to the efficient choice of the control parameters for the
EDFC implementation. In [1], the parameter design without accurate information about
the system is dealt with by employing a data-driven pole placement method. Moreover,
in [4], a fixed point stabilization by means of EDFC methodology is warranted under
a condition on the set of the eigenvalues of the Jacobian matrix of the map at the fixed
point by rigorous mathematical approach although the extension of its results to a m-
period UPO stabilization seems to remain an open problem. On the other hand, any UPO
with an odd number of real Floquet multipliers greater than one (or with an odd number
of real positive Floquet exponents) can never be stabilized by TDAS/ETDAS method.
This restriction was pointed out in [34], and it is known as the odd number limitation
(ONL). Later, ONL was also stated for stabilization of UPO’s through ETDAS [33].
Several alternative methods, as the oscillating approach [20], the adaptive version [26], the
delayed feedback with periodic control gain [16], the delayed feedback control methods
based on predictive state [21,35], the learning control of time-delay chaotic systems [11],
the act-and-wait concept [8], and the observed-based-delayed feedback control [12], have
been proposed to overcome this drawback. More references embracing the discrete and
continuous-time cases may be found in [17].

Assume a dynamical system given by a continuously differentiable function f :

xk+1 = f(xk, r), (1)

where r is a scalar parameter, and that for r= r0, the system develops chaotic behavior
having an infinite number of UPOs embedded in a strange attractor,A, within its basin of

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Feedback control modulation for controlling chaotic maps 421

attraction, B. The dynamics in A is ergodic, meaning that for almost all initial condition
in B, a system trajectory visits any small neighborhood of every point of the UPO’s.

A widely used technique for controlling chaotic behavior is modulation: by judi-
ciously varying control parameters any system trajectory resulting from a randomly cho-
sen initial condition, x0, is driven to a given m-period UPO, p ≡ {p1, p2, . . . , pm}.
Suppose that r can be finely tuned in a small-range around r0, namely, r ∈ (r0−δ, r0+δ),
0 < δ� 1. Then the objective is to stabilize system (1) at p by feedback control mod-
ulation. Namely, the (control) parameter is affected by a control uk = u(xk), so,

xk+1 = f(xk, r0 + uk) (2)

under the requirement that the adjusted parameter remains within a range for which the
system is chaotic in the absence of perturbations.

Published works on controlling chaos by modulation are mostly based on experimen-
tal or numerical arguments, while analytical approaches usually concentrate on a fixed
point stabilization problem [31]. DFC and SPF controls applied to 1-D maps are con-
fronted in [6] by means of linear stability analysis and by implementation in an analog
electric circuit. On the other hand, analytical approaches consider only additive control,
and features related to control of chaos objectives are disregarded [16, 18, 27].

Both OGY and Pyragas methods have been extensively studied and analyzed in the
literature on the subject like [3] and also revisited in [29, 30] among others, while several
modifications on them have been introduced throughly more than twenty years ago. The
present work relies on modifications of these control methods by modulation techniques
improving some aspects on their performances related to robustness, rate of convergences,
reduction in the waiting time, reduction in noise sensitivity, among others. Moreover,
all of these features are rigorously proved. The approach to stabilize any UPO of the
chaotic map (1) by modulation of the parameter r is investigated both analytically and
numerically. The possibility of relaxing some requirements of the OGY and Pyragas
methods is explored, and alternative types of SPF and DFC methods are built. Different
from the original OGY method, the SPF method does not require exact knowledge on
the linearization data of the UPO to stabilize. Based on these ideas, modifications to
the original Pyragas method [27] are introduced even in the extended version presented
in [32], and alternative types of DFC and EDFC methods are also proposed. In all the
cases, the convergence properties of the control strategies are proven taking into account
control bounds as well as control performance issues of the considered schemes.

The article is organized as follows. Throughout the work, the problem is stated for
the general case of Eq. (1). The achievements of the proposed methods when applied to
it are rigorously analyzed. By simplicity they are developed for 1-D maps at first. The
generalized versions of the SPF and DFC methods, which involve a kind of switching
controller, are introduced in Sections 2 and 3, respectively, and illustrated with the cele-
brated logistic map. In Section 4, the issue of their extension to the n-dimensional case is
established, and some meeting points with previously developed proposals are considered.
Numerical simulations using the 2-D Hénon map illustrate the goals. In Section 5, an ad-
hoc reformulation is designed to control the hyperchaotic n-D generalized Hénon-like
maps. Finally, Section 6 contains the concluding remarks and lines of future research.
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2 Controlling chaos by SPF modulation

2.1 The OGY method

This method outlined in [24] is briefly reviewed here. Assume that at time k, the trajectory
falls close to the component pi. The linearized dynamics of (1) about pi and r0 is

xk+1 − pi+1 = fx(pi, r0)(xk − pi) + fr(pi, r0)(rk − r0). (3)

To force the system towards p, it is settled xk+1 − pi+1 = 0, uik = (∆r)k = rk − r0, so
from (3) it follows

uik = −fx(pi, r0)
fr(pi, r0)

(xk − pi) = αi(xk − pi). (4)

Equation (4) holds only when |xk − pi| 6 ε � 1, hence, the required parameter pertur-
bation, (∆r)k, is small, and the maximum parameter perturbation, δ, is proportional to ε
(with factor αi). When the trajectory is outside the ε-neighborhood of pi, the perturbation
is not applied, and the system evolves at its nominal chaotic parameter r0. Note that by
ergodicity the control is eventually activated. The lapse while the control is off is known
as waiting time. Then, for given ε, δ > 0, the control algorithm is

uik =

{
αi(xk − pi), |xk − pi| 6 ε,

0 otherwise.
(5)

Note that p is preserved by a parameter perturbation of SPF type, i.e., uik ∝ |xk − pi|.

2.2 A more flexible OGY-based scheme

The control in Eq. (5) is turned on only at the end of each oscillation becoming very
sensitive to nonlinearities and to fluctuation of external noises, mainly for large values of
the orbit’s period, m. Namely, for every i, different control gain and waiting time come
out, yielding to different performances for each uik.

In order to improve these features, a sort of “switching control” is first proposed,
which works as the OGY but applying the perturbation uik for all 1 6 i 6 m, i.e., each
time the trajectory is close to any pi (a similar modification appears in [14] as part of
a numerical implementation). As an immediate consequence, a net reduction on waiting
time is obtained. The control algorithm is

uk =

{
αi(xk − pi), |xk − pi| 6 ε, 1 6 i 6 m,

0 otherwise,
(6)

provided that ε < |pi − pj |/2 for all i 6= j. As a second consequence, this strategy
displays a notably better performance in presence of external noise. This fact is illustrated
when applied to the well-known logistic map defined by

xk+1 = rxk(1− xk), (7)
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Figure 1. States xk and controls uik , i = 1, . . . , 4, of Eq. (5) with ε = 0.005 applied to stabilize 4-UPO of
Eq. (7) for r0 = 3.8, {p1 ≈ 0.3, p2 ≈ 0.8, p3 ≈ 0.6, p4 ≈ 0.91} under the effect of additive noise modeled
by 5 · 10−4σk , σk ∼ N(0, 1), x0 = 0.5, ε = 0.005 (blue). The same, but applying control (6) (black).

where x ∈ [0, 1], and r is a control parameter. For r∞ ≈ 3.569 < r 6 4, the map presents
one chaotic attractor with B = [0, 1] (except for small windows of periodicity). For fixed
r0 in that range, the parameter modulation is stated through the following controlled
system:

xk+1 = [r0 + uk]xk(1− xk). (8)

For the map (7), fx(pi, r0) = r0(1−2pi), fr(pi, r0) = pi (1−pi), so αi = r0(2pi − 1)/
(pi(1− pi)). The condition r0 + |uk| 6 4 makes the dynamics remain globally bounded,
so, for ε > 0, |αi ε| 6 δ 6 4 − r0, or ε 6 δ/|αi| for all 1 6 i 6 m. Figure 1 illustrates
the comparison of applying the controls of Eqs. (5) and (6) about a 4-UPO of the map (7)
for r0 = 3.8. Even in the presence of noise, the shortening of the waiting time and the
reduction in the control bound may be appreciated. Note that, once activated, the control
stays on.

2.3 Improving SPF modulation

Here SPF modulation is selected from a set of control laws built by replacing each fixed
gain αi with a coefficient βi adequately chosen:

uk =

{
βi (xk − pi), |xk − pi| 6 ε, 1 6 i 6 m,

0 otherwise,
(9)

provided that ε < |pi − pj |/2 for all i 6= j. This dynamics also preserves the m-UPO.
Once the control (9) is activated, Eq. (2) becomes xk+1 = fβi(xk), where

fβi
(x) ≡ f

(
x, r0 + βi(x− pi)

)
, (10)
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The linear stability criterion for pi to be an asymptotically stable (a.s.) point, states the
condition for βi. By applying chain rule, if fr(pi, r0) 6= 0, there exists a range (βinf

i , βsup
i )

of βi values such that ∣∣f ′βi
(pi)

∣∣ < 1, 1 6 i 6 m. (11)

Under the stated conditions, convergence is formally proven.

Proposition 1. Let the controlled system (2) and (9) with βi ∈ (βinf
i , βsup

i ), 1 6 i 6 m,
for which Eq. (11) is valid and β ≡ max16i6m{|βi|}. Given δ > 0, there exists ε0,
0 < ε0 < mini6=j{|pi − pj |/2; δ/β} such that for all ε, 0 < ε < ε0, and for almost
every initial condition x0 ∈ B, it verifies |uk| 6 δ for all k, and (xk)k>1 converges to the
m-periodic orbit {p1, . . . , pm}.

Proof. Let ε′0 ≡ mini6=j{|pi − pj |/2}. For all i, there exists σ > 0 such that |f ′βi
(pi)| <

σ < 1, and for every i, there exists 0 < εi < ε′0 such that |f ′βi
(x)| 6 σ for x ∈ (pi − εi,

pi + εi). Fixing ε < ε0 ≡ min16i6m εi, for almost every x0 ∈ B, the ergodicity of the
uncontrolled system guarantees the existence of k0 = k(x0, ε) such that |xk0 − pi| 6 ε
for some i, then

|xk0+1 − pi+1| =
∣∣fβi(xk0)− fβi(pi)

∣∣ = ∣∣f ′βi
(ξi)
∣∣|xk0 − pi| 6 σε < ε

for ξi ∈ (pi − εi, pi + εi) (pi ≡ pi (mod m)). Then by recursion it yields to

|xk0+n − pi+n| 6 σnε < ε ∀n > 1,

and the thesis follows.

The existence of a range (βinf
i , βsup

i ) states the robustness of the method of Eq. (9),
which includes Eq. (6) (note that for αi = (βinf

i + βsup
i )/2, f ′αi

(pi) = 0). By means
of (9) the objective is fulfilled with smaller values for the control gain, or else, for the
same control effort, δ, a greater ε is allowed improving the waiting time to active the
control. These facts are illustrated for the logistic map (7) for which Eq. (10) becomes

fβi
(x) =

[
r0 + βi(x− pi)

]
x (1− x)

with βinf
i = −(1+ r0(1−2pi))/(pi(1−pi)) and βsup

i = (1− r0(1−2pi))/(pi(1−pi)).
For r0 = 3.8, βi must verify |βiε| 6 δ 6 0.2 for all i to ensure the desired bound on
the control effort and a globally bounded dynamics. As an example, the performances
of controls of Eqs. (6) and (9) are compared when applied to stabilize the unstable fixed
point p = 1 − 1/r0 ≈ 0.736. In Fig. 2(a), it is appreciated both: the neat reduction of
control effort by changing the control gain α by β, and an increase in the convergence
time once the control is turned on. Figure 2(b) shows, for the similar control effort, the
reduction in the waiting time explained above.

Remark 1. Verification of ε-nearness becomes superfluous once k0 is detected.

Remark 2. The choosing of βi implies (but it is not equivalent to!):∣∣f ′β1
(p1)f

′
β2
(p2) · · · f ′βm

(pm)
∣∣ < 1. (12)
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Figure 2. (a) Performance of controls (6) and (9) to stabilize Eq. (7) with r0 = 3.8 about the fixed point
p ≈ 0.736, x0 = 0.94, ε = 0.005, α = 9.2829 (black), β = 4.2 (red), β = 4.3 (blue) (βinf ≈ 4.126,
βsup ≈ 14.44). (b) Idem (a), but keeping the control effort and varying the ε values: α = 9.2829 and
ε = 0.005 (black), β = 4.3 and ε = 0.01 (blue), x0 = 0.5.

Hence, a generalization of (9), which also includes (5), results in

uk =

{
0, k < k0,

β(i+k−k0) (mod m)

(
xk − p(i+k−k0) (mod m)

)
, k > k0,

(13)

where k0 = k0(x0, ε) ≡ min{k > 0: |xk − pi| 6 ε for some i, 1 6 i 6 m} for
ε < mini6=j{|pi − pj |/2}.

Note that the existence of k0 is warranted by system ergodicity.

Proposition 2. Let the controlled system (2) and (13) with βj , 1 6 j 6 m, for which
Eq. (12) is valid and β ≡ max16j6m |βj |. Given δ > 0, there exists ε0, 0 < ε0 <
mini 6=j{|pi − pj |/2; δ/β} such that for all ε, 0 < ε < ε0, and for almost every initial
condition x0 ∈ B, it verifies |uk| < δ, and (xk)k>1 converges to the m-periodic orbit
{p1, . . . , pm}.

Proof. Let ε′0 ≡ mini 6=j{|pi − pj |/2}, and let 0 < σ < 1 such that∣∣f ′β1
(p1)f

′
β2
(p2) · · · f ′βm

(pm)
∣∣ < σ < 1

equivalent to ∣∣f ′βi
(p1)f

′
β2

(
fβ1

(p1)
)
· · · f ′βm

(
fβm−1

(
· · ·
(
fβ1

(p1)
)))∣∣ < σ.

Therefore, there exists ε1, 0 < ε1 < ε′0, such that∣∣f ′βi
(x)f ′β2

(
fβ1(x)

)
· · · f ′βm

(
fβm−1

(
· · ·
(
fβ1(x)

)))∣∣ 6 σ

for x ∈ (p1 − ε1, p1 + ε1). Proceeding in the same way for p2, . . . , pm, the ε2, . . . , εm
values arise. Let ε0 ≡ min16j6m εj , and fix ε < ε0. Without loss of generality, it is
assumed that the condition |xk − pi| 6 ε is verified, for the first time, by i = 1. Then

|xk0+m − p1| =
∣∣fβm

◦ fβm−1
◦ · · · ◦ fβ1

(xk)− fβm
◦ fβm−1

◦ · · · ◦ fβ1
(p1)

∣∣
=
∣∣(fβm

◦ fβm−1
◦ · · · ◦ fβ1

)′(ξ1)
∣∣ |xk − p1| 6 σε < ε
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for ξ1 ∈ (p1 − ε1, p1 + ε1), and so following:

|xk0+`m − p1| 6 σ`ε < ε, ` > 1.

By the same arguments it is obtained that |xk0+j+m − pj+1| 6 σε < ε and |xk0+j+`m −
pj+1| 6 σ`ε < ε for 1 6 j 6 m − 1. Hence, control bounds and convergence to the
periodic orbit follow.

Remark 3. Condition (11) relies on the existence of the range (βinf
i , βsup

i ) for each i.
Looking for a single common β value, as referred in [3, Sect. 5.3.2], assumes a nonempty
intersection of these intervals. However, this may not be the case in many examples as it
is easily seen for the same 4-period UPO of Fig. 1 for which the ranges for β1 and β2 are
(−11.0716,−2.325) and (8.2897, 20.9639), respectively.

Remark 4. The problem of finding a control depending just on one gain control for
stabilizing an m-UPO is left unsolvable in [25]. In the terms of this work, it requires to
find a value β such that Eq. (12) is satisfied with βi = β for all i involving a nonlinear
inequality whose solution is not warranted in any case.

3 Controlling chaos by DFC modulation

3.1 The Pyragas method

For stabilizing the logistic map (7) to its unstable fixed point, p = 1−1/r0, additive forc-
ing in the form of one time-delay linear perturbation, γ(xk−xk−1), was early introduced
in [27]. Here DFC modulation is stated as follows:

uk =

{
γ(xk − xk−1), [|xk − p|2 + |xk−1 − p|2]1/2 6 ε√

2
,

0 otherwise.
(14)

Control (14) vanishes when system (2) state attains p, then the fixed point is preserved.
For the logistic map, the controlled system (8) and (14) yields to the two-dimensional
dynamical system

xk+1 =
[
r0 + γ(xk − yk)

]
xk(1− xk),

yk+1 = xk,

which has P ≡ [p, p] as a fixed point. The Jacobian matrix at P is a (2 × 2)-companion
matrix

J(P) =

(
a11 a12
1 0

)
,

where a11 = (γ/r0)(1 − 1/r0) + 2 − r0 and a12 = −(γ/r0)(1 − 1/r0). The necessary
and sufficient conditions for P to be a.s. [13] yields to a range (γinf , γsup) with γinf =
r20(r0 − 3)/(2(r0 − 1)) and γsup = r20/(r0 − 1). Fixing a γ in this range and choosing
an adequate ε to assure the control effort to be bounded by δ, the convergence of the
trajectories to p is obtained. The resulting control performance of applying (14) may
be comparable to (or even better than) the one obtained by applying (9) if adequate
coefficients are chosen as shown in Fig. 3.
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Figure 3. (a) Performance of the controls (9) and (14) to stabilize Eq. (7) with r0 = 3.8 about the fixed point
p ≈ 0.736, x0 = 0.94, y0 = 0.45. (b) Enlargement of subfigure (a).

3.2 Improving DFC modulation

The idea of “switching control” that depends on m-different control gains adequately
chosen, introduced in Section 2 for improving SPF modulation, is here applied to improve
DFC modulation. The proposal of an extension of (14) to a m-UPO, p, of (1) is to set
a “switching” control, as follows:

uk =


γi(xk − xk−m), [

∑m
j=0 |xk−j − p(i−j) (mod m)|2]1/2

6 ε√
2
, 1 6 i 6 m,

0 otherwise

(15)

if 0 < ε < ‖Pi−Pj‖/
√
2 for all i 6= j, being Pi ≡ [pi, pi−1, . . . , p1, pm, pm−1, . . . , pi],

1 6 i 6 m.
System (2) and (15) yields to a (m + 1)-dimensional system (with m switches) with

[x1, . . . , xm+1] as its state variables:

x1k+1 = f
(
x1k, r0 + γi

(
x1k − xm+1

k

))
,
∥∥[x1k, . . . , xm+1

k

]
−Pi

∥∥ 6
ε√
2
,

x2k+1 = x1k, x3k+1 = x2k, . . . , xm+1
k+1 = xmk .

(16)

Note that {P1, . . . ,Pm} is m-UPO of the free system (γi = 0 for all i), and it is
preserved when (15) is applied. The Jacobian matrix of system (16) at Pi is a (m+ 1)×
(m+ 1)–companion matrix given by

Ji =


a
(i)
11 0 · · · 0 a

(i)
1(m+1)

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ,

where a(i)11 = fx(pi, r0) + γifr(pi, r0) and a(i)1(m+1) = −γifr(pi, r0).
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Unfortunately, in most cases for m > 1, there is no γi that warranties all of Ji
eigenvalues to be of modulus less than one, and so, achieving UPO stabilization by this
way. Even it is not possible for the 2-UPO of the logistic map.

The conditions for the orbit to be a.s. involve the product of the matrices,
∏m
i=1 Ji.

It should be found γi making this product have all eigenvalues of modulus less than one.
This is the equivalent of condition in Eq. (12) for the control (13). Moreover, it reduces
to the (only) Jacobian matrix of the system for the fixed point stabilization (Eq. (14)).

As each Ji is a companion matrix, the characteristic polynomial, χ(λ), of the product∏m
i=1 Ji is obtained by using tools from [10], and it results

χ(λ) = −λm+1 +

m∏
i=1

(
a
(i)
1(m+1) + λa

(i)
11

)
. (17)

Therefore, the control is proposed as

uk =

{
0, k < k0,

γ(i+k−k0) (mod m)(xk − xk−m), k > k0,
(18)

if 0 < ε < ‖Pi − Pj‖/
√
2 for all i 6= j, being k0 = k0(x0, ε) ≡ min{k > m: ‖[xk+j ,

. . . , xk+j−m]−Pi+j‖ 6 ε/
√
2 for some i, 1 6 i 6 m}. Existence of k0 is a consequence

of ergodicity. Its actual computation requires certain information on UPO’s location, but
this does not violate the main feature of DFC method, i.e., exact knowledge of the UPO
is not necessary.

Introducing Xk ≡ [x1k, x
2
k, . . . , x

m+1
k ]> and Fγi(Xk) ≡ [f(x1k, r0+γi(x

1
k−xm+1

k )),
. . . , xmk ]>, the controlled system (2) and (18) is equivalent to

Xk+1 = Fγ(i+k−k0) (mod m)
(Xk) ∀k > k0,

which has {Pi}16i6m as m-UPO. Note that DXFγi(Pi) = Ji and k0 ≡ min{k > m:
‖Xk −Pi‖ 6 ε/

√
2}. Next, following the same steps that in the proof of Proposition 2,

the success of the proposed scheme is proved.

Proposition 3. Let the controlled system (2) and (18) with γj , 1 6 j 6 m, such that all
the roots of χ(λ) are of modulus less than one, and γ ≡ max16i6m |γj |. Given δ > 0,
there exists ε0, 0 < ε0 < mini 6=j{‖Pi −Pj‖/

√
2; δ/γ} such that for all ε, 0 < ε < ε0,

and for almost every initial condition x0 ∈ B, it verifies |uk| 6 δ, and that (xk)k>1

converges to the m-UPO {p1, . . . , pm}.

Proof. The roots of χ(λ) are of modulus less than one, so ‖
∏m
i=1 Ji‖ < 1 with the

matrix norm induced by the Euclidean one. Let ε′0 ≡ mini6=j{‖Pi −Pj‖/
√
2} and

0 < σ < 1 such that ‖
∏m
i=1 Ji‖ < σ < 1, which is the same as∥∥DXFγ1(P1) · · ·DXFγm

(
Fγm−1

(
· · ·
(
Fγ1(P1)

)))∥∥ < σ.

Then there exists ε1, 0 < ε1 < ε′0, such that∥∥DXFγ1(X)DXFγ2
(
Fγ1(X)

)
· · ·DXFγm

(
Fγm−1

(
· · ·
(
Fγ1(X)

)))∥∥ 6 σ
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for X, ‖X − P1‖ 6 ε1/
√
2. Proceeding analogously for P2, . . . ,Pm, it is obtained

ε2, . . . , εm. Let ε0 ≡ min16i6m εi, and fix ε < ε0. Without loss of generality, it is
assumed that condition ‖Xk0−P1‖ 6 ε/

√
2 is verified, for the first time, by i = 1. Then

‖Xk0+m −P1‖ =
∥∥Fγm ◦ · · · ◦ Fγ1(Xk0)− Fγm ◦ · · · ◦ Fγ1(P1)

∥∥
6
∥∥DX

(
Fγm ◦ · · · ◦ Fγ1

)
(ξ1)

∥∥‖Xk0 −P1‖ 6 σ
ε√
2
<

ε√
2
,

where ξ1 lies in the segment joining P1 and Xk0 . By the same arguments it is obtained∥∥Xk0+j+`m −Pj+1

∥∥ 6 σ`
ε√
2
<

ε√
2
, j = 1, . . . ,m− 1, ` > 1. (19)

Hence, the convergence of (Xk)k>1 to the m-UPO {Pi}16i6m follows, and so the
convergence of (xk)k>1 to the m-UPO {p1, . . . , pm}. From Eq. (19) it also results

|xk0+j+`m − xk0+j+m(`−1)| < ε, j = 1, . . . ,m− 1, ` > 1,

and so, the control bounds are obtained.

The successfulness of the controlled system (2) and (18) hinges on finding a range of
γi’s for orbit stability, i.e., for the roots of χ(λ) in Eq. (17) to be within the unit circle.
It is easy to check that

∏m
j=1 fx(pj , r0) 6 1 is a necessary condition for it, so, the ONL

remains for this modified DFC. The use of Jury test (as carried out in [18]) should be
useful, but, even out of ONL, it is neither possible to obtain the γi’s explicitly nor ensure
a range finding in the general case. However, a first attempt to look for a solution is
setting γi 6= 0 for a fixed i and γj = 0 for all j 6= i in order to simplify the equation.
In this way, λ = 0 results a (m − 1)-multiplicity root of χ(λ), and the other two are the
roots of a quadratic function χ(λ) = λm−1(−λ2 + Aλ + Bi), where A ≡

∏m
j=1 a

(j)
11 ,

Bi ≡ a
(i)
1(m+1)Ci, and Ci ≡

∏
j 6=i a

(j)
11 . From the conditions on A and Bi so that |λ| < 1

[13] it is deduced that a range (γinfi , γsupi ) exists if and only if−3 <
∏m
j=1 fx(pj , r0) < 1.

This strategy is illustrated in the logistic map (Eq. (7)) for the stabilization of m-UPO,
{p1, . . . , pm}. The last condition becomes∣∣∣∣∣1 + rm0

m∏
j=1

(1− 2pj)

∣∣∣∣∣ < 2. (20)

The range (γinfi , γsupi ) is settled on

γinfi =

{−1−r(1−2pi)Ci

2pi(1−pi)Ci
, Ci > 0,

1
pi(1−pi)Ci

, Ci < 0,
γsupi =

{
1

pi(1−pi)Ci
, Ci > 0,

−1−r(1−2pi)Ci

2pi(1−pi)Ci
, Ci < 0.

(21)

For r0 = 3.62 and 4-UPO, p1 ≈ 0.5522, p2 ≈ 0.8951, p3 ≈ 0.3398, p4 ≈ 0.8121,
condition (20) is accomplished. Taking, for instance, γ1 = γ2 = γ3 = 0, a range for γ4 is
obtained from (21). Figure 4 shows this UPO being stabilized by control (18) for initial
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Figure 4. States xk and controls uk of Eq. (18), with γ1 = γ2 = γ3 = 0, γ4 = 4.7997, ε = 0.05, applied to
stabilize 4-UPO of Eq. (7) for r0 = 3.62.
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Figure 5. States xk and controls uk of Eq. (18), with γ1 = 0.4, γ2 = 4.97156, γ3 = −0.598, γ4 = 2.09,
ε = 0.05, applied to stabilize 4-UPO of Eq. (7) for r0 = 3.67.
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Figure 6. States xk and controls uk of Eq. (18), with γ1 = 0.4, γ2 = 4.97156, γ3 = −0.598, γ4 = 2.09,
ε = 0.05, applied to stabilize 4-UPO of Eq. (7) for r0 = 3.67 under the effect of additive noise modeled by
2× 10−5σk , σk ∼ N(0, 1).

condition x0 = 0.5 and ε = 0.05. The performance of the control uk is shown in the
same figure. This resource does not work for r0 > 3.625 because the Floquet multiplier
of the 4-UPO is smaller than −3, and Eq. (20) is not accomplished anymore. Even so,
4-tuples [γ1, γ2, γ3, γ4] can be found for all the roots of χ(λ) to be within the unit circle.
Indeed, by means of detailed heuristic search on the coefficient values of χ(λ) a solution
is obtained. Figure 5 shows an example where r0 = 3.67. It is worth noting that, in this
case, the control strategy (18) overcomes the Pyragas method, which fails above r ≈ 3.62
(see [32, p. 50]). Namely, by control (18) the 4-UPO is stabilized for an enlargement of
r0 values: 3.625 6 r0 6 3.67. Moreover, the control (18) also works successfully even
in presence of noise as it is exhibited in Fig. 6.
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3.3 Improving EDFC modulation

The extension of the Pyragas method to stabilize the system in a m-UPO, known as “ex-
tended time-delay autosynchronization system” (ETDAS) or “extended delayed feedback
control” (EDFC), is defined as

uk = γ(xk − xk−m) +Ruk−m (22)

with 0 6 R < 1, which reduces to TDAS for R = 0. It was introduced to stabilize
higher instabilities. Indeed, going back to the previous example, it is reported in [32] that
with R = 0.5, stabilization of the 4-UPO of the logistic map can be maintained up to the
parameter value r0 ≈ 3.75.

Based on control (18), a kind of extension like (22) is proposed to stabilize a system
in a m-UPO that consists in replacing it by

uk =

{
0, k < k0,

γ(i+k−k0) (mod m)(xk − xk−m) +Ruk−m, k > k0.
(23)

System (2) and (23) yields to a 2m-dimensional system (with m switches) with [x1, . . . ,
xm,u1, . . . ,um] ≡ [xk, . . . , xk−m+1, uk, . . . , uk−m+1] as its state variables. For exam-
ple, for the logistic map, the m = 4 case is given by

x1k+1 =
(
r0 + u1k

)
x1k
(
1− x1k

)
,
∥∥[x1k, x2k, x3k, x4k]− P̃i

∥∥ 6
ε√
2
,

x2k+1 = x1k, x3k+1 = x2k, x4k+1 = x3k,

u1k+1 = γi
((
r0 + u1k

)
x1k
(
1− x1k

)
− x4k

)
+Ru4k,

u2k+1 = u1k, u3k+1 = u2k, u4k+1 = u3k.

(24)

Note that the 4-UPO of the free system (γi = 0 for all i)

P̃1 ≡ [p1, p4, p3, p2, 0, 0, 0, 0], P̃2 ≡ [p2, p1, p4, p3, 0, 0, 0, 0],

P̃3 ≡ [p3, p2, p1, p4, 0, 0, 0, 0], P̃4 ≡ [p4, p3, p2, p1, 0, 0, 0, 0]

is preserved when (23) is applied. The Jacobian matrix of system (24) at P̃i is, in this
case, a 8× 8 matrix given by

Ji =



a(i) 0 0 0 b(i) 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
c(i) 0 0 −γi d(i) 0 0 R
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0


,
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Figure 7. States xk and controls uk of Eq. (23), with γ1 = 3.50293, γ2 = 1.38, γ3 = 7.49498, γ4 =
−1.181, R = 0.3, ε = 0.05, applied to stabilize 4-UPO of Eq. (7) for r0 = 3.8.

where a(i) ≡ r(1−2pi), b(i) ≡ pi(1−pi), c(i) ≡ γir(1−2pi) and d(i) ≡ γipi(1−pi).
As c(i) = γia(i), and d(i) = γib(i), the characteristic polynomial is given by

χ(λ) = λ3
[
λ5 −

(
a(i) + γib(i)

)
λ4 −Rλ+ a(i)R+ γib(i)

]
.

Applying the heuristic algorithm to search on the coefficient values of χ(λ), 4-tuples,
[γ1, γ2, γ3, γ4] are found, and the 4-UPO for 3.67 < r0 6 3.8 can be stabilized. Thus,
the range of parameter values for which the 4-cycle-logistic map is stabilized, is enlarged.
Figure 7 illustrates the orbit stabilization and the control performance for r0 = 3.8.

4 On the extension to n-dimensional systems

This section points out the required adjustments for applying the developed strategies in
the n-dimensional case, and even more, they are compared to interesting background in
the literature.

For SPF modulation of Section 2.3, Eq. (9) remains the same save that control gain is
β>i ∈ Rn, x ∈ Rn, and the distance is given by the Euclidean norm in Rn. The Jacobian
of the controlled system at each pi, 1 6 i 6 m, is given by

Dxfβi
(pi) = Ax +Ar β

>
i ,

where Ax = A
(i)
x ≡ Dxf(pi, r0) and Ar = A

(i)
r ≡ Drf(pi, r0) are n × n and n × 1

matrices, respectively.
The insertion of a switching controller as part of a SPF method appears in previous

bibliography. Indeed, the multipoint OGY formula (see [3, Sect. 3.2.6]) may be inter-
preted as an extension of Eq. (6) to the n-dimensional case. In turn, some modifications to
overcome its limitations have been developed [3]. A two-level control method is proposed
in [5], where the distance between the trajectory and the UPO is minimized in each step.
The authors claim that its implementation on UPO’s requires a number of switchings
greater than m to obtain successful control. In [25], it is proposed to choose feedback
gains βi such that the whole of the eigenvalues of A

(i)
x + A

(i)
r β>i be of modulus less
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than one. Note that this criterion may fail to detect parameters βi for which the Jacobean
matrix of the composition has the whole of its eigenvalues within the unit circle.

The stability condition stated in Eq. (11) becomes ‖Dxfβi(pi, r0)‖ < 1 for the
n-dimensional case so forcing the trajectory to be closer to the UPO. This is verified
if, for all i, Ax+Ar β

>
i have the maximum singular value of modulus less than one [15],

which is accomplished if Ax + Arβ
>
i has a basis of eigenvectors and the whole of

its eigenvalues within the unit circle. If rank{Ar,AxAr, . . . ,A
n−1
x Ar} = n, pole-

placement method [23] is a useful tool to obtain β>i ∈ Rn satisfying this condition.
Then Proposition 1 is straightforward generalized to the n-dimensional case. On the
other hand, the generalized version of Proposition 2 to the n-dimensional case requires
the product

∏m
i=1 A

(i)
x + A

(i)
r β>i to have the whole of its eigenvalues within the unit

circle, which is a weaker condition, but it yields to nonlinear equations in βi. Defining
β = max16i6m ‖βi‖, the results of Section 2 are accordingly valid in the n-dimensional
case.

Similarly, in the DFC modulation defined in Section 3.2, a vector γ>i ∈ Rn becomes
the control gain for the n-dimensional version of Eq. (15). The stability criterion involves
the product J ≡

∏m
i=1 J

(i) being J(i) a n(m+ 1)× n(m+ 1) matrix given by

J(i) ≡


A

(i)
11 0n · · · 0n A

(i)
1(m+1)

In 0n · · · 0n 0n
0n In · · · 0n 0n
...

...
. . .

...
...

0n 0n · · · In 0n,


where A(i)

11 ≡ Dxf(pi, r0)+Drf(pi, r0) γ
>
i , A(i)

1 (m+1) ≡ −Drf(pi) γ
>
i are both n×n

matrices, In is the (n× n)-identity matrix and 0n is the (n× n)-null matrix.
In the stability condition of DFC studied in [19], for the multidimensional case,

the system is affected by an additive feedback control that depends only on a constant
gain, γ. The insertion of m different control gains {γi}16i6m in Section 3.2 improves
the proposals in [18, 19, 32], where γi = γ for all i, and which hinges on the eventual
scenario, where nonempty overlapping γi-ranges comes out. In addition, the proof of
stability outlined in the present work avoids the computation of the product of the matri-
ces Ji, and the characteristic polynomial of Eq. (17) is obtained by a more straightforward
calculation.

The EDFC algorithm of Eq. (22) may also be formulated for the n-dimensional case.
Its stability analysis yields to a 2mn-dimensional system (with m switches). As in the
SPF modulation, controllability tools become useful to obtain adequate control gains.
Defining γ ≡ max16i6m ‖γi‖, the arguments on the validity of these methods are also
straightforward generalized from Section 3, although a full description of them becomes
tiresome.

In most cases, the parameter r affects only one component of the system given by f ,
say fj . Then, when looking for βi ∈ R (respectively γi) in these situations, a conductive
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Figure 8. States xk of system (26) and controls uk of Eq. (15), with γ1 = 0.4098, γ2 = −0.2498, x0 =
y0 = z0 = 0, ε = 0.01, applied to stabilize the 2-UPO {p1,p2} with p1 ≡ [x∗, y∗] and p2 ≡ [y∗, x∗] of
Eq. (26) for a0 = 1.4, b = 0.3 and x∗ = 1.3661, y∗ = −0.6661.

simplification can be made by setting all of its components equal to zero, except the jth
one. In turn, for DFC strategy, it means that less delayed states are introduced, yielding
to a decrease on the controlled system dimension (namely, on the J matrix dimension).
Moreover, the (m + 1)-multiplication effect on the controlled system is avoided in these
particular situations. This is the case of the two-dimensional Hénon map, where the
second component of the state variable is just the delayed first one [7]:

xk+1 = a− x2k + byk,

yk+1 = xk.
(25)

It is well known that for a = a0 = 1.4 and b = 0.3, the map posses a one-piece chaotic
attractor. This map may be stabilized on its 2-UPO within the attractor by tuning the
parameter a around the nominal value a0. This 2-UPO is given by {p1,p2} with p1 ≡
[x∗, y∗] and p2 ≡ [y∗, x∗], being x∗(a) = (1 − b +

√
4a− 3(1− b)2/2 and y∗(a) =

(1−b−
√

4a− 3(1− b)2)/2. The implementation of DFC modulation on (25) (confront
with Eq. (16)) yields to the system

xk+1 =
[
a0 + γi(xk − zk)

]
− x2k + byk,

yk+1 = xk, zk+1 = yk,∥∥[xk, yk, zk]−Pi
∥∥ 6

ε√
2
, i = 1, 2,

(26)

where P1 ≡ [x∗, y∗, x∗] and P2 ≡ [y∗, x∗, y∗] (here j = 1 and γi ≡ [γi, 0, 0], i = 1, 2).
The stability condition is obtained from the product-matrix J = J1J2, where

Ji =

−2x∗ − γi b −γi
1 0 0
0 1 0

 , i = 1, 2,

by looking for γ1 and γ2 that make the whole eigenvalues of J be of modulus less than
one. Figure 8 shows the 2-UPO stabilization by this strategy. The performance of the
control uk = γi(xk − zk), i = 1, 2, is appreciated in the same figure.
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5 Controlling hyperchaotic maps. A case study

This methodology results useful for controlling hyperchaos. The applicability of stabi-
lization methods on hyperchaotic systems is pointed out in [9]. Here the successfulness
of a DFC-type algorithm for the stabilization of hyperchaotic generalized Hénon maps at
a fixed point is analyzed. The n-dimensional system is defined [9, 28]:

x1,k+1 = a− x2n−1,k − bxn,k,
x2,k+1 = x1,k,

. . . ,

xn,k+1 = xn−1,k,

(27)

where xi,k represents the state i at time k for i = 1, . . . , n. Fixing the parameter value b,
the map is hyperchaotic for certain parameter range of a since the number of positive
Lyapunov exponents is n − 1 [28]. It has two fixed points, x∗

1,2 ≡ x∗1,2[1, . . . , 1] ∈ Rn,
with x∗1,2 = (−b−1±

√
(b+ 1)2 + 4a)/2, being x∗

1 within the hyperchaotic attractor. To
stabilize (27) on it, an ad-hoc reformulation of control (18) is proposed involving n − 1
parameters γi. The n = 4 case is taken for illustration. When control is activated, the
system results

xk+1 =
[
a+ γ1(xk − yk) + γ2(yk − zk) + γ3(zk − wk)]− z2k − bwk,

yk+1 = xk, zk+1 = yk, wk+1 = zk,∥∥[xk, yk, zk, wk]− x∗
1

∥∥ 6
ε√
2
.

(28)

Note that although the number of control parameters is augmented, the algorithm remains
not invasive, and the system dimension is not affected. By working out algebraic features
of the characteristic polynomial, adequate sets of parameters are found. Formulation and
procedure in the general n-case come out straightly. Figure 9 shows stabilization of (27)
at the fixed point x∗

1 for a0 = 1.76 and b = 0.1. Note that the bigger size of ε and the
number of iteration k, needed for the system to achieve the controlled regime, is according
to the bigger size of the embedded dimension n. The performance of the control, uk =
γ1(xk − yk) + γ2(yk − zk) + γ3(zk − wk), is displayed in the same figure.
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Figure 9. States xk and controls uk of Eq. (28), with γ1 = −1.3896, γ2 = −1.8723, γ3 = −0.1,
x0 = y0 = z0 = w0 = 0.8, ε = 0.1, applied to stabilize the saddle fixed point x∗ ≡ x∗[1, 1, 1, 1] of
Eq. (27) for a0 = 1.76, b = 0.1 and x∗ = 0.88614.
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6 Conclusions and discussion

It is well known that the advantage of any DFC method over SPF methods is just that
the full knowledge of the UPO to be stabilized is not needed, instead, limitations on con-
vergence issues arise. In this work, both SPF and DFC methods have been revisited, and,
based on them, new modifications yielding to a “switching” SPF- and DFC-type strategies
have been proposed. Throughout the paper, the introduction of each modification has been
fully argued, and the comparison to similar proposals previously published have been
mentioned in detail. The convergence of the improved version has been rigorously proved
and confronted to the original method without claiming their optimality over all other
conceivable approaches. Additionally, control performance aspects, usually disregarded
in published works dealing with DFC methods, have been also taken care of.

Each one of the developed control strategies consists of two stages depending on
various control parameters. For am-UPO, the activated control law depends onm control
gains, so more data must be stocked for increasing m, but this helps to find a successful
control strategy. Under stated hypothesis, UPO stabilization is assured by choosing each
control gain within a certain range of values. Among them, it is plausible to look for those
values, which make the control strategy verify required conditions on waiting time and
control magnitude bound. The right choice of the parameter ε is crucial, and a bound on
it is stated for which convergence and desired control magnitude are guaranteed.

Even though the improved DFC does not overcome the ONL, it does work success-
fully when applied to an UPO presenting high instability with negative Floquet multipli-
ers (and for which DFC fails) if adequate control gains γi are found. The insertion of
m control gains γi together with the parameter control R into the EDFC method is also
interesting: for a given UPO, the modified EDFC should require a smaller R than the
original EDFC and so yielding to a greater speed of convergence.

The implementation of the proposed control strategies to stabilize any n-dimensional
discrete-time systems in any m-UPO is also stated. For generalized Hénon-like systems,
an ad-hoc control modulation is designed and applied to stabilize the hyperchaotic motion
on a fixed point within its attractor. The hyperchaotic behavior is harder to be controlled
than the classical chaos because more than one of the Lyapunov exponents are positive,
which means more instability directions for dynamics to spread across the whole phase-
space. This fact is critical in the n-D generalized Hénon maps case where the number of
such instabilities is just n−1 [28], yielding a longer waiting time to achieve the controlled
regime as shown in Fig. 9.

The feasibility and applicability of the these novel control modulation methods are all
validated by the good simulation results.

Future work aims to introduce this kind of modifications into control schemes based
on oscillating or periodic gain control or on predictive states. As the ONL restriction is
overcome by these methods, improvements on their convergence and control parameter
features result an attracting task.
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