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Abstract. In this paper, we consider the dynamics of delayed Gierer–Meinhardt system, which
is used as a classic example to explain the mechanism of pattern formation. The conditions for
the occurrence of Turing, Hopf and Turing–Hopf bifurcation are established by analyzing the
characteristic equation. For Turing–Hopf bifurcation, we derive the truncated third-order normal
form based on the work of Jiang et al. [11], which is topologically equivalent to the original
equation, and theoretically reveal system exhibits abundant spatial, temporal and spatiotemporal
patterns, such as semistable spatially inhomogeneous periodic solutions, as well as tristable
patterns of a pair of spatially inhomogeneous steady states and a spatially homogeneous periodic
solution coexisting. Especially, we theoretically explain the phenomenon that time delay inhibits
the formation of heterogeneous steady patterns, found by S. Lee, E. Gaffney and N. Monk [The
influence of gene expression time delays on Gierer–Meinhardt pattern formation systems, Bull.
Math. Biol., 72(8):2139–2160, 2010.]

Keywords: Gierer–Meinhardt system, delay, Turing–Hopf bifurcation, normal form, spatiotempo-
ral patterns.

1 Introduction

In developmental biology, embryonic development is mediated by morphogens. It is a sig-
nal molecule that determines the location, differentiation and fate of many surrounding
cells [9]. In [26], Turing showed that two diffusible morphogens could instigate diffusion-
driven symmetry breaking and bifurcation. Diffusion can destroy the stability of spatial
homogeneous steady state, that is, the stability process can evolve into an instability with
diffusion effect. Since then, a large amount of literature research on Turing instability
mechanism has emerged in developmental biology. A fundamental property for insta-
bilities in such systems is short-range activation and long-range inhibition [13]. In de-
velopmental biology, the Gierer–Meinhardt model is used as a classic example to explain
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the mechanism of pattern formation. The so-called Gierer–Meinhardt model is [6]

∂u(x, t)

∂t
= Du

∂2u(x, t)

∂x2
+ ρρ0 + cρ

u2(x, t)

v(x, t)
− µu(x, t), x ∈ (0, lπ), t > 0,

∂v(x, t)

∂t
= Dv

∂2v(x, t)

∂x2
+ c′ρ′u2(x, t)− νv(x, t), x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, 0) = φ1(x, 0) > 0, v(x, 0) = φ2(x, 0) > 0, x ∈ [0, lπ],

(1)

where u(x, t) and v(x, t) are concentrations of activator and inhibitor at (x, t), respec-
tively, and l, Du, Dv , ρ, ρ′, ρ0, µ, ν, c, c′ are all positive constants.

Numerous studies have been done for model (1). The detailed stability and diffusion-
driven instability, i.e., Turing instability of such system are provided in [21,28]. These re-
sults further theoretically verify Turing’s idea. The sufficient conditions for the occurrence
of Hopf bifurcation is performed in [18] showing the existence of spatially homogeneous
periodic solutions. Recently, Yang et al. [29] have investigated the conditions for the
existence of Turing–Hopf bifurcation to reveal the system exhibits various spatiotemporal
patterns.

Sakuma et al. [22] have emphasized the role of gene expression in morphogenesis
utilizing in situ hybridization, which records mRNA levels as illustrated in developmental
self-organisation via Nodal and Lefty gene products in zebrafish mesodermal induction.
The timescales of transcriptional and translational are estimated to be in the range of
10 minutes to several hours [16]. However, previous studies usually ignore the role of
gene expression delays caused by transcription and translation in kinetics. Therefore,
a diffusive Gierer–Meinhardt system with time delay is proposed in [15] as follows:

∂u(x, t)

∂t
= Du

∂2u(x, t)

∂x2
+ ρρ0 + cρ

u2(x, t−τ)

v(x, t−τ)
− µu(x, t), x ∈ (0, lπ), t > 0,

∂v(x, t)

∂t
= Dv

∂2v(x, t)

∂x2
+ c′ρ′u2(x, t− τ)− νv(x, t), x ∈ (0, lπ), t > 0,

ux(0, t) = ux(lπ, t) = vx(0, t) = vx(lπ, t) = 0, t > 0,

u(x, t) = φ1(x, t) > 0, v(x, t) = φ2(x, t) > 0, (x, t) ∈ [0, lπ]× [−τ, 0].

(2)

The two activators molecules can reversibly bind to a receptor and eventually induce the
production of additional activator (or inhibitor) molecules, but this production has been
delayed for period of time τ . For simplicity, we assume throughout time delay of both
gene expression events is same and constant [15].

A large number of literature studies show that dynamics depends crucially on the
time delay parameter. Time delay will destroy the stability of the steady state and lead
to a temporally periodic solution, that is, the Hopf bifurcation occurs [3, 8, 19, 20]. In
[2], Chen et al. have studied the Hopf bifurcation analysis for model (2). It is proved
that system possesses temporal pattern. Lee et al. [15] have explored the influence of
gene expression time delays on pattern formation, what is more, proved that the delayed
Gierer–Meinhardt model exhibits abundant Turing pattern through numerical simulation.
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Furthermore, in this paper, we will focus on the joint effect of diffusion and time
delay on the pattern for model (2). It is noted that Jiang et al. [12] have mainly considered
the impact of diffusion and delay on the Schnakenberg model, which arises from simple
chemical reaction systems with limit cycle behavior [23], and found that the system
exhibits affluent dynamic behavior (the unfoldings for normal forms at Turing–Hopf sin-
gularity are case Ia and case III according to [7]). We observe that the Gierer–Meinhardt
model has more complex nonlinear terms and based on the work of Lee et al. [15] in which
revealed model exhibits numerous interesting Turing pattern by numerical simulation.
Therefore, these findings have inspired us to study the Gierer–Meinhardt model to explore
how diffusion and delay essentially affect the formation of pattern and whether the model
can produce more complex Turning patterns comparing with the Schnakenberg model.

In this paper, we will build the existence of Turing, Hopf and Turing–Hopf bifurcation
for the delayed Gierer–Meinhardt model. Firstly, we get the Turing bifurcation curve by
analyzing the characteristic equation, which is continuous and piecewise smooth, and
system undergoes Turing–Turing bifurcation at the nonsmooth points. Especially, we
obtain the spatial inhomogeneous steady state in multifarious profiles, which depends
on the wave number. This provides a theoretical explanation for the existence of spatial
inhomogeneous periodic solutions with high frequency at low diffusion rates. Next, we
take time delay as the bifurcation parameter proving that the model will undergo Hopf
bifurcation at critical values. It is worth mentioning that characteristic equation contains
a second-order transcendental term, which results in solving the parameter values for the
purely imaginary eigenvalues ±iw is reduced to an eighth-order polynomial of w, hence
the critical parameter values can hardly be explicitly solved. Finally, we will mainly
focus on the interaction of diffusion and delay on the model from the perspective of
Turing–Hopf by method of combining the central manifold theorem and the normal form
theory [4,5,10,27]. It is worth noting that codimension-2 Turing–Hopf bifurcation is usu-
ally to be applied to explain spatiotemporal phenomena in chemical reaction, predator–
prey models, developmental biology, etc. [1, 12, 24, 25, 29, 30]. Jiang et al. [11] have
derived the formulas of calculating normal forms for a general delayed reaction diffusion
equation with Neumann boundary condition, which can greatly simplify the complexity of
calculation. By employing these formulas we theoretically prove the existence of various
spatiotemporal patterns instead of computational simulations [14, 15], such as semistable
spatially inhomogeneous periodic solutions, as well as tristability of a pair of spatially
inhomogeneous steady states and a spatially homogeneous periodic solution coexisting,
in addition, quantitatively give the specific existence region of various forms of solutions
near the Turing–Hopf singularity.

This paper is organized as follows. In Section 2, by analyzing characteristic equations
at the positive constant steady state we have established the conditions for Turing, Hopf
and Turing–Hopf bifurcation. In Section 3, normal forms truncated to order 3 of the
delayed Gierer–Meinhardt systems in the neighborhood of Turing–Hopf singularity are
derived by applying normal form method [4, 27] and generic formulas evolved in [11].
In Section 4, we analyze the reduced Gierer–Meinhardt systems with gene expression
delay and present that the systems exhibits various interesting spatial, temporal and spa-
tiotemporal patterns. Moreover, numerical simulations are shown to illustrate the previous
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theoretical results. Finally, there is a brief conclusion in Section 5. Throughout the paper,
N is the set of all positive integers, and N0 = N∪{0} represents the set of all nonnegative
integers.

2 Turing Bifurcation and Hopf bifurcation

In this section, we consider the Turing bifurcation and Hopf bifurcation for system (2)
with the homogeneous Neumann boundary condition.

For the sake of convenience, by applying the following scalings [15]:

t̃ =
t

Ts
, τ̃ =

τ

Ts
, x̃ =

x

l
, γ̃ = Tsν,

D̃ =
TsDv

l2
, ũ =

c′ρ′

cρ
u, ṽ =

c′ρ′ν

c2ρ2
v,

where Ts is a arbitrary timescale. Dropping the tilde, system (2) becomes the following
nondimensionalized system:

∂u(x, t)

∂t
= εD

∂2u(x, t)

∂x2
+ γ

(
p− qu(x, t) +

u2(x, t− τ)

v(x, t− τ)

)
, x ∈ (0, π), t > 0,

∂v(x, t)

∂t
= D

∂2v(x, t)

∂x2
+ γ
(
u2(x, t− τ)− v(x, t)

)
, x ∈ (0, π), t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t) = 0, t > 0,

u(x, t) = φ1(x, t) > 0, v(x, t) = φ2(x, t) > 0, (x, t) ∈ [0, π]× [−τ, 0],

(3)

where p = ρ0ρ
′c′/(cν) > 0, q = µ/ν > 0, ε = Du/Dv > 0.

Obviously, there is a unique positive equilibrium (u∗, v∗) = ((p+1)/q, ((p+1)/q)2).
Linearizing system (3) at (u∗, v∗), we obtain

∂u(x, t)

∂t
= εD

∂2u(x, t)

∂x2
− γ
(
pu(x, t) +

2q

p+ 1
u(x, t− τ)

− q2

(p+ 1)2
v(x, t− τ)

)
, x ∈ (0, π), t > 0,

∂v(x, t)

∂t
= D

∂2v(x, t)

∂x2
− γ
(
v(x, t)− 2(p+ 1)u(x, t− τ)

q

)
,

x ∈ (0, π), t > 0,

ux(0, t) = ux(π, t) = vx(0, t) = vx(π, t), t > 0,

u(x, t) = φ1(x, t) > 0, v(x, t) = φ2(x, t) > 0, (x, t) ∈ [0, π]× [−τ, 0].

(4)

Let µk, k ∈ N0, be the eigenvalue of Laplace operator −∆ with Neumann boundary
condition in one dimensional spatial domain (0, π). Then µk = k2 and the characteristic
equation of (4) is

Dk(λ, τ, ε) := λ2 + pkλ+ rk + (skλ+ qk)e−λτ + hke−2λτ = 0, k ∈ N0, (5)
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where

pk = (ε+ 1)Dk2 + γ(1 + q), rk =
(
εDk2 + γq

)(
Dk2 + γ

)
,

sk = − 2qγ

p+ 1
, qk = −

(
Dk2 + γ

) 2qγ

p+ 1
, hk =

2qγ2

p+ 1
.

(6)

In particular, for τ = 0, (5) turns into

Dk(λ, 0, ε) = λ2 − TRkλ+ DET k = 0, k ∈ N0, (7)

where

DET k = ε
(
Dk2

)2
+

(
εγ + γq − 2qγ

p+ 1

)
Dk2 + γ2q, k ∈ N0,

TRk = −(ε+ 1)Dk2 − γ(q + 1) +
2qγ

p+ 1
, k ∈ N0.

Throughout this paper, we assume that

(N0) 1 > 2q/(p+ 1)− q > 0.

By (N0) we know that all eigenvalues of (7) with k = 0 have negative real parts.

2.1 Turing bifurcation

For any k ∈ N, define

ε∗(k,D) =
( 2qγ
p+1 − γq)Dk

2 − γ2q

(Dk2)2 + γDk2
, D > Dk ,

γ2q

( 2qγ
p+1 − γq)k2

.

Obviously, DET k = 0 whenever ε = ε∗(k,D). The following lemma gives the proper-
ties of ε∗(k,D).

Lemma 1. Suppose that (N0) holds. Then we have

(i) For any fixed k ∈ N, ε = ε∗(k,D) reaches its maximum εmax at extreme point
D=Dm(k),

Dm(k) ,
( 2qγ
p+1−γq)γ+2γ2q+

√
( 2qγ
p+1−yq)γ+2γ2q + 4( 2qγ

p+1−γq)γ3q

2( 2qγ
p+1−γq)k2

> Dk,

and ε∗(k,D) is monotonically decreasing (increasing) in D for D > Dm(k)
(Dk < D < Dm(k)).

(ii) For any k ∈ N, the equation

ε∗(k,D) = ε∗(k + 1, D), D > 0,
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has a unique root Dk, k+1 ∈ (Dm(k + 1), Dm(k)) for D, which is given by

Dk, k+1 =
1

2( 2qγ
p+1 − γq)

[
γ2q

(
1

k2
+

1

(k + 1)2

)

+

√
γ4q2

(
1

k2
+

1

(k + 1)2

)2

+
4( 2qγ
p+1 − γq)γ3q

k2(k + 1)2

]
.

Moreover,

ε∗(k,D) > ε∗(k + 1, D) > ε∗(k + 2, D) > · · · , D > Dk, k+1.

In order to understand the properties of ε∗(k,D) more intuitively, we give the graph
of ε∗(k,D) for different k in Fig. 1.

In the following, we define

ε∗(D) := ε∗(k,D), D ∈ [Dk, k+1, Dk−1, k), k ∈ N,

where D0,1 := +∞. From the following analysis we will note that ε∗(D) is actually
the Turing bifurcation curve and Tk, k+1, k ∈ N, is the Turing–Turing bifurcation points,
which are plotted in Fig. 1. The properties of ε∗(D) are similar to the Turing bifurcation
curve in delayed Schnakenberg systems, in [12], it gives a detailed explanation so we can
omit here.

Lemma 2. Assume that (N0) holds and D > γ. Then

(i) IfD ∈ (Dk1, k1+1, Dk1−1, k1) for some k1 ∈ N and ε = ε∗(D), then 0 is a simple
root of (5) with k = k1, and all the other roots of (5) have strictly negative parts
for τ = 0. Furthermore, Let λ = λ(k, τ, ε) be the root of (5) with k = k1 such
that λ(k1, τ, ε∗(D)) = 0. Then dλ(k1, τ, ε)/dε|ε=ε∗(D) < 0.

(ii) If D = Dk1, k1+1, ε = ε∗(Dk1, k1+1), then 0 is a simple root of (5) for both k1

and k1 + 1.
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Figure 1. The curves of ε∗(k,D) for different k, k ∈ N.
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Proof of Lemma 2. (i) DET k=0 if and only if ε = ε∗(k,D) for k∈N. So, for any k∈N,
λ= 0 is always a root of (5) with such k when ε = ε∗(k,D). Then by the properties of
ε∗(D) and ε∗(k,D), when D∈ (Dk1, k1+1, Dk1−1, k1) for some k1 and ε=ε∗(D), λ=0
is the root of (5) with k=k1. Moreover, λ=0 is simple, by D>γ we can obtain that

dDk1(λ, τ, ε)

dλ

∣∣∣∣
λ=0

= −TRk1 + τ(−qk1 − 2hk1) > 0.

By (N0) we know that TRk < 0 for all k ∈ N0 and DET k > 0 for all k ∈ N, k 6= k1.
So all the other roots of (5) for τ = 0 has negative real parts when ε = ε∗(D).

Differentiating (5) with respect to ε and due to D > γ, we can deduce that

dλ(k1, τ, ε∗(D))

dε
= − D2k4 +Dk2γ

pk1 + sk1 − τqk1 − 2τhk1
< 0.

(ii) The proof is similar to proof of (i), which is omitted here.

From the above analysis we can get the following important conclusions about Turing
bifurcation of system (3).

Theorem 1. Assume that (N0) holds and D > γ. Then

(i) For D > 0, if ε > ε∗(D), then (u∗, v∗) of system (3) is asymptotically stable for
τ = 0, and if 0 < ε < ε∗(D), then (u∗, v∗) is unstable.

(ii) For D ∈ (Dk, k+1, Dk−1, k), system (3) will undergoes k-mode Turing bifurca-
tion at ε = ε∗(D).

(iii) When D = Dk, k+1, (k, k + 1)-mode Turing–Turing bifurcation occurs at ε =
ε∗(Dk, k+1).

Remark 1. The definition of k-mode Turing bifurcation, which occurs in the last theorem,
as well as k2-mode Hopf bifurcation and (k1, k2)-mode Turing–Hopf bifurcation, which
will occur in the following parts, are given on page 6 of [11]. A (k, k+ 1)-mode Turing–
Turing bifurcation can be defined in the same manner as (k1, k2)-mode Turing–Hopf. The
reader can refer to [12], so, it will not be repeated here.

2.2 Hopf bifurcation

In this section, we study the Hopf bifurcation in the case of ε > ε∗(D), D > 0. We will
employ the method proposed in [2] and [17] to analyze the distribution of characteristic
roots of (5).

For some k ∈ N0, let λ = iωk (wk > 0) satisfy Dk(iwk, τ, ε) = 0, then we have

−w2
k + pkwki + rk + (skwki + qk)e−iwkτ + hke−2iwkτ = 0.

If wkτ/2 6= π/2 + jπ, j ∈ Z, then let θk = tan(wkτ/2), and we have e−iwkτ =
(1− iθk)/(1 + iθk). Separating the real and imaginary parts, we have(

w2
k − rk + qk − hk

)
θ2
k − 2pkwkθk = w2

k − rk − qk − hk,
(sk − pk)wkθ

2
k +

(
−2w2

k + 2rk − 2hk
)
θk = −(pk + sk)wk.

(8)

Nonlinear Anal. Model. Control, 26(3):461–481
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Denote

M1 =

(
w2
k − rk − qk − hk −2pkwk
−(pk + sk)wk −2w2

k + 2rk − 2hk

)
,

M2 =

(
w2
k − rk + qk − hk w2

k − rk − qk − hk
(sk − pk)wk −(pk + sk)wk

)
and

M3 =

(
w2
k − rk + qk − hk −2pkwk

(sk − pk)wk −2w2
k + 2rk − 2hk

)
.

We define

E(wk) = det(M1), F (wk) = det(M2) and D(wk) = det(M3).

If D(wk) 6= 0, then we can solve from (8) that

θ2
k =

E(wk)

D(wk)
, θk =

F (wk)

D(wk)
, (9)

and from (9) we find that wk satisfied

D(wk)E(wk) = F (wk)2. (10)

If D(wk) = 0, in order to make sure the solvability of (8) for θ, then we have

E(wk) = F (wk) = 0,

and hence wk satisfies (10) in this case as well. Simplifying (10), we conclude that wk
satisfies a polynomial equation with degree 8:

w8
k + ek3w

6
k + ek2w

4
k + ek1w

2
k + ek0 = 0, (11)

where

ek3 = −4rk + 2p2
k − s2

k,

ek2 = 6r2
k − 2h2

k + p4
k − 4p2

krk − q2
k − s2

kp
2
k + 2s2

krk + 2s2
khk,

ek1 = −4r3
k + 4rkh

2
k + 2p2

kr
2
k − 2p2

kh
2
k + 2q2

krk − 2q2
khk

+ 4skqkpkhk − s2
kr

2
k − s2

kh
2
k − 2s2

krkhk − q2
kp

2
k,

ek0 = r4
k − 2r2

kh
2
k + h4

k − q2
kr

2
k − q2

kh
2
k + 2q2

krkhk,

and zk = w2
k is a positive root of

h(zk) , z4
k + ek3z

3
k + ek2z

2
k + ek1zk + ek0 = 0. (12)

If wkτ/2 = π/2 + jπ, j ∈ Z, then pk = sk, w2
k = rk + hk − qk, and hence

D(wk) = F (wk) = 0. So w2
k is still a positive root of (12). From the above analysis we

have the following lemma.
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Lemma 3. For k ∈ N0, if ±iwk (wk > 0) satisfies Dk(±iwk, τ, ε) = 0, then h(w2
k) = 0.

If we can give the conditions under which the converse of Lemma 3 is true, then we
have obtained the purely imaginary roots of the characteristic equation (5). In [2], Chen
et al. provided an effective method to solve this problem. Denote

G(wk, θk) =
[
qk
(
1 + θ2

k

)
+ 2hk

(
1− θ2

k

)]
·
[
2wk

(
1− θ2

k

)
+ 2pkθk

]
−
[
skwk

(
1 + θ2

k

)
− 4hkθk

]
·
[
pk
(
1− θ2

k

)
− 4wkθk + sk

(
1 + θ2

k

)]
.

Therefore, we obtain the following lemma.

Lemma 4. (See [2].) For k ∈ N0, there is wk > 0 satisfying h(w2
k) = 0, D(ωk) 6= 0 and

G(wk, θk) 6= 0, then ±iωk are a simple pair of purely imaginary roots of (5) when

τ = τ
(j)
k =

2 arctan θk + 2jπ

ωk
, j ∈ Z,

where θk = F (ωk)/D(ωk) with ω = ωk. Moreover, for θk ∈ (−∞,∞), there exists
λ(τ) = α(τ) + iw(τ), which is the unique root of (5) for τ ∈ (τ

(j)
k − ε, τ (j)

k + ε) for
some small ε > 0 satisfying α(τ

(j)
k ) = 0 and w(τ

(j)
k ) = wk, in addition,

dα(τ)

dτ

∣∣∣∣
τ=τ

(j)
k

> 0 when G(wk, θk) > 0,

dα(τ)

dτ

∣∣∣∣
τ=τ

(j)
k

< 0 when G(wk, θk) < 0.

For θk =∞ (in the sense that arctan θk = π/2 + jπ, j ∈ Z), if 2hk − qk 6= 0, we have
the same result.

In order to discuss the existence of the positive root of the (12), we have adopted the
method in [17].

For h(zk) of (12), we have h′(zk) = 4z3
k + 3ek3z

2
k + 2ek2zk + ek1 . Set

4z3
k + 3ek3z

2
k + 2ek2zk + ek1 = 0. (13)

Let y = zk + ek3/4. Then (13) becomes

y3 +mky + nk = 0,

where

mk =
ek2
2
− 3

16
ek2

3 , nk =
ek3

3

32
− ek3e

k
2

8
+
ek1
4
.

Define

Wk =

(
nk
2

)2

+

(
mk

3

)3

, σ =
−1 + i

√
3

2
, (14)
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y1 = 3

√
−nk

2
+
√
Wk + 3

√
−nk

2
−
√
Wk,

y2 = 3

√
−nk

2
+
√
Wkσ + 3

√
−nk

2
−
√
Wkσ

2,

y3 = 3

√
−nk

2
+
√
Wkσ

2 + 3

√
−nk

2
−
√
Wkσ,

zkj = yj −
ek3
4
, j = 1, 2, 3.

(15)

Lemma 5. h(zk) = 0 has at least one positive root if and only if one of the following
conditions is satisfied, where rk, qk, hk are defined in (6), and Wk (k ∈ N0) and zkj
(1 6 j 6 3) are defined as in (14) and (15), respectively:

(H1) (rk + hk − qk)(rk + hk + qk) < 0;
(H2) (rk + hk − qk)(rk + hk + qk) > 0, Wk > 0, zk1 > 0, and h(zk1) 6 0;
(H3) (rk + hk − qk)(rk + hk + qk) > 0, Wk < 0, there exists at least one z∗ ∈

{zk1, zk2, zk3} such that z∗ > 0 and h(z∗) 6 0.

Remark 2. By Routh–Hurwitz stability criterion it is easy to prove that there exists a
K0 ∈ N0 such that (12) has no positive roots for k > K0. In other words, (12) exists
positive roots only possible for a finite number of 0 6 k 6 K0.

Denote

K :=
{
k ∈ N0

∣∣ 0 6 k 6 K0 and one of conditions (H1), (H2) and (H3) holds
}
.

Suppose K is not empty, and without loss of generality, we assume that it has four
positive roots denoted by zk,l, k ∈ K , l = 1, 2, 3, 4. Then (11) has four positive roots,
say wk,l =

√
zk,l, k ∈ K , l = 1, 2, 3, 4.

Let

τ
(j)
k,l =

{
2 arctan θk,l+2jπ

ωk,l
, k ∈ K , j ∈ N0, l = 1, 2, 3, 4, if θk,l > 0,

2 arctan θk+2(j+1)π
ωk,l

, k ∈ K , j ∈ N0, l = 1, 2, 3, 4, if θk,l < 0.

Then ±iwk,l is a pair of purely imaginary roots of (5) with τ = τ
(j)
k,l , i.e.,

λ(τ) = α(τ) + iω(τ)

be the root of (5) near τ = τ
(j)
k,l satisfying

α
(
τ

(j)
k,l

)
= 0, ω

(
τ

(j)
k,l

)
= wk,l.

Clearly, the sequence {τ (j)
k,l }

+∞
j=0 is increasing in j, and

lim
j→+∞

τ
(j)
k,l = +∞, l = 1, 2, 3, 4.
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Thus, we can define

τ∗ := τ
(0)
k2,l0

:= min
{
τ

(0)
k,l : l = 1, 2, 3, 4; k ∈ K

}
,

w∗ := wk2,l0 ,

θ∗ is the real root of (8) with wk = w∗.

(16)

From the above analysis we arrive at the following conclusion on the Hopf bifurcation
of system (3).

Theorem 2. Assume that (N0) and ε > ε∗(D) are satisfied. τ∗, θ∗, ω∗, k2 and l0 are
defined as in (16).

(i) If none of (H1)–(H3) in Lemma 5 is satisfied, then all the roots of (5) have neg-
ative real parts for all τ > 0. Therefore, equilibrium point (u∗, v∗) of system (2)
is asymptotically stable;

(ii) If one of (H1)–(H3) in Lemma 5 is satisfied, then (12) has at least one positive
root, all the roots of (5) have negative real parts when τ ∈ [0, τ∗). Moreover,
if τ∗ < ∞, G(θ∗, ω∗) 6= 0, and τ0

k,j 6= τ∗ for k 6= k2 and i 6= j0, then when
τ = τ∗, all the roots of (5) have negative real parts except a pair of simple
purely imaginary roots ±iω∗, system (2) undergoes k2-mode Hopf bifurcation
near (u∗, v∗), and for τ ∈ (τ∗, τ∗ + ε) with some small ε > 0, (5) has exactly
one pair of conjugate complex roots with positive real parts.

3 Turing–Hopf bifurcation

Based on the analysis above, we have obtained the following Turing–Hopf bifurcation
theorem.

Theorem 3. For system (3), assume (N0) holds, D > γ and one of conditions (H1)–(H3)
in Lemma 5 holds. Given k1 ∈ N0, k2 ∈ K . Then the constant steady state (u∗, v∗)
is locally asymptotically stable when ε > ε∗(D) and 0 6 τ < τ∗. Moveover, for D ∈
(Dk1,k1+1, Dk1−1, k1), system (3) undergoes (k1, k2)-mode Turing–Hopf bifurcation near
(u∗, v∗) at (τ, ε) = (τ∗, ε∗) := (τ∗, ε∗(D)).

In the following, we consider the spatiotemporal pattern of system (3) induced by
Turing–Hopf bifurcation. We apply the method in [11] to calculate the normal forms of
Turing–Hopf bifurcation for (τ, ε) near the bifurcation point (τ∗, ε∗). First, normalize the
delay τ in system (3) by time scaling t → t/τ and translate (u∗, u∗) into origin. Then
system (3) can be translated into

∂u(x, t)

∂t
= τ

[
εD

∂2u(x, t)

∂x2
+ γ

(
p− q

(
u(x, t) + u∗

)
+

(u(x, t−1) + u∗)
2

v(x, t−1) + v∗

)]
,

∂v(x, t)

∂t
= τ

[
D
∂2v(x, t)

∂x2
+ γ
((
u(x, t− 1) + u∗

)2 − (v(x, t) + v∗
))]

.

(17)
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First of all, we define the following real-value Hilbert space

X :=
{

(u, v) ∈ H2(0, lπ)×H2(0, lπ): (ux, vx)|x=0, lπ = 0
}
,

where H2(0, lπ) is a standard Sobolev space, and the corresponding complexification is
XC := {x1 + ix2: x1, x2 ∈ X}, with the complex valued L2 inner product

〈U1, U2〉 =

lπ∫
0

(u1u2 + v1v2) dx, Ui = (ui, vi) ∈ XC.

Let C := C([−1, 0], XC) denote the phase space with the sup norm. We write ϕt ∈ C for
ϕt(θ) = ϕ(t+ θ), −1 6 θ 6 0.

According to [11], system (17) can be rewritten as

d

dt
U(t) = D(α)∆U(t) + L(α)(Ut) + F (α,Ut), (18)

where α = (α1, α2) = (τ − τ∗, ε − ε∗), D(α) = diag(τεD, τD), U = (u, v)T ∈ XC,
Ut = (ut, vt)

T ∈ C. L : R2 × C → XC is a bounded linear operator. F : R2 × C → XC
is a Ck (k > 3) function and satisfies F (0, 0) = 0, DϕF (0, 0) = 0 with ϕ ∈ C.

From (18) we can obtain that

D(0) = τ∗D

(
ε∗ 0
0 1

)
,

D1(α) = 2D

(
τ∗α2 + α1ε∗ 0

0 α1

)
,

L0ϕ = τ∗γ

(
−qϕ1(0) + 2

u∗
ϕ1(−1)− 1

u2
∗
ϕ2(−1)

−ϕ2(0) + 2u∗ϕ1(−1)

)
,

L1(α)ϕ = 2α1γ

(
−qϕ1(0) + 2

u∗
ϕ1(−1)− 1

u2
∗
ϕ2(−1)

−ϕ2(0) + 2u∗ϕ1(−1)

)
,

Q(ϕ,ϕ) = 2τ∗γ

( 1
v∗
ϕ2

1(−1)− 2
u3
∗
ϕ1(−1)ϕ2(−1) + 1

u4
∗
ϕ2

2(−1)

ϕ2
1(−1)

)
,

C(ϕ,ϕ, ϕ) = 6τ∗γ

(
− 1
v2∗
ϕ2

1(−1)ϕ2(−1) + 2
u5
∗
ϕ1(−1)ϕ2

2(−1)− 1
u6
∗
ϕ3

2(−1)

0

)

(19)

with ϕ = (ϕ1, ϕ2)T, α = (α1, α2)T, Q(ϕ,ϕ) and C(ϕ,ϕ, ϕ) are the second and third
Fréchet derivative of F (α,ϕ) at α = 0, respectively.

By (2.4), (2.6), (2.7), (2.9) and (2.10) of [11] we can get that

φ1(θ) = (1, p1)T, φ2(θ) = eiω∗τ∗θ(1, p2)T,

ψ1(s) = N1(1, q1), ψ2(s) = e−iω∗τ∗sN2(1, q2)
(20)
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with

p1 = − (p+ 1)2

γq2

(
ε∗Dk

2
1 + γq − 2γq

p+ 1

)
,

p2 =
(p+ 1)2

γq2

(
−iw∗ − ε∗Dk2

2 − γq +
2γq

p+ 1
e−iw∗τ∗

)
eiw∗τ∗ ,

q1 =
q

2γ(p+ 1)

(
ε∗Dk

2
1 + γq − 2γq

p+ 1

)
,

q2 =
q

2γ(p+ 1)

(
iw∗ + ε∗Dk

2
2 + γq − 2γq

p+ 1
e−iw∗τ∗

)
eiw∗τ∗ ,

N1 =

[(
− τ∗γq

2

(p+ 1)2
+ q1

)
p1 +

2γτ∗q

p+ 1
+

2τ∗γ(p+ 1)

q
q1 + 1

]−1

,

N2 =

[
p2q1 + 1 + e−iω∗τ∗

(
2γτ∗q

p+ 1
+

2τ∗γ(p+ 1)

q
q2 − p2

τ∗γq
2

(p+ 1)2

)]−1

.

For α = (α1, α2) in a small neighbourhood of (0, 0), it follows from [11] that the
normal forms of (18) for Ω = (0, π) up to the third order are

ż1 = a1(α)z1 + a11z
2
1 + a23z2z2 + a111z

3
1 + a123z1z2z2 + h.o.t,

ż2 = iw0z2 + b2(α)z2 + b12z1z2 + b112z
2
1z2 + b223z

2
2z2 + h.o.t,

ż2 = −iw0z2 + b2(α)z2 + b12z1z2 + b112z
2
1z2 + b223z2z

2
2 + h.o.t.

(21)

According to [11], the coefficients in (21) can be calculated by the following lemma
in the case of k2 = 0, k1 6= 0 (which is referred to Turing–Hopf bifurcation of Hopf–
Pitchfork type).

Lemma 6. (See [11].) For k2 = 0, k1 6= 0, the parameters a1(α), b2(α), a11, a23, a111,
a123, b12, b112 and b223 in (21) are given by

a1(α) =
1

2
ψ1(0)(L1(α)φ1 − µk1D1

(
α)φ1(0)

)
,

b2(α) =
1

2
ψ2(0)(L1(α)φ2 − µk2D1

(
α)φ2(0)

)
,

a11 = a23 = b12 = 0,

a111 =
1

4
ψ1(0)Cφ1φ1φ1 +

1

ω0
ψ1(0) Re

(
iQφ1φ2ψ2(0)

)
Qφ1φ1

+ ψ1(0)Qφ1

(
h0

200 +
1√
2
h2k1

200

)
,

a123 = ψ1(0)Cφ1φ2φ̄2
+

2

ω0
ψ1(0) Re

(
iQφ1φ2

ψ2(0)
)
Qφ2φ̄2

+ ψ1(0)

[
Qφ1

(
h0

011 +
1√
2
h2k1

011

)
+Qφ2

hk1101 +Qφ̄2
hk1110

]
,
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b112 =
1

2
ψ2(0)Cφ1φ1φ2 +

1

2iω0
ψ2(0)

{
2Qφ1φ1ψ1(0)Qφ1φ2

+
[
−Qφ2φ2ψ2(0) +Qφ2φ̄2

ψ̄2(0)
]
Qφ1φ1

}
+ ψ2(0)

(
Qφ1h

k1
110 +Qφ2h

0
200

)
,

b223 =
1

2
ψ2(0)Cφ2φ2φ̄2

+
1

4iω0
ψ2(0)

{
2

3
Qφ̄2φ̄2

ψ̄2(0)Qφ2φ2 +
[
−2Qφ2φ2ψ2(0)

+ 4Qφ2φ̄2
ψ̄2(0)

]
Qφ2φ̄2

}
+ ψ2(0)

(
Qφ2

h0
011 +Qφ̄2

h0
020

)
,

where

h0
200(θ) = −1

2

[ 0∫
−r

dη0(θ)

]−1

Qφ1φ1 +
1

2iω0

(
φ2(θ)ψ2(0)− φ̄2(θ)ψ̄2(0)

)
Qφ1φ1 ,

h2k1
200(θ) = − 1

2
√

2

[ 0∫
−r

dη2k1(θ)

]−1

Qφ1φ1
,

h0
011(θ) = −

[ 0∫
−r

dη0(θ)

]−1

Qφ2φ̄2
+

1

iω0

(
φ2(θ)ψ2(0)− φ̄2(θ)ψ̄2(0)

)
Qφ2φ̄2

,

h2k1
011(θ) = 0,

h0
020(θ) =

1

2

[
2iω0I −

0∫
−r

e2iω0θ dη0(θ)

]−1

Qφ2φ2e2iω0θ

− 1

2iω0

[
φ2(θ)ψ2(0) +

1

3
φ̄2(θ)ψ̄2(0)

]
Qφ2φ2

,

hk1110(θ) =

[
iω0I −

0∫
−r

eiω0θ dηk1(θ)

]−1

Qφ1φ2
eiω0θ − 1

iω0
φ1(0)ψ1(0)Qφ1φ2

,

h0
002(θ) = h0

020(θ), hk1101(θ) = hk1110(θ),

θ ∈ [−r, 0], ηk ∈ BV ([−r, 0],Cm) is denoted by [11, (2.6)], that is,

−µkD0ψ(0) + L0ψ =

0∫
−r

dηk(θ)ψ(θ), ψ ∈ C , C
(
[−r, 0],Cm

)
, k ∈ N0,

and the other notations are given by (19) and (20).

4 Spatiotemporal patterns with Turing–Hopf bifurcation

In the following, we will give examples to illustrate the various spatiotemporal patterns
of system (3) with a fixed set of parameter values.
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4.1 (1,0)-mode Turing–Hopf bifurcation

Referring to [15], choose k1 = 1, p = 0.1, q = 0.8, γ = 0.1, diffusion coefficient
D = 0.5. We can obtain (u∗, v∗) = (1.375, 1.8906) and ε∗(0.5) = 0.0824. Then 1-mode
Turing bifurcation of (3) will occur at ε∗(0.5) = 0.0824. Through numerical simulation,
we can know that w∗ = 0.0721 and τ∗ = 2.6753.

Furthermore, under the above given parameters, normal form for (1, 0)-mode Turing–
Hopf bifurcation truncated to order 3 is

ż1 = (0.0000994925α1 − 1.0974α2)z1 − 0.052899z3
1 − 0.046137z1z2z̄2

ż2 = 0.0721iz2 + (0.009913 + 0.056380i)α1z2 + (−0.003850 + 0.037100i)z2
1z2

+ (−0.001136− 0.034234i)z2
2 z̄2

˙̄z2 = −0.0721iz̄2 + (0.009913− 0.056380i)α1z̄2 + (−0.003850− 0.037100i)z2
1 z̄2

+ (−0.001136 + 0.034234i)z2z̄
2
2 .

In addition, the equivalent planar system is

ṙ = r
(
−0.00991322α1 + r2 + 0.072772z2

)
,

ż = z
(
−0.0000094925α1 + 1.09741α2 + 40.626331r2 + z2

)
.

(22)

According to [7], the unfolding for (22) is case Ib. The bifurcation set for system (3)
in ε, τ -plane is shown in Fig. 2(a), where the critical bifurcation lines are

L1: ε = ε∗ + 0.000009066(τ − τ∗), τ < τ∗,

L2: τ = τ∗, ε < ε∗,

L3: ε = ε∗ − 0.366980(τ − τ∗), τ > τ∗,

L4: ε = ε∗ − 0.124122(τ − τ∗), τ > τ∗,

L5: ε = ε∗ + 0.000009066(τ − τ∗), τ > τ∗,

L6: τ = τ∗, ε > ε∗.

Therefore, the τ, ε-plane is divided into six regions by critical bifurcation curves Li,
i = 1, 2, . . . , 6, which are denoted by Di, i = 1, 2, . . . , 6. For (τ, ε) in different region
Di, i = 1, 2, . . . , 6, the dynamical behaviors of (22) can be described by corresponding
phase portraits; see Fig. 2(b).

Theorem 4. For system (3) with p = 0.1, q = 0.8, γ = 0.1 and D = 0.5, when param-
eters (τ, ε) are chosen near Turing–Hopf bifurcation point (τ∗, ε∗) = (0.0824, 2.6753),
system (3) exhibits the following complex dynamics:

(i) When (τ, ε) ∈ D1, the steady state (u∗, v∗) of system (3) is asymptotically stable.
Otherwise, the steady state (u∗, v∗) is unstable, while (τ, ε) /∈ D1.

(ii) When (τ, ε) ∈ D2, system (3) possesses a pair of stable spatially inhomogeneous
steady states through Turing bifurcation at (u∗, v∗) when (τ, ε) crossesL1, which
reflects that system exhibits spatial patterns and bistability.
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(iii) When (τ, ε) ∈ D3, there are a pair of stable spatially inhomogeneous steady
states and an unstable spatially homogeneous periodic solution for system (3).
Moreover, there exist a pair of heteroclinic orbits, which connect the spatially
homogeneous periodic solution to spatially inhomogeneous steady states, respec-
tively. That is, the system exhibits semistable patterns and bistability.

(iv) When (τ, ε) ∈ D4, there are two unstable spatially inhomogeneous periodic
solution, which are bifurcated from the spatially homogeneous periodic orbit
on L3, and a pair of spatially inhomogeneous steady states, and a spatially
homogeneous periodic solution for system (3) still remains. Moreover, there are
four heteroclinic orbits connecting spatially inhomogeneous periodic solution to
the spatially homogeneous periodic solution and spatially inhomogeneous steady
states, respectively. Therefore, system shows semistable spatiotemporal patterns
and tristability; see Fig. 3.

(v) When (τ, ε) ∈ D5, system (3) possesses a stable spatially homogeneous periodic
solution and a pair of unstable spatially inhomogeneous steady states. Moreover,
there are a pair of heteroclinic orbits connecting spatially inhomogeneous steady
states to the spatially homogeneous periodic solution, respectively, which reflects
that system exhibits semistable patterns and bistability.

(vi) When (τ, ε) ∈ D6, system (3) has a stable spatially homogeneous periodic
solution, which represents that system exhibits temporal patterns.

4.2 (2,0)-mode Turing–Hopf bifurcation

In this part, we select k1 = 2, p = 0.1, q = 0.8, γ = 0.1, D = 0.15. Then (u∗, v∗) =
(1.375, 1.8906), ε∗(0.15) = 0.0745, w∗ = 0.0721 and τ∗ = 2.6753. According to [7],
the unfolding for the cylindrical coordinate equation of (21) is case III. When (τ, ε) =
(2.7253, 0.0445), there are two spatially inhomogeneous periodic solutions; see Fig. 4. If
(τ, ε) = (2.6253, 0.0705), two spatially inhomogeneous steady states coexist; see Fig. 5.
It is easy to observe that the patterns are different from the last case.

(a) (b)

Figure 2. (a) The bifurcation set of (22) in τ, ε-plane. (b) The phase portraits of (22) in case Ib.
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(a) (τ, ε) = (2.7253, 0.0644)

(b) (τ, ε) = (2.7253, 0.0644)

(c) (τ, ε) = (2.7253, 0.0759)

Figure 3. For (τ, ε) ∈ D4, a pair of spatially inhomogeneous steady states and a spatially homogeneous
periodic solution are stable. There are semistable patterns of spatially inhomogeneous periodic solutions tending
toward spatially inhomogeneous steady states and spatially homogeneous periodic solution, respectively. The
initial functions are: (a) φ1(x, t) = 1.35 − cosx, φ2(x, t) = 1.9 − cosx, (x, t) ∈ [0, π] × [−2.7253, 0];
(b) φ1(x, t) = 1.35 + cosx, φ2(x, t) = 1.9 + cosx, (x, t) ∈ [0, π] × [−2.7253, 0]; (c) φ1(x, t) =
1.3− cosx, φ2(x, t) = 1.9− cosx, (x, t) ∈ [0, π]× [−2.7253, 0].
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Figure 4. For (τ, ε) = (2.7253, 0.0445), a pair of spatially inhomogeneous periodic solution are stable. The
initial functions are φ1(x, t) = 1.375 − cos 2x, φ2(x, t) = 1.8906 − 1.7 cos 2x for (x, t) ∈ [0, π] ×
[−2.7253, 0].

Figure 5. For (τ, ε) = (2.6253, 0.0705), a pair of spatially inhomogeneous steady states are stable. The initial
functions are φ1(x, t) = 1.375− cos 2x, φ2(x, t) = 1.8906− 1.7 cos 2x for (x, t) ∈ [0, π]× [−2.6253, 0].

5 Conclusion

In this paper, we have builded the existence conditions of Turing, Hopf and Turing–Hopf
bifurcation for Gierer–Meinhardt system with gene expression delay. The first Turing
bifurcation curve ε∗(D) is given, which is continuous and piecewise smooth, and at
nonsmooth points system (3), has undergone Turing–Turing bifurcation. Besides, it has
found that diffusion can induce Turing instability, resulting in spatially nonhomogeneous
steady states.

Using τ as bifurcation parameter, we have further investigated the Hopf bifurcation
for system (3) near (u∗, v∗). Based on the method of [2] and [17], we have overcome
the complexity of solving the purely imaginary roots for a second-order transcendental
polynomial and given the critical values τ for the occurrence of Hopf bifurcation at which
spatially homogeneous periodic solution will be bifurcated from (u∗, v∗).

In order to explore the joint effect of diffusion and time delay, we further investigate
the Turing–Hopf bifurcation. Utilizing the general formula established in [11], we have
derived the normal form for system (3) near the Turing–Hopf singularity. It is theoreti-
cally proved that system exhibits spatial, temporal and spatiotemporal patterns, such as
semistable spatially inhomogeneous periodic solutions, as well as tristable phenomena of
a pair of stable spatially inhomogeneous steady states and a spatially homogeneous peri-
odic solution coexisting, which is not found in the another representative Turing model,
Schnakenberg system [12]. Significantly, the morphogenetic system can delineate the
patterns of animal epidermis, as a consequence, various spatiotemporal patterns provide
an explanation for the appearance of animal epidermal patterns. Our research provide
an analytical means for understanding the behavior of delayed biological self-organizing
systems and the parameter space for when bifurcations occur. The analysis have shown
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that Turing–Hopf bifurcation provides an explanation for the formation of spatiotemporal
pattern. The numerical results well confirmed the frontal theoretical analyses.

Lee et al. have found that the inclusion of time delay induces the generation of oscilla-
tion patterns [15, Fig. 5 A, C or Fig. 5 D, F or Fig. 6 D, E], which can be explained by Hopf
bifurcation taking time delay as the parameter. Furthermore, time delay will greatly post-
pone the formation of the pattern [15, Fig. 5 A, B], which is also confirmed in our research.
By analyzing the phase portraits near the Turing–Hopf singularity of the system (D3−D4)
we find that the introduction of time delay result in there are semistable patterns from
spatially homogeneous periodic solution (or spatially nonhomogeneous periodic solution
bifurcated from spatially homogeneous periodic solution) to spatially nonhomogeneous
steady state, which attract its nearby solutions, therefore, the occurrence of the semistable
patterns will postpone the time to reach the heterogeneous steady pattern. In addition, it is
known from Theorem 1 that Turing–Turing bifurcation will occur in model (3). Such kind
of degenerate bifurcation is usually used to explain the formation of the superposition of
spatial patterns.
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