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Abstract. This article is devoted to studying a nonhomogeneous boundary value problem involving
Stieltjes integral for a more general form of the fractional q-difference equation with p(t)-Laplacian
operator. Here p(t)-Laplacian operator is nonstandard growth, which has been used more widely
than the constant growth operator. By using fixed point theorems of ϕ − (h, e)-concave operators
some conditions, which guarantee the existence of a unique positive solution, are derived. Moreover,
we can construct an iterative scheme to approximate the unique solution. At last, two examples are
given to illustrate the validity of our theoretical results.

Keywords: unique solution, fractional q-difference equation, p(t)-Laplacian operator, ϕ − (h, e)-
concave operators.

1 Introduction

Fractional calculus, appeared at the beginning of twentieth century, has provided many
hot topics of research in many disciplines such as biological sciences, engineering, aero-
dynamics and communications (see [3–5, 13] for example). Originally, the study on frac-
tional q-difference calculus can be traced back to Agarwal [1] and Al-Salam [4], then it
inspired much interest in theoretical research, many remarkable results have been arisen,
which can be found in [2, 6, 7, 14].

Naturally, the widespread applications of fractional q-calculus have lead to a new de-
velopment direction of fractional q-difference equations, which has exhibited adamantine
incorporation to application in fluid mechanics and quantum calculus. After that, kinds of
fixed point theorems have been used to deal with various fractional q-difference equation
boundary value problems; see [1, 3, 6, 7, 10–12, 15, 16, 18, 19] for instance. As we know,
the study of existence, uniqueness and multiplicity of solutions are abundant. In 2011,
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Ferreira [7] studied a fractional q-difference equation

Dα
q y(x) = −f

(
x, y(x)

)
, x ∈ (0, 1), (1)

with boundary conditions

y(0) = Dqy(0) = 0, Dqy(1) = β > 0, (2)

where 0 < q < 1, 2 < α 6 3, f : [0, 1] × R → R is a nonnegative continuous function.
By employing Krasnosel’skii fixed point theorem the existence of positive solutions was
enunciated.

In 2017, Wang [17] studied twin iterative positive solutions for a fractional q-difference
Schrödinger equation(

Dα
q

)
u(x) + λh(x)f

(
u(x)

)
= 0, 0 < x < 1,

u(0) = Dqu(0) = Dqu(1) = 0,
(3)

where 0 < q < 1, 2 < α < 3, f ∈ C([0,∞), (0,∞)), h ∈ C((0, 1), (0,∞)). The author
obtained the existence of twin iterative positive solutions by using a fixed point theorem
in cones associated with monotone iterative method. In 2020, Mao et al. [12] generalized
the results in [17], the general research problem is(

Dα
q

)
u(t) + f

(
t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = 0, Dqu(0) = Dqu(1) = 0,
(4)

where 0 < q < 1, 2 < α 6 3, f may be singular at v = 0, t = 0, 1. By the iterative
algorithm the author obtained a unique positive solution, where the nonlinear term has
two space variables. In 2017, we have studied this boundary value problem in [19] by
using the monotone iterative technique and lower-upper solution method, the existence
of positive or negative solutions are obtained under the nonlinear term is local continuity
and local monotonicity.

Since Leibenson [9] presented the p-Laplacian operator φp(x(t)) in the turbulent flow
model, recently, the fractional differential equations with p-Laplacian operator attracted
much attention of scholars; see [8, 10, 18]. In 2016, Li et al. [10] investigated a fractional
q-difference equation nonhomogeneous boundary value problem

Dγ
q

(
φ
(
Dα
q u(t)

))
= λf

(
u(t)

)
, 0 < t < 1, (5)

restricted to

u(0) = (Dqu)(0) = 0, (Dqu)(1) = β, Dα
q u(0) = 0, (6)

where 0 < γ < 1, 2 < α < 3, φ : R → R is a generalized p-Laplacian operator,
which includes two cases: φ(u) = u and φ(u) = |u|p−2u, p > 1. They gave the
existence of positive solutions by some fixed point theorems in cones. As a general-
ized form of p-Laplacian operator, p(t)-Laplacian operator arises from image restoration,
elastic mechanics, nonlinear electro-rheological fluids, which has been widely used in
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different fields such as physics, image processing, bioengineering, etc, with respect to
some valuable results that we can see [6, 22].

Different from the above-mentioned works, in this article, we discuss the following
nonhomogeneous two-point boundary value problem of a fractional q-difference equation
containing p(t)-Laplacian operator:

Dβ
q

(
ϕp(t)

(
Dα
q u(t)− g(t)

))
+ µf

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = 0, (Dqu)(0) = 0, (Dqu)(1)− λ[u] = γ, Dα
q u(t)|t=0 = 0,

(7)

where 0< q < 1, 2<α6 3, 0< β < 1, γ > 0, f, g ∈C(R0), R0 = {t: 0 6 t6 1} ∈ Tq ,
where Tq denotes the time scale defined by Tq = {qn: n ∈ N}∪{0}. Dα

q , D
β
q denote the

standard Riemann–Liouville fractional q-derivatives, µ > 0 is a parameter, λ[u] denotes
a linear functional given by

λ[u] =

1∫
0

u(t) dΛ(t)

involving Stieltjes integral with respect to a suitable function Λ : [0, 1] → R of bounded
variation. The measure dA can be a signed measure. ϕp(t)(z) = |z|p(t)−1 sgn z is p(t)-
Laplacian operator, p(t) ∈ C1[0, 1] with p(t) > 1, and it has the following characteristics:

(a) ϕ : R→ R is an odd and strictly monotone increasing homeomorphism;
(b) the inverse continuous operator ϕ−1p(t)(z) = |z|(2−p(t))/(p(t)−1)z, z ∈ R \ {0},

and ϕ−1p(t)(0) = 0.

Indeed, if λ[u] = g(t) = 0, γ > 0, ϕp(t) degenerates to constant p, then our research
problem turns into (5)–(6); if λ[u] = g(t) = 0, ϕp(t)(z) = z, α = 0, µ = 1, then
it turns into (1)–(2); on this basis, if γ = 0, then it becomes homogeneous boundary
value problem (3); if f has two space variables, then it changed into (4), so the boundary
condition we studied in this paper is more extensive. The form ϕp(t)(D

α
q u(t)− g(t)) has

not been seen in existing works.
We study problem (7) by using some fixed point theorems of increasing ϕ − (h, e)-

concave operators. Several new existence-uniqueness criteria of nontrivial solutions for
problem (7) are obtained. In addition, we can construct a convergent monotone iterative
scheme for approximating the unique solution, and the existence of lower-upper solutions
is not required, thus our result weakened the restrictions in [19]. It should be pointed out
that the compactness condition is not required, when g(t) ≡ 0, our unique results are also
new.

Throughout this paper, let p̄ = maxt∈[0,1] p(t), p = mint∈[0,1] p(t), we assume that

(H1) f :R0×[−ê,+∞)→ [0,+∞) is increasing with respect to the second variable,
where ê = max{e(t): t ∈ [0, 1]}, f(t, 0) 6≡ 0 (there exists at least one point t0
such that f(t0, 0) 6= 0);

(H2) for any λ ∈ (0, 1), there exists ψ(λ) ∈ (0, 1) with lnψ(λ) > (p− 1) lnλ such
that f(t, λx+ (λ− 1)y) > ψ(λ)f(t, x) for all t ∈ R0, x ∈ R, y ∈ [0, ê].
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Remark 1. Let y = θ, ψ(λ) = λσ , then assumption (H2) become condition (H1) in [17].
It can be regarded as a particular case of (H2) due to the characteristic of p(t)-Laplacian
operator, here σ+ 1− p > 0 is demanded. Besides, this condition covers the superlinear,
sublinear and mixed types of superlinear and sublinear functions.

Remark 2. Condition (H2) implies that, for all λ > 1, we have

f
(
t, λx+ (λ− 1)y

)
6 ψ(λ)f(t, x).

The paper is organized as follows. Section 2 contains some definitions and lemmas
that will be used later. In Section 3, the local unique positive solution of problem (7) is
obtained by using fixed point theorems in cones. Two examples are added to illustrate the
main results in Section 4.

2 Preliminaries and previous results

We present some necessary definitions and lemmas about fractional q-calculus; for details,
we can see [1, 4].

For fixed point q ∈ R, V is a sunset of complex set C, V is called q-geometric if
qt ∈ V whenever t ∈ V , that is to say, if V is q-geometric, then it includes all geometric
sequences {tqn}∞n=0. The definition of q-analogue for α ∈ R is

[α]q =
1− qα

1− q
.

The q-analogue of the Pochhammer symbol is defined by

(a; q)0 = 1, (a; q)n =

n−1∏
i=0

(
1− aqi

)
, n ∈ N.

Let f be a real-valued continuous function defined on a q-geometric set V , |q| 6= 1, the
q-derivative of f is defined by

Dqf(t) =
dq
dqt

f(t) =
f(qt)− f(t)

(q − 1)t
, t 6= 0,

and

Dqf(0) =

{
dq
dqt
f(t)|t=0 = limn→∞

f(qnt)−f(0)
qnt , |q| 6= 1,

Dq−1f(0), |q| > 1.

Furthermore, the nth q-derivative Dn
q can be represented by

Dn
q f(t) = (1− q)−nt−n

n∑
r=0

qr
(q−n; q)r

(q; q)r
f
(
tqr
)
, t ∈ V \ {0}.
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The q-integral of a function f in the interval [0, b] is defined by

(Iqf)(t) =

t∫
0

f(s) dqs = (1− q)
∞∑
n=0

f
(
tqn
)
tqn, t ∈ [0, b].

Definition 1. (See [5].) Let α > 0 and f be a function defined on [0, 1]. The fractional
q-integral of Riemann–Liouville type is (I0q f)(t) = f(t), and

(
Iαq f

)
(t) =

1

Γq(α)

t∫
0

(t− qs)(α−1)f(s) dqs, α > 0.

Further, (Iαq f)(t) = (Iqf)(t) when α = 1.

Definition 2. [5] The fractional q-derivative of Riemann–Liouville type of order α > 0
is defined by (

Dα
q f
)
(t) =

(
Ddαeq Idαe−αq f

)
(t), t ∈ [0, 1],

where dαe is the smallest integer greater than or equal to α.

Moreover,

(
Iαq D

p
qf
)
(t) =

(
Dp
qI
α
q f
)
(t)−

p−1∑
n=0

tα−p+n

Γq(α− p+ n+ 1)

(
Dn
q f
)
(0), p ∈ N. (8)

Remark 3. (See [19].) Assume that f(t) is a continuous function on [0, 1] and there exists
t0 ∈ (0, 1) such that f(t0) 6= 0. If f(t) > 0, then we have

∫ 1

0
f(t) dqt > 0, t ∈ [0, 1].

First, we consider the following boundary value problem:

Dα
q u(t) + y(t) = 0, t ∈ (0, 1),

u(0) = 0, (Dqu)(0) = 0, (Dqu)(1)− λ[u] = γ.
(9)

We require the following assumption:

(H0) Λ : [0, 1] → R is a function of bounded variation and [α − 1]q − A 6= 0,
A =

∫ 1

0
tα−1 dΛ(t), ζ(s) =

∫ 1

0
G1(t, qs) dΛ(t) for

G1(t, qs) =
1

Γq(α)

{
(1− qs)(α−2)tα−1 − (t− qs)(α−1), 0 6 qs 6 t 6 1,

(1− qs)(α−2)tα−1, 0 6 t 6 qs 6 1.

Lemma 1. Assume (H0) holds and y ∈ C[0, 1], then problem (9) has a unique solution

u(t) =
γ

[α− 1]q −A
tα−1 +

1∫
0

G(t, qs)y(s) dqs,

where

G(t, qs) = G1(t, qs) +
tα−1

[α− 1]q −A
ζ(s). (10)
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Proof. By Definitions 1, 2 and (8) we can reduce above problem to

u(t) = c1t
α−1 + c2t

α−2 + c3t
α−3 − Iαq y(t), ci ∈ R, i = 1, 2, 3.

It follows from the condition u(0) = Dqu(0) = 0 that c2 = c3 = 0, then

u(t) = c1t
α−1 − Iαq y(t), c1 ∈ R. (11)

Further, one has

Dqu(t) = [α− 1]qc1t
α−2 − Iα−1q y(t), t ∈ [0, 1].

The condition Dqu(1)− λ(u) = γ implies that

[α− 1]qc1 − Iα−1q y(1)− λ[u] = γ.

By simple calculation we get

c1 =
γ

[α− 1]q −A
+

1

([α− 1]q −A)Γq(α− 1)

1∫
0

(1− qs)(α−2)y(s) dqs

− 1

([α− 1]q −A)Γq(α)

1∫
0

t∫
0

(t− qs)(α−1)y(s) dqsdΛ(t),

and so, substituting it into (11), we deduce that

u(t) =
tα−1(1− 1

[α−1]q

∫ 1

0
tα−1 dΛ(t) + 1

[α−1]q

∫ 1

0
tα−1 dΛ(t))

(1− 1
[α−1]q

∫ 1

0
tα−1 dΛ(t))Γq(α)

×
1∫

0

(1− qs)(α−2)y(s) dqs+
γtα−1

[α− 1]q −A
− 1

Γq(α)

t∫
0

(t− qs)(α−1)y(s) dqs

− tα−1

([α− 1]q −A)Γq(α)

1∫
0

t∫
0

(t− qs)(α−1)y(s) dqsdΛ(t)

=
γtα−1

[α− 1]q −A
+

1

Γq(α)

1∫
0

tα−1(1− qs)(α−2)y(s) dqs

+
tα−1

([α− 1]q −A)Γq(α)

{ 1∫
0

1∫
0

tα−1(1− qs)(α−2)y(s) dqsdΛ(t)

−
1∫

0

t∫
0

(t− qs)(α−1)y(s) dqsdΛ(t)

}
− 1

Γq(α)

t∫
0

(t− qs)(α−1)y(s) dqs
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=
γtα−1

[α−1]q−A
+

1∫
0

G1(t, qs)y(s) dqs+
tα−1

[α−1]q−A

1∫
0

1∫
0

G1(t, qs)y(s) dqsdΛ(t)

=
γtα−1

[α−1]q−A
+

1∫
0

G(t, qs)y(s) dqs.

The proof is complete.

Lemma 2. The function G1(t, qs) has the following properties:

(i) G1(t, qs) > 0, G1(t, qs) 6 G1(1, qs), 0 6 t, s 6 1;
(ii) G1(t, qs) > tα−1G1(1, qs), 0 6 t, s 6 1;

(iii) G1(t, qs) 6 (1− qs)(α−2)tα−1/Γq(α) 6 1/Γq(α), 0 6 t, s 6 1.

Proof. The proof is similar to Lemma 3.0.7. of [7], we omit it.

Remark 4. From Lemma 1 and (10) we have

tα−1
[
G(1, qs) +

ζ(s)

[α− 1]q −A

]
6 G(t, qs) 6 G(1, qs) +

ζ(s)

[α− 1]q −A
,

and

G(t, qs) 6 tα−1
[

1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]
.

Next, we consider the following boundary value problem:

Dβ
q

(
ϕp(t)

(
Dα
q u(t)− g(t)

))
+ y(t) = 0, 0 < t < 1,

u(0) = 0, (Dqu)(0) = 0, (Dqu)(1)− λ[u] = γ > 0,

Dα
q u(t)|t=0 = 0.

(12)

Lemma 3. Let g ∈ C[0, 1] be a given function with g(0) = 0. Then problem (12) has
a unique solution

u(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
1

Γq(β)

s∫
0

(s− qτ)(β−1)y(τ) dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs,

where G(t, qs) is defined as in (10).
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Proof. First, we deduce Dβ
q σ(t) = −y(t), here σ = ϕp(t)(ς − g), ς = Dα

q u. Then

(Dβ
q )σ(t) + y(t) = 0, t ∈ (0, 1),

σ(0) = ϕp(t)
(
ς(0)− g(0)

)
= 0

has the solution σ(t) = −Iβq y(t) + c0t
β−1. From the condition Dα

q u(t)|t=0 = 0 and
g(0) = 0, which implies c0 = 0, we know σ(t) = −Iβq y(t). Noticing that Dα

q u(t) =

ϕ−1p(t)(σ(t)) + g(t), we translate into considering

Dα
q u(t) = ϕ−1p(t)

(
−Iβq y(t)

)
+ g(t), t ∈ (0, 1),

u(0) = (Dqu)(0) = 0, (Dqu)(1)− λ[u] = γ > 0,

Dα
q u(t)|t=0 = 0.

Lemma 1 implies that problem (12) has a unique solution

u(t) =
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)
(
ϕ−1p(s)

(
−Iβq y(s)

)
+ g(s)

)
dqs

=

1∫
0

G(t, qs)ϕ−1p(s)

(
1

Γq(β)

s∫
0

(s− qτ)(β−1)y(τ) dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs.

The proof is complete.

Moreover, we collect some notations that are already known in literatures [20, 21].
Let (E, ‖·‖) be a real Banach space and it is partially ordered by a cone K ⊂ E. For

any x, y ∈ E, the notation x ∼ y means that there exist µ > 0 and ν > 0 such that
µx 6 y 6 νx. For fixed h > θ(i.e., h > θ and h 6= θ), θ denotes the zero element of E.
Define a set Kh = {x ∈ E: x ∼ h}. Clearly, Kh ⊂ K. Take e ∈ K with θ 6 e 6 h,
we define Kh,e = {x ∈ E: x + e ∈ Kh}, that is, Kh,e = {x ∈ E: there exist µ =
µ(h, e, x) > 0, ν = ν(h, e, x) > 0 such that µh 6 x+ e 6 νh}.

Definition 3. (See [21].) Let T : Kh,e → E be a given operator. For any x ∈ Kh,e,
λ ∈ (0, 1), there exists ϕ(λ) > λ such that

T
(
λx+ (λ− 1)e

)
> ϕ(λ)Tx+

(
ϕ(λ)− 1

)
e.

Then T is called a ϕ− (h, e)-concave operator.

Now we consider problem (7) in Banach space E = C[0, 1] endowed with the
norm ‖u‖ = sup{|u(t)|: t ∈ [0, 1]}. Set the standard cone K = {x ∈ E: x(t) > 0,
mint∈[τ,1] x(t) > τα−1‖x‖, t ∈ [0, 1]}. Obviously, K ⊂ E is normal. Define the
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operator T : K → E by

Tu(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs.

Further, let

e(t) =

1∫
0

G(t, qs)g(s) dqs, t ∈ [0, 1], h(t) = Htα−1,

where

H >

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]
g(s) dqs.

Lemma 4. Let assumptions (H0)–(H2) hold. In addition, we assume that

(H3) 0 6 A < [α− 1]q , ζ(s) > 0, where A, ζ are defined as in assumption (H0).

If g(t) > 0 with g(t) 6≡ 0, g(0) = 0 for t ∈ [0, 1], then T : Kh,e → E is a ϕ− (h, e)-
concave operator.

Proof. For t ∈ [0, 1], we have

h(t) = Htα−1 > tα−1
1∫

0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]
g(s) dqs > 0.

Since g(t) > 0, g(t) 6≡ 0, thus h(t) 6≡ 0. Then we show that 0 6 e(t) 6 h(t). By
Lemma 2 and (H3) we have

e(t) =

1∫
0

G(t, qs)g(s) dqs > 0, t ∈ [0, 1],

and

min
t∈[τ,1]

e(t) > τα−1
1∫

0

G(1, qs)g(s) dqs = τα−1‖e‖,

that is, e ∈ K. Further, from Remark 4 one has

e(t) =

1∫
0

G(t, qs)g(s) dqs 6

1∫
0

[
1

Γq(α)
(1−qs)(α−2) +

ζ(s)

[α−1]q−A

]
g(s) dqs · tα−1

6 Htα−1 = h(t),
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hence, 0 6 e(t) 6 h(t). Moreover, Kh,e = {u ∈ C[0, 1]: u + e ∈ Kh}. In view of
Lemma 3, the solution u(t) of problem (7) can be expressed as

u(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs

=

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 − e(t).

For any u ∈ Kh,e, we consider the operator T , which can also be written as

Tu(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 − e(t).

Evidently, u(t) is the solution of problem (7) if and only if u is the fixed point of T .
Now we show that T : Kh,e → E is a ϕ − (h, e)-concave operator. For λ ∈ (0, 1),

u ∈ Kh,e, by condition (H2) we can obtain

T
(
λu+ (λ− 1)e

)
(t)

=

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, λu(τ) + (λ− 1)e(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 − e(t)

>
(
ψ(λ)

)1/(p−1) 1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
(ψ(λ))

1/(p−1)
γ

[α− 1]q −A
tα−1 − e(t)

=
(
ψ(λ)

)1/(p−1)[ 1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 − e(t)

]
+
(
ψ(λ)

)1/(p−1)
e(t)− e(t)

=
(
ψ(λ)

)1/(p−1)
Tu(t) +

[(
ψ(λ)

)1/(p−1) − 1
]
e(t).
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Let ϕ(λ) := (ψ(λ))
1/(p−1). For λ ∈ (0, 1), because lnψ(λ) > (p − 1) lnλ in (H2), we

have lnψ(λ)/ lnλ < p− 1, and thus

lnϕ(λ) =
1

p− 1
lnψ(λ) =

1

p− 1
· lnψ(λ)

lnλ
· lnλ

>
1

p− 1
· p− 1 · lnλ = lnλ.

So we have ϕ(λ) > λ, λ ∈ (0, 1). For u ∈ Kh,e, we get

T (λu+ (λ− 1)e) > ϕ(λ)Tu+ [ϕ(λ)− 1]e, λ ∈ (0, 1).

According to Definition 3, we know that T is a ϕ− (h, e)-concave operator. The proof is
complete.

Remark 5. If g(t) 6 0 with g(0) = 0, (H0)–(H3) hold, it is clear that T is a ϕ− (h, θ)-
concave operator.

Remark 6. Note that the inequalities A > 0, ζ(s) > 0 of condition (H3) are general
satisfied provided that dΛ is positive. Consider the case when the measure dΛ changes
the sign, particularly, take dΛ(t) = (at− b) dqt, a, b > 0. It changes sign and one can see

A =

1∫
0

tα−1(at− b) dqt =
(b− a)(a− bq)(1− q)(qα − qα+1)

(1− qα)(1− qα+1)
.

Let 0 6 A < 1, then it requires that

0 6 (b− a)(a− bq) < (1− qα)(1− qα+1)

(1− q)(qα − qα+1)
.

If α = 5/2, q = 1/2, then 0 6 (b − a)(a − b/2) < (65
√

2 − 24)/4, while if α = 3,
q = 1/2, then 0 6 (b− a)(a− b/2) < 105/4. Further, we know that if q → 1, dΛ(t) =
(at− b) dt, a, b > 0. Then

A =

1∫
0

tα−1(at− b) dqt =
(a− b)α− b
α(α+ 1)

.

Similarly, let 0 6 A < 1, it requires that b/α 6 a − b < α + 1. If α = 5/2, then
2b/5 6 a− b < 7/2, while if α = 3, then b/4 6 a− b < 4.

Lemma 5. (See [21].) Let K be normal and T be an increasing ϕ − (h, e)-concave
operator with Th ∈ Kh,e. Then T has a unique fixed point x∗ in Kh,e. Moreover, for any
w0 ∈ Kh,e, constructing the sequence wn = Twn−1, n = 1, 2, . . . , then ‖wn−x∗‖ → 0
as n→∞.

Remark 7. If e = θ, i.e., T is an increasing ϕ− (h, θ)-concave operator, the above result
is still holds.
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3 Local unique solutions

In this section, we can formulate some results giving sufficient conditions for the existence
and uniqueness of solution to problem (7).

Theorem 1. Assume that (H0)–(H3) hold, g(t) > 0 with g(t) 6≡ 0, g(0) = 0. Then prob-
lem (7) has a unique solution u∗ in Kh,e. Further, for any given v0 ∈ Kh,e, constructing
a sequence

vn(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, vn−1(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs,

one has vn(t)→ u∗(t) as n→∞.

Proof. By means of Lemma 4 we know that T : Kh,e → E is a ϕ − (h, e)-concave
operator. Now we prove that T : Kh,e → E is increasing. For u ∈ Kh,e, we have
u+ e ∈ Kh, and then there exists m > 0 such that u(t) + e(t) > mh(t). We obtain

u(t) > mh(t)− e(t) > −e(t) > −ê, t ∈ [0, 1].

By using the condition (H1) we know T : Kh,e → E is increasing.
As follows, we prove that Th ∈ Kh,e, so we have to prove Th + e ∈ Kh. From

Lemma 2 and (H1) we get

Th(t) + e(t)

=

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ,Hτα−1

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1

6
γ

[α− 1]q −A
tα−1 +

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ,H) dqτ

)
dqs · tα−1

6
γ

H(1− qα−1 −A)
h(t) +

1

H

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ,H) dqτ

)
dqs · h(t)

Nonlinear Anal. Model. Control, 26(3):482–501

https://doi.org/10.15388/namc.2021.26.23055


494 C. Zhai, J. Ren

and

Th(t) + e(t) >
γ

[α− 1]q −A
tα−1 +

1∫
0

ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, 0) dqτ

)

×
[

(1− qs)(α−2) − (1− qs)(α−1)

Γq(α)
+

ζ(s)

[α− 1]q −A

]
dqs · tα−1

>
γ

H( 1
1−q −A)

h(t) +
1

H

1∫
0

ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, 0) dqτ

)

×
[

(1− qs)(α−2) − (1− qs)(α−1)

Γq(α)
+

ζ(s)

[α− 1]q −A

]
dqs · h(t).

Let

r1 =
1

H

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ,H) dqτ

)
dqs+

γ

H(1− qα−1 −A)
,

r2 =
1

H

1∫
0

[
(1− qs)(α−2) − (1− qs)(α−1)

Γq(α)
+

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, 0) dqτ

)
dqs+

γ

H( 1
1−q −A)

.

Since β > 0, 1/(1− qα) > 1− q, from (H1) we can easily get

r1 =
1

H

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ,H) dqτ

)
dqs+

γ

H(1− qα−1 −A)

>
1

H

1∫
0

[
1

Γq(α)
(1− qs)(α−2) +

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, 0) dqτ

)
dqs+

(1− q)γ
H(1− qα −A)
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>
1

H

1∫
0

[
(1− qs)(α−2) − (1− qs)(α−1)

Γq(α)
+

ζ(s)

[α− 1]q −A

]

× ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, 0) dqτ

)
dqs+

γ

H( 1
1−q −A)

= r2 > 0,

hence we have r1 > r2 > 0 and r2h 6 Th+ e 6 r1h, which implies that Th+ e ∈ Kh.
In view of Lemma 5, the operator T has a unique fixed point u∗ in Kh,e, and

u∗(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, u∗(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 − e(t).

Namely, u∗(t) is the solution of problem (7). In addition, for any v0 ∈ Kh,e, the sequence
vn = Tvn−1, n = 1, 2, . . ., satisfies vn → u∗ as n→∞, that is,

vn(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, vn−1(τ)) dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs, n = 1, 2, . . . ,

and vn(t)→ u∗(t) as n→∞.

Corollary 1. Let ρ(s) := (µ/Γq(β))
∫ s
0

(s − qτ)(β−1)f(τ, 0) dqτ)1/(p(s)−1). If the con-
ditions of Theorem 1 hold and

ρ(s)− g(s) > 0 with ρ(s)− g(s) 6≡ 0, s ∈ [0, 1],

then problem (7) has a unique nontrivial positive solution in Kh,e. In addition, we can
also construct an iterative scheme

vn(t) =

1∫
0

G(t, qs)ϕ−1p(s)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, vn−1(τ)

)
dqτ

)
dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs, n = 1, 2, . . . ,

approximating the unique nontrivial positive solution u∗(t).
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Further, similar to the proof of Theorem 1, by using Remark 7 we have the following
result:

Theorem 2. Assume that (H0), (H3) hold, g(t) 6 0, g(0) = 0 and

(H4) f : R0 × R+ → R+ is increasing with respect to the second variable with
f(t, 0) 6≡ 0;

(H5) for any λ ∈ (0, 1), there exists ψ(λ) ∈ (0, 1) with lnψ(λ) > (p − 1) lnλ such
that

f(t, λx) > ψ(λ)f(t, x), t ∈ [0, 1], x ∈ R+.

Then problem (7) has a unique positive solution u∗ in Kh, where h(t) = tα−1, t ∈ [0, 1].
Further, making a monotone iterative sequence

vn(t) =

1∫
0

G(t, qs)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f(τ, vn−1(τ)) dqτ

)1/(p(s)−1)

dqs

+
γ

[α− 1]q −A
tα−1 −

1∫
0

G(t, qs)g(s) dqs, n = 1, 2, . . . ,

for any v0 ∈ Kh, we have vn(t)→ u∗(t) as n→∞.

Next, we consider a special case of problem (7) with homogeneous boundary condi-
tion

Dβ
q

(
ϕp(t)

(
Dα
q u(t)− g(t)

))
+ f

(
t, u(t)

)
= 0, 0 < t < 1,

u(0) = (Dqu)(0) = 0, (Dqu)(1)− λ[u] = 0, Dα
q u(t)|t=0 = 0.

(13)

Corollary 2. Assume (H0)–(H3) hold and g(t) > 0, g(t) 6≡ 0, g(0) = 0. Then prob-
lem (13) has a unique solution u∗ inKh,e. Further, for any v0 ∈ Kh,e, making a monotone
iterative sequence

vn(t) =

1∫
0

G(t, qs)

(
µ

Γq(β)

s∫
0

(s− qτ)(β−1)f
(
τ, vn−1(τ)

)
dqτ

)1/(p(s)−1)

dqs

−
1∫

0

G(t, qs)g(s) dqs, n = 1, 2, . . . , (14)

one has vn(t)→ u∗(t) as n→∞.

Corollary 3. In Corollary 1, if only requires ρ(s)−g(s) 6≡ 0, s ∈ [0, 1], then problem (13)
has a unique nontrivial solution in Kh,e. In addition, we can also construct an iterative
scheme shown as (14) approximating the unique nontrivial solution u∗(t).
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Corollary 4. If g(t) 6 0, g(0) = 0 and assumptions (H3)–(H5) hold, then problem (13)
has a unique nontrivial positive solution in Kh. In addition, we can make an iterative
scheme shown as (14) approximating the unique nontrivial solution u∗(t).

Remark 8.
(i) From Theorem 1 and Lemma 5 we can see that the unique solution u∗ of prob-

lem (1) is in a special set Kh,e. That is, there exist µ, ν>0 such that u∗∈ [µh−e,
νh+e]. So we say u∗ is a local solution.

(ii) From Theorem 2 and Remark 7 the unique solution u∗ of problem (1) is in
a special set Kh. That is, there exist µ, ν > 0 such that u∗ ∈ [µh, νh], and
thus u∗ is a positive solution.

(iii) For fractional q-difference equations, our main results has not been seen in previ-
ous works. The method used here is relatively new, which cannot only guarantee
the existence of unique solution, but also can approximate to the unique solution
by making an iterative scheme.

4 Examples

Example 1. Consider the following boundary value problem:

D1/2
q

(
ϕ2

(
D5/2
q u(t)− t2

))
+ f

(
t, u(t)

)
= 0, t ∈ (0, 1],

u(0) = (Dqu)(0) = 0, (Dqu)(1)− λ[u] = 1, D5/2
q u(t)|t=0 = 0,

(15)

where, for t ∈ (0, 1],

f(t, u) =

[(
128

512
u+

64
√

2

(538
√

2− 353)Γq(
7
2 )

)(
32−

√
2

8
t3/2 − (4−

√
2)t9/2

)]2/5
.

Let λ[u] = 0, α = 5/2, q = 1/2, p(t) = 2, γ = 1, g(t) = t2, and

e(t) =
64
√

2t3/2

(538
√

2− 353)Γq(
7
2 )

(
16
√

2− 1

4
√

2
− 4
√

2− 2√
2

t3
)
, h(t) = Ht3/2,

for t ∈ (0, 1] with H > ((16
√

2 − 1)/(48
√

2 − 24))1/3. Then we obtain that A = 0,
ζ(s) = 0,

ê = max
{
e(t): t ∈ [0, 1]

}
=

(
127 + 12

√
2

336

)1/3

,

e(t) >
448
√

2t3/2

(4304− 1412
√

2)Γq(
7
2 )

> 0

and

e(t) 6
512

(1076− 353
√

2)Γq(
7
2 )
t3/2 6 Ht3/2 = h(t).
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It is clear that f : [0, 1]× [−(127 + 12
√

2)/336)1/3,+∞)→ [0,+∞) is continuous
and increasing with respect to the second variable,

f(t, 0) =

[
64
√

2

(538
√

2− 353)Γq(
7
2 )

(
32−

√
2

8
t3/2 − (4−

√
2)t9/2

)]2/5
6≡ 0,

f(t, u) =

[(
128

512
u+

64
√

2

(538
√

2− 353)Γq(
7
2 )

)(
32−

√
2

8
t3/2 − (4−

√
2)t9/2

)]2/5
=

[
64
√

2t3/2

(538
√

2− 353)Γq(
7
2 )

(
32−

√
2

8
− (4−

√
2)t3

)

+
128

512
u

(
32−

√
2

8
t3/2 − (4−

√
2)t9/2

)]2/5
=

(
(1076− 353

√
2)Γq(

7
2 )

512
u+ 1

)2/5[
e(t)

]2/5
=

(
(1076− 353

√
2)Γq(

7
2 )

512
ue(t) + e(t)

)2/5

.

Further, for λ ∈ (0, 1), x ∈ R, y ∈ [0, ê], one has

f
(
t, λx+ (λ− 1)y

)
=

(
(1076− 353

√
2)Γq(

7
2 )

512
e(t)

[
λx+ (λ− 1)y

]
+ e(t)

)2/5

= λ2/5
(

(1076− 353
√

2)Γq(
7
2 )

512
e(t)

[
x+

(
1− 1

λ

)
y

]
+
e(t)

λ

)2/5

> λ2/5
(

(1076− 353
√

2)Γq(
7
2 )

512
e(t)x+

(
1− 1

λ

)
e(t) +

e(t)

λ

)2/5

= λ2/5
(

(1076− 353
√

2)Γq(
7
2 )

512
e(t)x+ e(t)

)2/5

= λ2/5f(t, x) = ψ(λ)f(t, x),

here ψ(λ) := λ2/5, λ ∈ (0, 1). Hence, for λ ∈ (0, 1), we have

lnψ(λ) =
2

5
lnλ > (p− 1) lnλ,

we claim that condition (H2) holds. Therefore, Theorem 1 implies that problem (15) has
a unique solution u∗ ∈ Kh,e. For v0 ∈ Kh,e, we construct a sequence

vn(t) =

1∫
0

G(t, qs)ϕ−12

( s∫
0

(s− qτ)(−1/2)
(

128

512
vn−1(τ) +

64
√

2

(538
√

2−353)Γq(
7
2 )

)2/5
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× 1

Γq(
1
2 )

(
32−

√
2

8
τ3/2 − (4−

√
2)τ9/2

)2/5

dqτ

)
dqs+

4−
√

2

2
t3/2

− 64
√

2t3/2

(538
√

2− 353)Γq(
7
2 )

(
16
√

2− 1

4
√

2
− 4
√

2− 2√
2

t3
)
, n = 1, 2, . . . ,

and we have limn→∞ vn(t) = u∗(t), t ∈ [0, 1].

Example 2. Consider the following boundary value problem:

D1/2
q

(
ϕ7/2(D5/2

q u(t) +
√
t)
)

+

[
ln(2 + t)

t

(
u3/2 + sin2 t+ 1

)]2/5
= 0, t ∈ (0, 1],

u(0) = (Dqu)(0) = 0, (Dqu)(1) = 2, D5/2
q u(t)|t=0 = 0,

(16)

where

f(t, u) =

[
ln(2 + t)

t

(
u3/2 + sin2 t+ 1

)]2/5
, t ∈ (0, 1],

and q = β = 1/2, α = 5/2, p(t) = 7/2, γ = 2, λ[u] = 0, g(t) = −
√
t 6 0 with

g(0) = 0, t ∈ (0, 1]. Take h(t) = t3/2, it can be seen that f : R0 × R+ → R+ is con-
tinuous and increasing with respect to u, and f(t, 0) = [(ln(2 + t)/t)(sin2 t+ 1)]2/5 > 0
with f(t, 0) 6≡ 0, then condition (H4) holds. For λ ∈ (0, 1), we get

f(t, λu) =

[
ln(2 + t)

t

(
(λu)3/2 + sin2 t+ 1

)]2/5
>

[
ln(2 + t)

t

(
(λu)3/2 + λ3/2 sin2 t+ λ3/2

)]2/5
= λ3/5

[
ln(2 + t)

t

(
u3/2 + sin2 t+ 1

)]2/5
= ψ(λ)f(t, u)

for all t ∈ [0, 1], u ∈ R+, where ψ(λ) := λ3/5, so lnψ(λ) = 3/5 lnλ > (p − 1) lnλ.
Hence condition (H5) is satisfied. Considering Theorem 2, problem (16) has a unique
positive solution u∗ ∈ Kh. For v0 ∈ Kh, making a sequence

vn(t) =
8 + 2

√
2

7
t3/2 +

t2(8−
√

2− (8− 2
√

2)t)

(17− 6
√

2)Γq(
5
2 )

+
1

Γ
2/5
q ( 1

2 )

1∫
0

G(t, qs)

×

( s∫
0

(s− qτ)(−1/2)
[

ln(2 + τ)

τ

(
v
3/2
n−1(τ) + sin2 τ + 1

)]2/5
dqτ

)2/5

dqs

for n = 1, 2, . . . , we have limn→∞ vn(t) = u∗(t), t ∈ [0, 1].
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