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Abstract. The existence of a unique solution for a third-order boundary value problem with integral
condition is proved in several ways. The main tools in the proofs are the Banach fixed point theorem
and the Rus’s fixed point theorem. To compare the applicability of the obtained results, some
examples are considered.
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1 Introduction

We study boundary value problem consisting of the nonlinear third-order differential
equation

x′′′ + f(t, x) = 0, t ∈ [a, b], (1)

and the integral-type boundary conditions

x(a) = 0, x(b) = 0,

b∫
a

x(ξ) dξ = 0, (2)

where f ∈ C([a, b]× R,R) and f(t, 0) 6= 0 for all t ∈ [a, b].
By a solution of (1), (2) we mean C3[a, b] function that satisfies the problem. The

assumption f(t, 0) 6= 0 excludes the possibility of the trivial solution.
The purpose of the paper is to give and compare results on the existence of a unique

solution to (1), (2) by applying fixed point theorems. Our main results state that if the
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Existence of a unique solution for a third-order BVP with nonlocal conditions 915

function f satisfies the Lipschitz condition, the length of the interval [a, b] is not large,
then the problem has a unique nontrivial solution.

To obtain these results, we first rewrite problem (1), (2) as an equivalent integral
equation by constructing the corresponding Green’s function. Then, we apply the Banach
fixed point theorem on an infinite strip. Next, in order for the result to be applicable to
a wider class of functions, we apply the Banach fixed point theorem within a closed and
bounded set. Finally, we apply the Rus’s fixed point theorem [16] to increase the length
of the interval where the result is valid. To compare the obtained results, we consider
examples.

Investigation of the existence of solutions for boundary value problems is often related
to the construction of corresponding Green’s functions. Thus, Green’s functions play
an important role in the theory of boundary value problems. A survey of results on the
Green’s functions for stationary problems with nonlocal boundary conditions is presented
in [17]. Green’s functions for third-order boundary value problems with different addi-
tional conditions were studied in [15]. Green’s matrix for a system of first-order ordinary
differential equations with nonlocal conditions was considered in [14].

Fixed point theorems are very useful and powerful tools to obtain the existence or
uniqueness of solutions to nonlinear boundary value problems. There is a vast literature
on this subject because boundary value problems appear in almost all branches of physics,
engineering, and technology [4].

Many authors studied the existence of solutions for nonlinear boundary value prob-
lems using different fixed point theorems, for instance, Schauder theorem [19], Krasnosel-
skii theorem [12], Leggett–Williams theorem [13], Guo–Krasnoselskii theorem [11], etc.
Let us mention some recent results. The existence of solutions to a third-order three-
point boundary value problem using the Krasnoselskii and Leggett and Williams fixed
point theorems was studied in [2]. In [10], the authors applied the Guo–Krasnoselskii
fixed point theorem in the study of existence of positive solutions for a second-order
three-point boundary value problem. Generalized Krasnoselskii fixed point theorem was
used in [5] to establish an existence result for a second-order two-point boundary value
problem. In [8], the author has proved the existence of at least three symmetric positive
solutions to a second-order two-point boundary value problem using a generalization
of the Leggett–Williams fixed point theorem. Applying the upper and lower solution
method and the Schauder fixed point theorem, the existence of solutions for a third-
order three-point boundary value problem was proved in [6]. The Krasnoselkii fixed
point theorem together with two fixed point results of Leggett–Williams type was used
in [7] to prove the existence of one or multiple solutions to an nth order two-point
boundary value problem. The existence of at least one solution for a fourth-order three-
point boundary value problem using the Leray–Schauder nonlinear alternative was studied
in [3]. The existence of a unique solution to a third-order three-point boundary value
problem applying the Banach fixed point theorem and fixed point theorem of Maia type
given by Rus [16] was investigated in [1].

Despite this, third-order boundary value problems with integral type boundary condi-
tions are not sufficiently investigated. Note that nonlocal boundary conditions in particu-
lar integral-type boundary conditions often give more precise models. Let us mention
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some results for such types of problems. Sufficient conditions for the existence and
nonexistence of positive solutions were obtained in [9] applying the Guo–Krasnoselskii
fixed point theorem. The existence of solutions applying the method of upper and lower
functions and Leray–Schauder degree theory was obtained in [18]. The existence, non-
existence, and the multiplicity of positive solutions by means of fixed point principle in
a cone was studied in [20].

Since our main tools in this paper are the Banach fixed point theorem and the Rus’s
fixed point theorem, let us state here these theorems for the reader’s convenience.

Theorem 1. (See [19].) Let X be a nonempty set, and let d be a metric on X such that
(X, d) forms a complete metric space. If the mapping T : X → X satisfies

d(Tx, Ty) 6 αd(x, y) for some α ∈ (0, 1) and all x, y ∈ X;

then there is a unique x0 ∈ X such that Tx0 = x0.

Here we state the Rus’s fixed point theorem given in [16].

Theorem 2. (See [16].) Let X be a nonempty set, and let d and ρ be two metrics on X
such that (X, d) forms a complete metric space. If the mapping T : X → X is continuous
with respect to d on X and

(i) there exists c > 0 such that

d(Tx, Ty) 6 cρ(x, y) for all x, y ∈ X;

(ii) there exists α ∈ (0, 1) such that

ρ(Tx, Ty) 6 αρ(x, y) for all x, y ∈ X;

then there is a unique x0 ∈ X such that Tx0 = x0.

The rest of the paper is organized as follows. In Section 2, we construct the Green’s
function employing the variation of parameters formula. Section 3 is devoted to the esti-
mation of an integral that involves the Green’s function. In Section 4, we prove our main
theorems on the existence and uniqueness of a solution to the problem. Also, to illustrate
and compare the results, we consider examples.

2 Construction of the Green’s function

The goal of this section is to rewrite problem (1), (2) as an equivalent integral equation.
So, let us consider the linear equation

x′′′ + h(t) = 0, t ∈ [a, b], (3)

together with boundary conditions (2).
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Proposition 1. If h : [a, b] → R is continuous function, then boundary value problem
(3), (2) has a unique solution

x(t) =

t∫
a

(a− s)2(b− t)(−(b− a)2 + (t− a)(2(b− s) + (b− a)))
2(b− a)3

h(s) ds

+

b∫
t

(b− s)2(t− a)((b− a)2 − (b− t)(2(s− a) + (b− a)))
2(b− a)3

h(s) ds

that we can rewrite as

x(t) =

b∫
a

G(t, s)h(s) ds,

where

G(t, s) =


(a−s)2(b−t)(−(b−a)2+(t−a)(2(b−s)+(b−a)))

2(b−a)3 , a 6 s 6 t 6 b,

(b−s)2(t−a)((b−a)2−(b−t)(2(s−a)+(b−a)))
2(b−a)3 , a 6 t 6 s 6 b.

(4)

Proof. To prove the proposition, we use the variation of parameters formula

x(t) = c1 + c2t+ c3t
2 − 1

2

t∫
a

(s− t)2h(s) ds.

Using boundary conditions (2), we can obtain

c1 =
a(a+ 2b)

2(b− a)2

b∫
a

(s− b)2h(s) ds+ ab

(b− a)3

b∫
a

(s− b)3h(s) ds,

c2 = − 2a+ b

(b− a)2

b∫
a

(s− b)2h(s) ds− b+ a

(b− a)3

b∫
a

(s− b)3h(s) ds,

c3 =
3

2(b− a)2

b∫
a

(s− b)2h(s) ds+ 1

(b− a)3

b∫
a

(s− b)3h(s) ds.

Thus, we get

x(t) =

b∫
a

(a− t)(a+ 2b− 3t)(s− b)2

2(b− a)2
h(s) ds

−
b∫
a

(a− t)(t− b)(s− b)3

(b− a)3
h(s) ds− 1

2

t∫
a

(s− t)2h(s) ds
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=

t∫
a

(a− s)2(b− t)(−(b− a)2 + (t− a)(2(b− s) + (b− a)))
2(b− a)3

h(s) ds

+

b∫
t

(b− s)2(t− a)((b− a)2 − (b− t)(2(s− a) + (b− a)))
2(b− a)3

h(s) ds.

To prove the uniqueness, assume that y(t) is also a solution of (3), (2), that is,

y′′′(t) + h(t) = 0, t ∈ [a, b],

y(a) = 0, y(b) = 0,

b∫
a

y(ξ) dξ = 0.

Let us consider z(t) = y(t)− x(t), t ∈ [a, b]. So, we have

z′′′(t) = y′′′(t)− x′′′(t) = h(t)− h(t) = 0, t ∈ [a, b].

Hence z(t) = c1t
2 + c2t+ c3, where c1, c2, and c3 are constants that we will determine.

We get z(a) = y(a) − x(a) = 0, z(b) = y(b) − x(b) = 0 or c1a2 + c2a + c3 = 0,
c1b

2 + c2b+ c3 = 0. Further,

b∫
a

z(ξ) dξ =

b∫
a

(
y(ξ)− x(ξ)

)
dξ =

b∫
a

y(ξ) dξ −
b∫
a

x(ξ) dξ = 0,

or
b∫
a

(
c1ξ

2 + c2ξ + c3
)
dξ =

c1
3

(
b3 − a3

)
+
c2
2

(
b2 − a2

)
+ c3(b− a) = 0.

We obtain homogeneous system

a2c1 + ac2 + c3 = 0,

b2c1 + bc2 + c3 = 0,

1

3

(
b3 − a3

)
c1 +

1

2

(
b2 − a2

)
c2 + (b− a)c3 = 0

with determinant∣∣∣∣∣∣
a2 a 1
b2 b 1

1
3

(
b3 − a3

)
1
2

(
b2 − a2

)
(b− a)

∣∣∣∣∣∣ = (b− a)4

6
6= 0.

Thus, the homogeneous system has only the trivial solution, and hence z(t) ≡ 0, t ∈
[a, b], or x(t) ≡ y(t), t ∈ [a, b]. The proof is complete.
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Therefore, boundary value problem (1), (2) can be rewritten as an equivalent integral
equation

x(t) =

b∫
a

G(t, s)f
(
s, x(s)

)
ds, t ∈ [a, b], (5)

where the Green’s function G(t, s) is defined by (4). To show that a continuous solution
x of (5) is actually a classical C3[a, b] solution of (1), (2), one can differentiate thrice
equation (5) and verify the continuity.

3 Estimation of the Green’s function

In this section, we prove a useful inequality for integral that involves the Green’s function.

Proposition 2. The Green’s function G(t, s) in (4) satisfies

b∫
a

∣∣G(t, s)∣∣ds 6 5

96
(b− a)3 for all t ∈ [a, b].

Proof. For all t ∈ [a, b], we have
b∫
a

∣∣G(t, s)∣∣ds
=

t∫
a

∣∣G(t, s)∣∣ds+ b∫
t

∣∣G(t, s)∣∣ds
=

t∫
a

∣∣∣∣ (a− s)2(b− t)(−(b− a)2 + (t− a)(2(b− s) + (b− a)))
2(b− a)3

∣∣∣∣ ds
+

b∫
t

∣∣∣∣ (b− s)2(t− a)((b− a)2 − (b− t)(2(s− a) + (b− a)))
2(b− a)3

∣∣∣∣ ds
6

t∫
a

(a− s)2(b− t)((b− a)2 + (t− a)(2(b− s) + (b− a)))
2(b− a)3

ds

+

b∫
t

(b− s)2(t− a)((b− a)2 + (b− t)(2(s− a) + (b− a)))
2(b− a)3

ds

=
(t− a)3(b− t)(5a2 − 10ab+ 2b2 + 6bt− 3t2)

12(b− a)3

+
(t− a)(b− t)3(2a2 − 10ab+ 5b2 + 6at− 3t2)

12(b− a)3

Nonlinear Anal. Model. Control, 26(5):914–927, 2021

https://doi.org/10.15388/namc.2021.26.23932


920 S. Smirnov

6
(t− a)3(b− t)
12(b− a)3

max
a6t6b

(
5a2 − 10ab+ 2b2 + 6bt− 3t2

)
+

(t− a)(b− t)3

12(b− a)3
max
a6t6b

(
2a2 − 10ab+ 5b2 + 6at− 3t2

)
=

(t− a)3(b− t)
12(b− a)3

5(b− a)2 + (t− a)(b− t)3

12(b− a)3
5(b− a)2

=
5

12
· 1

b− a
(
(t− a)3(b− t) + (t− a)(b− t)3

)
6

5

12
· 1

b− a
max
a6t6b

(
(t− a)3(b− t) + (t− a)(b− t)3

)
=

5

96
(b− a)3.

4 Existence of a unique solution

In this section, we prove our main results on the existence of a unique solution for
problem (1), (2) applying fixed point theorems. Then, we compare the obtained results.

So, let X be the set of continuous functions on [a, b], and consider two metrics

d(x, y) = max
a6t6b

∣∣x(t)− y(t)∣∣, x, y ∈ X,

and

ρ(x, y) =

( b∫
a

∣∣x(t)− y(t)∣∣2 dt)1/2

, x, y ∈ X.

The pair (X, d) is a complete metric space and (X, ρ) is a metric space (but not complete).

Application of the Banach fixed point theorem on an infinite strip

Theorem 3. Let f : [a, b] × R → R be continuous and f(t, 0) 6= 0 for all t ∈ [a, b].
Suppose also that f satisfies a uniform Lipschitz condition with respect to x on [a, b]×R,
namely, there is a constant L > 0 such that, for every (t, x), (t, y) ∈ [a, b]× R,∣∣f(t, x)− f(t, y)∣∣ 6 L|x− y|.
If (b− a) satisfies the inequality

5

96
(b− a)3 < 1

L
, (6)

then there exists a unique (nontrivial) solution of (1), (2).

Proof. Since boundary value problem (1), (2) is equivalent to integral equation (5), we
need to prove that the mapping T : X → X defined by

(Tx)(t) =

b∫
a

G
(
t, s)f(s, x(s)

)
ds, t ∈ [a, b],

has a unique fixed point.
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To establish the existence of a unique fixed point for T , we show that the conditions
of Theorem 1 hold. Let x, y ∈ X and consider

∣∣(Tx)(t)− (Ty)(t)
∣∣ 6 b∫

a

∣∣G(t, s)∣∣∣∣f(s, x(s))− f(s, y(s))∣∣ds
6

b∫
a

∣∣G(t, s)∣∣L∣∣x(s)− y(s)∣∣ ds
6 Ld(x, y)

b∫
a

∣∣G(t, s)∣∣ds
6 L

5

96
(b− a)3d(x, y) for t ∈ [a, b]. (7)

Taking the maximum of both sides of inequality (7) over [a, b], we get

d(Tx, Ty) 6 L
5

96
(b− a)3d(x, y) for all x, y ∈ X.

In view of (6), the mapping T satisfies all of the conditions of Theorem 1 and hence has
a unique fixed point, which yields a unique solution to (1), (2).

Example 1. Consider the problem

x′′′ + 1 + t2 +
x2

x2 + 1
= 0, (8)

x(0) = 0, x(1) = 0,

1∫
0

x(ξ) dξ = 0. (9)

Function f(t, x) = 1+t2+x2/(x2+1) is continuous in [0, 1]×R, and f(t, 0) = 1+t2 6= 0
for all t ∈ [0, 1]. Further, for every (t, x), (t, y) ∈ [0, 1]× R, consider

∣∣f(t, x)− f(t, y)∣∣ = ∣∣∣∣ x2

x2 + 1
− y2

y2 + 1

∣∣∣∣ = ∣∣∣∣ (x− y)(x+ y)

(x2 + 1)(y2 + 1)

∣∣∣∣
= |x− y| ·

∣∣∣∣ x

(x2 + 1)(y2 + 1)
+

y

(x2 + 1)(y2 + 1)

∣∣∣∣
6 |x− y| ·

∣∣∣∣ x

x2 + 1
+

y

y2 + 1

∣∣∣∣ 6 |x− y|.
Thus, f satisfies the Lipschitz condition with respect to x on [0, 1]×R with constant L =
1. Moreover, inequality (6) holds since 5/96 < 1. Therefore, by Theorem 3, problem (8),
(9) has a unique nontrivial solution x(t), which together with its antiderivative is depicted
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Figure 1. The unique solution of (8), (9) (solid) with antiderivative (dashed).

in Fig. 1. The initial conditions for this solution are x(0) = 0, x′(0) ≈ −0.1, x′′(0) ≈
0.5666.

Example 2. Consider the same equation from Example 1, but let us change the length of
the interval in the boundary conditions. So, consider the problem for equation (8) with
boundary conditions

x(0) = 0, x(5) = 0,

5∫
0

x(ξ) dξ = 0. (10)

Theorem 3 is not applicable in this case because inequality (6) does not hold.

Example 3. Now let us change the function in the equation from Example 1, but consider
the same length of the interval in the boundary conditions. So, consider the equation

x′′′ − 5 + t2x3 = 0 (11)

with boundary conditions (9). We also cannot use Theorem 3 in this case because the
function f(t, x) = −5 + t2x3 does not satisfy the Lipschitz condition with respect to x
on [0, 1]× R.

In view of the above examples, let us improve Theorem 3 such that the results will be
applicable to a wider range of problems.

Application of the Banach fixed point theorem within a closed and bounded set

Theorem 4. Let f : [a, b]×[−N,N ]→ R be continuous and f(t, 0) 6= 0 for all t ∈ [a, b].
Suppose also that there exists a constant L > 0 such that, for every (t, x), (t, y) ∈ [a, b]×
[−N,N ], ∣∣f(t, x)− f(t, y)∣∣ 6 L|x− y|.

If (5/96)(b − a)3 < 1/L and (5/96)(b − a)3 6 N/M , where M = max |f(t, x)| for
t ∈ [a, b], |x| 6 N , then there exists a unique (nontrivial) solution of (1), (2) such that
|x(t)| 6 N for all t ∈ [a, b].
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Proof. Consider the ball

BN =
{
x ∈ X: d(x, 0) 6 N

}
.

Since BN is a closed subspace of X , the pair (BN , d) forms a complete metric space.
Consider the mapping T : BN → X defined by

(Tx)(t) =

b∫
a

G(t, s)f
(
s, x(s)

)
ds, t ∈ [a, b].

Let us prove that T : BN → BN . For x ∈ BN and t ∈ [a, b], consider

∣∣(Tx)(t)∣∣ 6 b∫
a

∣∣G(t, s)∣∣ · ∣∣f(s, x(s))∣∣ds
6M · 5

96
(b− a)3 6 N.

Thus, d(Tx, 0) 6 N or for all x ∈ BN we have Tx ∈ BN . Therefore, T : BN → BN .
To prove that the mapping T : BN → BN has a unique fixed point, we use similar

arguments to that of the proof of Theorem 3.

Remark 1. Note that Theorem 4 does not exclude the existence of other solutions to the
problem for which the inequality |x(t)| 6 N does not hold for every t ∈ [a, b]. We
illustrate this idea in the next example.

Example 4. Consider problem (11), (9). Choose N = 2. Function f(t, x) = −5 + t2x3

is continuous on Ω = [0, 1] × [−2, 2], and f(t, 0) = −5 6= 0 for all t ∈ [0, 1]. Next, for
every (t, x), (t, y) ∈ Ω consider∣∣f(t, x)− f(t, y)∣∣ = ∣∣t2x3 − t2y3∣∣ = ∣∣t2∣∣ · ∣∣x3 − y3∣∣

6 max
06t61

∣∣t2∣∣ · ∣∣x3 − y3∣∣ = |x− y| · ∣∣x2 + xy + y2
∣∣

6 max
Ω

∣∣x2 + xy + y2
∣∣ · |x− y| = 12 · |x− y|.

So, f satisfies the Lipschitz condition with respect to x on Ω with constant L = 12.
Moreover, 5/96 < 1/L and 5/96 6 N/M , where M = maxΩ |f(t, x)| = maxΩ | − 5+
t2x3| = 13. Therefore, by Theorem 4, problem (11), (9) has a unique nontrivial solution
x(t) such that |x(t)| 6 2 for all t ∈ [0, 1]. This solution together with its antiderivative is
depicted in Fig. 2. The initial conditions for this solution are x(0) = 0, x′(0) ≈ 0.4166,
x′′(0) ≈ −2.5.

There is another solution to the problem with initial conditions x(0) = 0, x′(0) ≈
109.914, x′′(0) ≈ −240.8 for which the inequality |x(t)| 6 2 does not hold for every
t ∈ [0, 1] (see Fig. 3).
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Figure 2. The unique solution of (11), (9) (solid) with antiderivative (dashed) such that |x(t)| 6 2 for all
t ∈ [0, 1].

0.2 0.4 0.6 0.8 1.0
t

-40

-20

20

xHtL

Figure 3. Another solution of (11), (9) (solid) with antiderivative (dashed) for which the inequality |x(t)| 6 2
does not hold for every t ∈ [0, 1].

Application of the Rus’s fixed point theorem on an infinite strip

Theorem 5. Let f : [a, b] × R → R be continuous and f(t, 0) 6= 0 for all t ∈ [a, b].
Suppose also that f satisfies a uniform Lipschitz condition with respect to x on [a, b]×R,
namely, there is a constant L > 0 such that, for every (t, x), (t, y) ∈ [a, b]× R,∣∣f(t, x)− f(t, y)∣∣ 6 L|x− y|.

If (b− a) satisfies the inequality

(b− a)3

30
√
21

<
1

L
, (12)

then there exists a unique (nontrivial) solution of (1), (2).

Proof. Here, we also need to prove that the mapping T : X → X has a unique fixed point.
To establish the existence of a unique fixed point for T , we show that the conditions of

https://www.journals.vu.lt/nonlinear-analysis
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Theorem 2 hold. Let x, y ∈ X and consider

∣∣(Tx)(t)− (Ty)(t)
∣∣ 6 b∫

a

∣∣G(t, s)∣∣ · ∣∣f(s, x(s))− f(s, y(s))∣∣ ds
6 L

b∫
a

∣∣G(t, s)∣∣ · ∣∣x(s)− y(s)∣∣ ds
6 L

( b∫
a

∣∣G(t, s)∣∣2 ds)1/2( b∫
a

∣∣x(s)− y(s)∣∣2 ds)1/2

6 L max
a6t6b

( b∫
a

∣∣G(t, s)∣∣2 ds)1/2

ρ(x, y) for t ∈ [a, b]. (13)

So, defining

c = L max
a6t6b

( b∫
a

∣∣G(t, s)∣∣2 ds)1/2

,

we get d(Tx, Ty) 6 cρ(x, y) for all x, y ∈ X . Thus, (i) from Theorem 2 holds.
In view of

ρ(x, y) =

( b∫
a

∣∣x(t)− y(t)∣∣2 dt)1/2

6 max
a6t6b

∣∣x(t)− y(t)∣∣( b∫
a

dt

)1/2

= (b− a)1/2d(x, y), x, y ∈ X,

we obtain d(Tx, Ty) 6 cρ(x, y) 6 c(b − a)1/2d(x, y) for all x, y ∈ X . Hence, given
any ε > 0, we can choose δ = ε/(c(b− a)1/2) such that d(Tx, Ty) < ε whenever
d(x, y) < δ. Therefore, T is continuous with respect to d on X .

From (13), for each x, y ∈ X , consider( b∫
a

∣∣(Tx)(t)− (Ty)(t)
∣∣2)1/2

6 Lρ(x, y)

( b∫
a

( b∫
a

∣∣G(t, s)∣∣2 ds) dt

)1/2

= Lρ(x, y)
(b− a)3

30
√
21

.

It follows that for all x, y ∈ X ,

ρ(Tx, Ty) 6 αρ(x, y), α = L
(b− a)3

30
√
21

.

In view of (12), α < 1 and (ii) from Theorem 2 holds. Hence T has a unique fixed point,
which yields a unique solution to (1), (2).
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Figure 4. The unique solution of (8), (10) (solid) with antiderivative (dashed).

Example 5. Consider problem (8), (10). As we see in Example 2, Theorem 3 cannot
be used in this case due to inequality (6). But Theorem 5 is applicable here because
inequality (12) holds since 53 < 30

√
21. Therefore, problem (8), (10) has a unique

(nontrivial) solution x(t), which together with its antiderivative is depicted in Fig. 4. The
initial conditions for this solution are x(0) = 0, x′(0) ≈ −14.3781, x′′(0) ≈ 13.068.

5 Conclusions

First, we have proved the existence of a unique solution for a third-order boundary value
problem with integral condition using the Banach fixed point theorem. Then the obtained
result was improved in two directions. Applying the Banach fixed point theorem within
a closed and bounded set, we have generalized the result to a wider class of functions.
Applying the Rus’s fixed point theorem, the length of the interval in which the result is
valid was increased. The larger the length of the interval, the more applicable the result.
As we have seen, the Rus’s fixed point theorem, where space is endowed with two metrics,
gives a much longer interval.

Note that our future research may be concerned with the study of the number of
solutions for the problems of the type (11), (9).
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