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Abstract. In the paper, a joint discrete universality theorem for periodic zeta-functions with
multiplicative coefficients on the approximation of analytic functions by shifts involving the
sequence {γk} of imaginary parts of nontrivial zeros of the Riemann zeta-function is obtained.
For its proof, a weak form of the Montgomery pair correlation conjecture is used. The paper is
a continuation of [A. Laurinčikas, M. Tekorė, Joint universality of periodic zeta-functions with
multiplicative coefficients, Nonlinear Anal. Model. Control, 25(5):860–883, 2020] using nonlinear
shifts for approximation of analytic functions.
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1 Introduction

It is well known that some zeta- and L-functions, and even some classes of Dirichlet
series, for example, the Selberg-Steuding class, see [29, 32], are universal in the Voronin
sense, i.e., a wide class of analytic functions can be approximated by one and the same
zeta-function. For example, in the case of the Riemann zeta-function ζ(s), s = σ + it,
analytic nonvanishing functions on the strip D = {s ∈ C: 1/2 < σ < 1} are approx-
imated by shifts ζ(s + iτ), τ ∈ R (continuous case), or shifts ζ(s + ikh), k ∈ N0 =
N ∪ {0}, h > 0 (discrete case); see [1, 6, 13, 24, 32].

The above shifts are very simple, τ and kh occur in them linearly. It turned out that
the approximation remains valid also with more general shifts. A significant progress in
this direction was made by Pańkowski [31] using the shifts ζ(s+iϕ(τ)) and ζ(s+iϕ(k))
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with ϕ(τ) = τα logβ τ and a wide class of reals α and β. The papers [22] and [35] are also
devoted to approximation of analytic functions by generalized shifts of zeta-functions.
In [5], the shifts ζ(s + ihγk) were applied, where {γk: k ∈ N} = {γk: 0 < γ1 <
· · · 6 γk 6 γk+1 6 · · · } is the sequence of imaginary parts of nontrivial zeros of the
Riemann zeta-function.

Universality in the Voronin sense also has its joint version. In the joint case, a col-
lection of analytic functions is approximated simultaneously by a collection of shifts
of zeta- or L-functions. The first joint universality theorem belongs to Voronin who
proved [36] the joint universality of Dirichlet L-functions L(s, χj), j = 1, . . . , r. Ob-
viously, in joint universality theorems, the approximating shifts must be in some sense
independent. Voronin required [36] for this the pairwise nonequivalence of Dirichlet
characters, i.e., in fact, he considered joint universality of different Dirichlet L-functions.
On the other hand, as it was observed by Pańkowski [31], the independence of approxi-
mating shifts of DirichletL-functions can be ensured by different functions ϕj(τ) in shifts
L(s + iϕj(τ), χj) or L(s + iϕj(k), χj) even with the same characters χj . This obser-
vation extends significantly classes of jointly universal functions. For example, the joint
universality with generalized shifts was obtained in [16] and [20].

In general, joint universality of zeta-functions was widely studied, and many results
are known; see, for example, general results obtained in [7–11,14,26,30] and other papers
by authors of the mentioned works. In this note, we focus on joint universality of so-
called periodic zeta-functions with generalized shifts involving the sequence {γk: k ∈ N}
of imaginary parts of nontrivial zeros of the function ζ(s). We will mention some joint
universality results involving the latter sequence. Note that the behaviour of the sequence
{γk}, as of nontrivial zeros of ζ(s), is very complicated, and at the moment, its known
properties are not sufficient for the proof of universality. Therefore, in [5], the conjecture
that, for c > 0, ∑

γk,γl6T
|γk−γl|<c/ log T

1� T log T (1)

was introduced. This conjecture is inspired by the Montgomery pair correlation conjec-
ture [28] that ∑

γk,γl6T
2πα1/ log T6γk−γl62πα2/ log T

1 ∼

( α2∫
α1

(
1−

(
sinπu

πu

)2)
du+ δ(α1, α2)

)
T

2π
log T,

where α1 < α2 are arbitrary real numbers, and

δ(α1, α2) =

{
1 if 0 ∈ [α1, α2],

0 otherwise.

Now we will state a joint universality theorem for Dirichlet L-functions involving the
sequence {γk} obtained in [18]. Denote by K the class of compact subsets of the strip D
with connected complements, and by H0(K) with K ∈ K the class of continuous nonva-
nishing functions on K that are analytic in the interior of K.
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Theorem 1. Suppose that χ1, . . . , χr are pairwise nonequivalent Dirichlet characters,
and estimate (1) is true. For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for
every ε > 0 and h > 0,

lim inf
N→∞

1

N
#
{

1 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣L(s+ ihγk, χj)− fj(s)
∣∣ < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Here #A denotes the cardinality of the set A, and N runs over the set N.
Now we recall the definition of the periodic zeta-function, which is an object of in-

vestigation of the present note. Let a = {am: m ∈ N} be a periodic sequence of complex
numbers with minimal period q ∈ N. Then the periodic zeta-function ζ(s; a) is defined,
for σ > 1, by the Dirichlet series

ζ(s; a) =

∞∑
m=1

am
ms

and has an analytic continuation to the whole complex plane, except for a simple pole at
the point s = 1 with residue

1

q

q∑
l=1

al.

The sequence a is called multiplicative if a1 = 1 and amn = aman for all coprimes
m,n ∈ N. If 0 < α 6 1 is a fixed number, then the function

ζ(s, α; a) =

∞∑
m=0

am
(m+ α)s

, σ > 1,

and its meromorphic continuation are called the periodic Hurwitz zeta-function. In [15]
and [3], under hypothesis (1), joint universality theorems involving sequence {γk} for
the pair consisting from the Riemann and Hurwitz zeta-functions and their periodic ana-
logues, respectively, were obtained, while in [23], such theorems were proved for Hurwitz
zeta-functions.

For j = 1, . . . , r, let aj = {ajm: m ∈ N} be a periodic sequences of complex
numbers with minimal period qj ∈ N, and let ζ(s; aj) be the corresponding zeta-function.
The main result of the paper is the following theorem.

Theorem 2. Suppose that the sequences a1, . . . , ar are multiplicative, h1, . . . , hr are
positive algebraic numbers linearly independent over the field of rational numbers, and
estimate (1) is true. For j = 1, . . . , r, let Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every
ε > 0,

lim inf
N→∞

1

N
#
{

1 6 k 6 N : sup
16j6r

sup
s∈Kj

∣∣ζ(s+ ihjγk; aj)− fj(s)
∣∣ < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

In [21], joint continuous universality theorems for periodic zeta-functions with shifts
defined by means of certain differentiable functions were obtained.
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2 The sequence {γk}

From the functional equation for the Riemann zeta-function

π−s/2Γ

(
s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s)

it follows that ζ(−2m) = 0 for all m ∈ N, and the zeros s = −2m of ζ(s) are called
trivial. Moreover, it is known that ζ(s) has infinitely many of so-called complex nontrivial
zeros ρk = βk + iγk lying in the strip {s ∈ C: 0 < σ < 1}. The famous Riemann
hypothesis, one of seven Millennium problems, asserts that βk = 1/2, i.e., all nontrivial
zeros lie on the critical line σ = 1/2. There exists a conjecture that all nontrivial zeros of
ζ(s) are simple.

We recall some properties of the sequence

{γk: k ∈ N} = {γk: 0 < γ1 < · · · 6 γk 6 γk+1 6 · · · }.

By the definition, a sequence {xk: k ∈ N} ⊂ R is called uniformly distributed modulo 1,
if, for every subinterval (a, b] ⊂ (0, 1],

lim
n→∞

1

n

n∑
k=1

I(a,b]
(
{xk}

)
= b− a,

where I(a,b] is the indicator function of (a, b], and {u} denotes the fractional part of u ∈ R.
Though the sequence {γk} is distributed irregularly, the following statement is true for it.

Lemma 1. The sequence {γka: k ∈ N} with every a ∈ R \ {0} is uniformly distributed
modulo 1.

Proof. Proof of the lemma is given in [33], and in the above form, was applied in [5].

For convenience, we recall the Weyl criterion on the uniform distribution modulo 1;
see, for example, [12].

Lemma 2. A sequence {xk: k ∈ N} ⊂ R is uniformly distributed modulo 1 if and only
if, for every m ∈ Z \ {0},

lim
n→∞

1

n

n∑
k=1

e2πimxk = 0.

Obviously, the uniform distribution modulo 1 of the sequence shows its nonlinear
character.

The following statement is well known; see, for example, [34].

Lemma 3. For k →∞,

γk =
2πk

log k

(
1 + o(1)

)
.
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3 Limit theorems

Denote by H(D) the space of analytic functions on D endowed with the topology of
uniform convergence on compacta. We will derive Theorem 2 from a limit theorem on
the weak convergence of probability measures in the space

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

Therefore, we start with a certain probability model.
Let B(X) be the Borel σ-field of the space X, and P denote the set of all prime

numbers. Define
Ω =

∏
p∈P

Xp,

where Xp = {s ∈ C: |s| = 1} for all p ∈ P. Then Ω is a compact topological Abelian
group. Moreover, let

Ωr = Ω1 × · · · ×Ωr,
where Ωj = Ω for j = 1, . . . , r. Then again Ωr is a compact topological Abelian group.
Therefore, on (Ωr,B(Ωr)), the probability Haar measure mr

H can be defined. This gives
the probability space (Ωr,B(Ωr),mr

H). Denote by ω(p) the pth component, p ∈ P, of
an element ωj ∈ Ωj , j = 1, . . . , r. For brevity, let ω = (ω1, . . . , ωr) ∈ Ωr, ω1 ∈
Ω1, . . . , ωr ∈ Ωr, a = (a1, . . . , ar), and on the probability space (Ωr,B(Ωr),mr

H),
define the Hr(D)-valued random element

ζ(s, ω; a) =
(
ζ(s, ω1; a1), . . . , ζ(s, ωr; ar)

)
,

where

ζ(s, ωj ; aj) =
∏
p∈P

(
1 +

∞∑
l=1

ajplω
l
j(p)

pls

)
, j = 1, . . . , r.

Note that the latter products, for almost all ωj , are uniformly convergent on compact
subsets of the strip D. Since the periodic sequences aj , j = 1, . . . , r, are bounded, the
proofs of the above assertions completely coincides with those of Lemma 5.1.6 and The-
orem 5.1.7 from [13]. More general results are given in [1]. Denote by Pζ the distribution
of the random element ζ(s, ω; a), i.e.,

Pζ(A) = mr
H

{
ω ∈ Ωr: ζ(s, ω; a) ∈ A

}
, A ∈ B

(
Hr(D)

)
.

Put h = (h1, . . . , hr), and, for A ∈ B(Hr(D)), define

PN (A) =
1

N
#
(
1 6 k 6 N : ζ(s+ ihγk; a) ∈ A

)
,

where
ζ(s; a) =

(
ζ(s; a1), . . . , ζ(s; ar)

)
.

In this section, we will prove the following limit theorem.
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Theorem 3. Suppose that the sequences a1, . . . , ar are multiplicative, h1, . . . , hr are
positive algebraic numbers linearly independent over Q, and estimate (1) is valid. Then
PN converges weakly to Pζ as N →∞.

We start the proof of Theorem 3, as usual, with a limit lemma in the space Ωr. In this
lemma, the uniform distribution modulo 1 of the sequence {γka}, a ∈ R \ {0}, and the
property of the numbers h1, . . . , hr essentially are applied.

For A ∈ B(Ωr), define

QN (A) =
1

N
#
{

1 6 k 6 N :
((
p−ih1γk : p ∈ P

)
, . . . ,

(
p−ihrγk : p ∈ P

))
∈ A

}
.

Before the statement of a limit theorem for QN , we recall one result of Diophantine
type.

Lemma 4. Suppose that λ1, . . . , λr ∈ C are algebraic numbers such that the logarithms
log λ1, . . . , log λr are linearly independent over Q. Then, for any algebraic numbers
β0, . . . , βr, not all zero, we have

|β0 + β1 log λ1 + · · ·+ βr log λr| > H−C ,

where H is the maximum of the heights of β0, β1, . . . , βr, and C is an effectively com-
putable number depending on r and the maximum of the degrees of β0, β1, . . . , βr.

The lemma is the well-known Baker theorem on logarithm forms; see, for example [2].

Lemma 5. Suppose that h1, . . . , hr are real algebraic numbers linearly independent
over Q. Then QN converges weakly to the Haar measure mr

H as N →∞.

Proof. As usual, we apply the Fourier transform method. The characters of the group Ωr

are of the form
r∏
j=1

∏∗

p∈P
ω
kjp
j (p),

where the star “∗” shows that only a finite number of integers kjp are distinct from zero.
Therefore, the Fourier transform of QN is

gN (k1, . . . , kr) =

∫
Ωr

(
r∏
j=1

∏
p∈P

∗
ω
kjp
j (p)

)
dQN ,

where kj = (kjp: kjp ∈ Z, p ∈ P), j = 1, . . . , r. Thus, by the definition of QN ,

gN (k1, . . . , kr) =
1

N

N∑
k=1

r∏
j=1

∏
p∈P

∗
p−ihjkjpγk

=
1

N

N∑
k=1

exp

{
−iγk

r∑
j=1

hj
∑
p∈P

∗
kjp log p

}
. (2)
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Obviously,
gN (0, . . . , 0) = 1. (3)

Now, suppose that k 6= (0, . . . , 0). Then there exists j ∈ {1, . . . , r} such that kj 6= 0.
Thus, there exists a prime number p such that kjp 6= 0. Define

ap =

r∑
j=1

hjkjp.

Then, in view of a property of the numbers h1, . . . , hr, we have ap 6= 0. The numbers ap
are algebraic, and the set {log p: p ∈ P} is linearly independent over Q. Therefore, by
Lemma 4,

ak1,...,kr
def
=

r∑
j=1

hj
∑
p∈P

∗
kjp log p =

∑
p∈P

∗
ap log p 6= 0.

Hence, in virtue of Lemma 1, the sequence{
1

2π
γkak1,...,kr : k ∈ N

}
is uniformly distributed modulo 1. This, together with (2) and Lemma 2, shows that, in
the case (k1, . . . , kr) 6= (0, . . . , 0),

lim
N→∞

gN (k1, . . . , kr) = 0.

Thus, in view of (3),

lim
N→∞

gN (k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),

0 if (k1, . . . , kr) 6= (0, . . . , 0),

and the lemma is proved because the right-hand side of the latter equality is the Fourier
transform of the Haar measure mr

H .

Lemma 5 implies a limit lemma in the spaceHr(D) for absolutely convergent Dirich-
let series. Let, for a fixed θ > 1/2,

vn(m) = exp

{
−
(
m

n

)θ}
, m, n ∈ N,

and

ζn(s; aj) =

∞∑
m=1

ajmvn(m)

ms
, j = 1, . . . , r.

Then the latter series are absolutely convergent for σ > 1/2. Actually, since vn(m) �
m−L/n

θ

with every L > 0, the latter series are absolutely convergent even in the whole
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complex plane. For B(Hr(D)), define

VN,n(A) =
1

N
#
{

1 6 k 6 N : ζ
n
(s+ ihγk; a) ∈ A

}
,

where
ζ
n
(s; a) =

(
ζn(s; a1), . . . , ζn(s; ar)

)
.

Moreover, let

ζn(s, ωj ; aj) =

∞∑
m=1

ajmωj(m)vn(m)

ms
, j = 1, . . . , r,

ζ
n
(s, ω; a) =

(
ζn(s, ω1; a1), . . . , ζn(s, ωr; ar)

)
,

and let un : Ωr → Hr(D) be given by the formula

un(ω) = ζ
n
(s, ω; a).

Lemma 6. Suppose that h1, . . . , hr are real algebraic numbers linearly independent
over Q. Then VN,n, as N →∞, converges weakly to a measure Vn =def mr

Hu
−1
n , where

mr
Hu
−1
n (A) = mr

H

(
u−1n A

)
, A ∈ B

(
Hr(D)

)
.

Proof. Since the series for ζn(s, ωj ; aj) are absolutely convergent for σ > 1/2, the
function un is continuous, hence (B(Ωr),B(Hr(D)))-measurable. Therefore, the mea-
sure Vn is defined correctly. The definitions of QN , VN,n and un imply the equality
VN,n = QNu

−1
n . Therefore, the lemma follows from Lemma 5 and a preservation of

weak convergence under continuous mappings; see [4, Thm. 5.1].

The limit measure Vn in Lemma 6 is independent on h and {γk} and has a good
convergence property, which is the next lemma.

Lemma 7. Suppose that the sequences a1, . . . , ar are multiplicative. Then Vn converges
weakly to Pζ as n→∞.

Proof. In [17], the weak convergence for

P̂T (A) =
1

T
meas

{
τ ∈ [0, T ]: ζ(s+ iτ ; a) ∈ A

}
, A ∈ B

(
Hr(D)

)
,

was considered, and it was obtained its weak convergence to Pζ as T → ∞, and that Vn
also converges weakly to Pζ as n → ∞. In other words, Vn and P̂T have the same limit
measure Pζ .

In view of Lemma 7, to prove Theorem 3, it suffices to show that PN , as N → ∞,
and Vn, as n→∞, have a common limit measure. For this, a certain closeness of ζ(s; a)
and ζ

n
(s; a) is needed.

There exists a sequence {Kl: l ∈ N} ⊂ D of compact subsets such that

D =

∞⋃
l=1

Kl,

Nonlinear Anal. Model. Control, 26(3):550–564
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Kl ⊂ Kl+1, for all l ∈ N, and ifK ⊂ D is a compact set, thenK ⊂ Kl for some l. Then,
putting, for g1, g2 ∈ H(D),

ρ(g1, g2) =

∞∑
l=1

2−l
sups∈Kl |g1(s)− g2(s)|

1 + sups∈Kl |g1(s)− g2(s)|
,

we have a metric in H(D) inducing its topology of uniform convergence on compacta.
Hence,

ρ(g
1
, g

2
) = max

16j6r
ρ(g1j , g2j),

g
1

= (g11, . . . , g1r), g2 = (g21, . . . , g2r) ∈ Hr(D),

is a metric in Hr(D) inducing its product topology. Note that, in the proof of the next
lemma, the multiplicativity of the sequences aj , j = 1, . . . , r, is not used.

Lemma 8. Suppose that estimate (1) is true. Then, for every positive h1, . . . , hr and
a1, . . . , ar,

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

ρ
(
ζ(s+ ihγk; a), ζ

n
(s+ ihγk; a)

)
= 0. (4)

Proof. By the definitions of the metrics ρ and ρ, it is sufficient to show that, for every
compact set K ⊂ D,

lim
n→∞

lim sup
N→∞

1

N

N∑
k=1

sup
s∈K

∣∣ζ(s+ ihjγk; aj)− ζn(s+ ihjγk; aj)
∣∣ = 0, (5)

j = 1, . . . , r. The equality of type (5) was already used in [3], therefore, only for fullness,
we give remarks on its proof.

Thus, let h > 0 and a be arbitrary. We consider ζ(s + ihγk; a) and ζn(s + ihγk; a).
Let θ be as in the definition of vn(m). Then the representation

ζn(s; a) =
1

2πi

θ+i∞∫
θ−i∞

ζ(s+ z; a)ln(z)
dz

z
,

where

ln(z) =
z

θ
Γ

(
z

θ

)
nz,

is valid. Hence, for θ1 < 0,

ζn(s; a)− ζ(s; a) =
1

2πi

−θ1+i∞∫
−θ1−i∞

ζ(s+ z; a)ln(z)
dz

z
+Rn(s; a), (6)

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Joint universality of periodic zeta-functions with multiplicative coefficients. II 559

where

Rn(s; a) =
aln(1− s)

1− s
,

and a is the residue of ζ(s; a) at the point s = 1. Let K ⊂ D be an arbitrary compact
set, and ε > 0 be such that 1/2 + 2ε 6 σ 6 1 − ε for s ∈ K. Then, in view of (6), for
s = σ + iv ∈ K,

∣∣ζn(s; a)− ζ(s; a)
∣∣� ∞∫

−∞

∣∣ζ(s− θ1 + it; a)
∣∣ |ln(−θ1 + it)|
| − θ1 + it|

dt+
∣∣Rn(s; a)

∣∣.
Hence, taking t in place of t+ v and θ1 = σ − ε− 1/2, we have

1

N

N∑
k=1

sup
s∈K

∣∣ζ(s+ ihγk; a)− ζn(s+ ihγk; a)
∣∣� I + Z, (7)

where

I =

∞∫
−∞

(
1

N

N∑
k=1

∣∣∣∣ζ(1

2
+ ε+ ihγk + it; a

)∣∣∣∣) sup
s∈K

∣∣∣∣ ln(1/2 + ε− s+ it)

1/2 + ε− s+ it

∣∣∣∣dt
and

Z =
1

N

N∑
k=1

sup
s∈K

∣∣Rn(s+ ihγk; a)
∣∣.

Estimate (1) is applied for estimation of the first factor of the integrated function in the
integral I . It is well known that, for τ ∈ R,

T∫
0

∣∣∣∣ζ(1

2
+ ε+ iτ + it; a

)∣∣∣∣2 dt�ε T
(
1 + |τ |

)
. (8)

The same estimate is also true for the derivative of ζ(s; a). Let δ = ch(log γN )−1 and

Nδ(hγk) =
∑

γk,γl6γN
|γl−γk|<δ

1.

Then, in view of (1) and Lemma 3,

N∑
k=1

Nδ(hγk) =
∑∑
γk,γl6γN

|γk−γl|<c(log γN )−1

1� γN log γN � N.
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This, (6) and an application of the Gallagher lemma connecting discrete and continuous
mean squares for some function, see Lemma 1.4 of [27], give

N∑
k=1

∣∣∣∣ζ(1

2
+ ε+ ihγk + it; a

)∣∣∣∣
6

(
N∑
k=1

Nδ(hγk)

N∑
k=1

N−1δ (hγk)

∣∣∣∣ζ(1

2
+ ε+ ihγk + it; a

)∣∣∣∣2
)1/2

� N1/2

(
1

δ

hγN∫
hγ1

∣∣∣∣ζ(1

2
+ ε+ iτ + it; a

)∣∣∣∣2 dτ

+

( hγN∫
hγ1

∣∣∣∣ζ(1

2
+ ε+ iτ + it; a

)∣∣∣∣2 dτ

hγN∫
hγ1

∣∣∣∣ζ ′(1

2
+ ε+ iτ + it; a

)∣∣∣∣2dτ

)1/2)1/2

�ε,h N
(
1 + |t|

)
.

Therefore, the classical estimate for the gamma-function and the definition of ln(s) show
that

I �ε,h,K n−ε and Z �h,K n1/2−2ε
logN

N
.

This, together with (7), proves (5), thus (4).

Proof of Theorem 3. We will use the random element language. Denote by Xn = Xn(s)
the Hr(D)-valued random element having the distribution Vn, where Vn is the limit
measure in Lemma 6. Then, by Lemma 7,

Xn
D−→

n→∞
Pζ , (9)

where D→ means the convergence in distribution. Now, let the random variable ηN be
defined on a certain probability space with a measure µ, and

µ{ηN = γk} =
1

N
, k = 1, . . . , N.

Define the Hr(D)-valued random element

XN,n = XN,n(s) = ζ
n
(s+ ihηN ; a).

Then, in virtue of Lemma 7,
XN,n

D−→
N→∞

Xn. (10)

Let
Y N = Y N (s) = ζ(s+ ihηN ; a).
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Then Lemma 8 implies that, for every ε > 0,

lim
n→∞

lim sup
N→∞

µ
{
ρ
(
Y n(s), XN,n(s)

)
> ε
}

6 lim
n→∞

lim sup
N→∞

1

Nε

N∑
k=1

ρ
(
ζ(s+ ihγk; a), ζ

n
(s+ ihγk; a)

)
= 0.

Therefore, this, (9), (10) and Theorem 4.2 of [4] show that Y N
D→

N→∞
Pζ , and the theorem

is proved.

4 Proof of Theorem 2

We start with the explicit form of the support of the measure Pζ . Recall that the support
of a probability measure P is a minimal closed set SP such that P (SP ) = 1.

Let S = {g ∈ H(D): g(s) 6= 0 or g(s) ≡ 0}.

Lemma 9. The support of the measure Pζ is the set Sr.

Proof. The space Hr(D) is separable. Therefore [4],

B
(
Hr(D)

)
= B

(
H(D)

)
× · · · × B

(
H(D)

)︸ ︷︷ ︸
r

.

From this it follows that it suffices to consider the measure Pζ on the rectangular sets

A = A1 × · · · ×Ar, A1, . . . , Ar ∈ B(H(D)).

Denote by mjH the Haar measure on Ωj , j = 1, . . . , r. Then the Haar measure mr
H is

the product of the measures m1H , . . . ,mrH . These remarks imply the equality

Pζ(A) = mr
H

{
ω ∈ Ωr: ζ(s, ω; a) ∈ A

}
= m1H

{
ω1 ∈ Ω1: ζ(s, ω1; a1) ∈ A1

}
· · · mrH

{
ωr ∈ Ωr: ζ(s, ωr; ar) ∈ Ar

}
. (11)

It is known [19] that the support of

Pζ
j
(Aj) = mjH

{
ωj ∈ Ωj : ζ(s, ωj ; aj) ∈ Aj

}
, j = 1, . . . r,

is the set S. Therefore, (11) and the minimality of the support prove the lemma.

Proof of Theorem 2. The theorem is corollary of Theorem 3, the Mergelyan theorem on
the approximation of analytic functions by polynomials [25], and Lemma 9, and it is
standard. By the Mergelyan theorem, there exist polynomials p1(s), . . . , pr(s) such that

sup
16j6r

sup
s∈Kj

∣∣fj(s)− epj(s)
∣∣ < ε

2
. (12)
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In view of Lemma 9, the set

Gε =

{
(g1, . . . , gr) ∈ Hr(D): sup

16j6r
sup
s∈Kj

∣∣gj(s)− epj(s)
∣∣ < ε

2

}
is an open neighbourhood of an element of the support of the measure Pζ . Hence,

Pζ(Gε) > 0. (13)

Therefore, by Theorem 3 and the equivalent of weak convergence of probability measures
in terms of open sets,

lim inf
N→∞

PN (Gε) > Pζ(Gε) > 0.

This, the definitions of PN and Gε, together with inequality (12), prove the first part of
the theorem.

For the proof of the second part of the theorem, we define one more set

Ĝε =
{

(g1, . . . , gr) ∈ Hr(D): sup
16j6r

sup
s∈Kj

∣∣gj(s)− fj(s)∣∣ < ε
}
.

Then Ĝε is a continuity set of the measure Pζ for all but at most countably many ε > 0,
moreover, in view of (12), the inclusion Gε ⊂ Ĝε is valid. Therefore, Theorem 3, the
equivalent of weak convergence of probability measures in terms of continuity sets and
(13) lead the inequality

lim
N→∞

PN (Ĝε) = Pζ(Ĝε) > 0

for all but at most countably many ε > 0. This, the definitions of PN and Ĝε prove the
second part of the theorem.
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