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Abstract. In this paper, we discuss the asymptotically periodic problem for the abstract fractional
evolution equation under order conditions and growth conditions. Without assuming the existence
of upper and lower solutions, some new results on the existence of the positive S-asymptotically
ω-periodic mild solutions are obtained by using monotone iterative method and fixed point theorem.
It is worth noting that Lipschitz condition is no longer needed, which makes our results more widely
applicable.
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1 Introduction

Let (E, ‖·‖) be an ordered Banach space, whose positive cone K := {x ∈ E: x > θ}
is a normal cone with normal constant N , θ is the zero element of E. In this paper,
we discuss the positive S-asymptotically ω-periodic mild solutions for the following
fractional evolution equation:

cDq
tu(t) +Au(t) = F

(
t, u(t)

)
, t > 0,

u(0) = u0,
(1)
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S-asymptotically periodic solutions of the fractional evolution equations 929

where cDq
t is a Caputo fractional derivative of the order q ∈ (0, 1) with the lower limits

zero, A : D(A) ⊂ E → E is a closed linear (not necessarily bounded) operator, and −A
generates a C0-semigroup T (t) (t > 0) in E, F : R+ × E → E is a given continuous
function, which will be specified later.

In the past decades, in view of the wide practical background and application prospects
of fractional calculus in physics, chemistry, engineering, biology, financial sciences, and
other applied disciplines, numerous scholars pay more attention to fractional differen-
tial equations and have found that in many practical applications, fractional differential
equations can more truthfully describe the process and phenomena of things’ motion
development than integer differential equations (see [1, 30, 40] and references therein).
Since fractional evolution equations are abstract models from many practical applications,
the study for fractional evolution equations has attracted more and more attention of
mathematicians (see [6, 12, 17, 37, 38, 41] and references therein).

Recently, the periodicity problems or asymptotic periodicity problems have extensive
physical background and realistic mathematical model, hence, it has been considerably
developed and many properties of its solutions have been studied (see [3, 11, 13, 14, 18,
20, 21, 23–25, 31, 36, 39] and references therein). On the other hand, because fractional
derivative has genetic or memory properties, the solutions of periodic boundary value
problems for fractional differential equations cannot be extended periodically to time t
in R+. Specially, the nonexistence of nontrivial periodic solutions of fractional evolution
equations had been shown in [32]. In 2008, Henríquez et al. [15] formally introduced
the concept of S-asymptotically ω-periodic function, which is a more general approx-
imate period function. Since then, the S-asymptotically periodic functions have been
widely studied in fractional evolution equations, and the existence and uniqueness of
S-asymptotically ω-periodic solutions have been well studied (see [3, 9, 10, 19, 29, 32, 33,
35]). It is not difficult to find that in most of the above work, the Lipschitz-type condi-
tions for nonlinear functions are necessary. In fact, for equations arising in complicated
reaction–diffusion processes, the nonlinear function represents the source of material or
population, which depends on time in diversified manners in many contexts.

It is well known that in many practice models, such as heat conduction equations,
neutron transport equations, reaction diffusion equations, etc., only positive solutions are
significant. But as far as we know, only a few scholars are concerned about the existence
of positive solutions for fractional evolution equations on infinite interval (see [7, 8, 35]).
In [7, 8], by means of the monotone iterative method Chen presented the existence and
uniqueness of the positive mild solutions for the abstract fractional evolution equations
under certain initial conditions. In [35], Shu studied a class of semilinear neutral fractional
evolution equations with delay and obtained the existence and uniqueness of the positive
S-asymptotically ω-periodic mild solutions by using contraction mapping principle in
positive cone.

Inspired by the above literature, we will use a completely different method to improve
and extend the results mentioned above, which will make up the research in this area
blank. In Section 3, we investigate the positive S-asymptotically ω-periodic mild solu-
tions for problem (1) under order conditions and growth conditions. Without assuming
the existence of upper and lower solutions, some new results on the existence of the
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positive S-asymptotically ω-periodic mild solution are obtained by using monotone itera-
tive method and fixed point theorem. It is worth noting that we no longer require nonlinear
functions to satisfy Lipschitz condition, which makes our results more widely applicable.
Thus, our conclusions are new in some respects. In Section 2, some notions, definitions,
and preliminary facts are introduced, and at last, an example of time-fractional partial
differential equation is given to illustrate the application of our results.

2 Preliminaries

In this paper, we always assume that (E, ‖·‖) is an ordered Banach space, whose positive
cone K = {u ∈ E: u > θ} is a normal cone with normal constant N , θ is the zero
element of E.

Let h : R+ → R+ be a continuous and nondecreasing function such that h(t) > 1 for
all t ∈ R+ and limt→∞ h(t) =∞. Thus, we can define a Banach space

Ch(E) =

{
u ∈ C

(
R+, E

)
: lim
t→∞

‖u(t)‖
h(t)

= 0

}
with the norm ‖u‖h = supt>0 ‖u(t)‖/h(t). For the Banach space Ch(E), we have the
following result.

Lemma 1. (See [16].) A set B ⊂ Ch(E) is relatively compact in Ch(E) if and only if

(i) B is equicontinuous;
(ii) limt→∞ ‖u(t)‖/h(t) = 0 uniformly for u ∈ B;

(iii) The set B(t) = {u(t): u ∈ B} is relatively compact in E for every t > 0.

Next, we introduce a standard definition of S-asymptotically ω-periodic function. Let
Cb(R+, E) denote the Banach space of bounded and continuous functions from R+ to E
with the norm ‖u‖C = supt∈R+ ‖u(t)‖.
Definition 1. (See [15].) A function u ∈ Cb(R+, E) is called S-asymptotically ω-peri-
odic if there exists ω > 0 such that limt→∞ ‖u(t+ ω)− u(t)‖ = 0. Thus, ω is called an
asymptotic period of u.

Let SAPω(E) be the subspace of Cb(R+, E) consisting of all the E-valued S-as-
ymptotically ω-periodic functions equipped with norm ‖·‖C . Then SAPω(E) is a Banach
space [15].

Define a positive cone Kh ⊂ Ch(E) by

Kh =
{
u ∈ Ch(E): u(t) > θ ∀t > 0

}
.

Thus, Ch(E) is an ordered Banach space, whose partial order relation “6” is induced by
the cone Kh.

Let A : D(A) ⊂ E → E be a closed linear operator and −A generate a positive
C0-semigroup T (t) (t > 0) in E. For a general C0-semigroup T (t) (t > 0), there exist
M > 1 and ν ∈ R such that (see [28])∥∥T (t)

∥∥ 6Meνt, t > 0.
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Specially, C0-semigroup T (t)(t > 0) is called to be uniformly bounded if∥∥T (t)
∥∥ 6M, t > 0.

The growth exponent of T (t) (t > 0) is defined by

ν0 = inf
{
ν ∈ R

∣∣ ∃M > 1:
∥∥T (t)

∥∥ 6Meνt ∀t > 0
}
.

If ν0 < 0, then T (t) (t > 0) is said to be exponentially stable. Clearly, the exponentially
stable C0-semigroup T (t) (t > 0) is uniformly bounded. If C0-semigroup T (t) is contin-
uous in the uniform operator topology for every t > 0 in E, it is well known that ν0 can
also be determined by σ(A) (the resolvent set of A)

ν0 = − inf{Reλ: λ ∈ σ(A)},

where −A is the infinitesimal generator of C0-semigroup T (t) (t > 0). We know that
T (t) (t > 0) is continuous in the uniform operator topology for t > 0 if T (t) (t > 0)
is a compact semigroup. For more details about positive C0-semigroups and compact
semigroups, we can refer to [5, 22, 27, 34].

For the definition of Caputo fractional derivation, we can refer to many references
(see [6, 37] and so on), so we will not repeat it here. Next, we define operator families
U(t) (t > 0) and V (t) (t > 0) in E as following:

U(t) =

∞∫
0

ξq(s)T
(
tqs
)

ds, V (t) = q

∞∫
0

sξq(s)T
(
tqs
)

ds, (2)

where

ξq(s) =
1

πq

∞∑
n=1

(−s)n−1 Γ(nq + 1)

n!
sin(nπq), s ∈ (0,∞)

is a probability density function satisfying

ξq(s) > 0, s ∈ (0,∞),

∞∫
0

ξq(s) ds = 1,

∞∫
0

sξq(s) ds =
1

Γ(1 + q)
.

(3)

Lemma 2. The operator families U(t) (t > 0) and V (t) (t > 0) defined by (2) have the
following properties:

(i) U(t) (t > 0) and V (t) (t > 0) are strongly continuous operators, i.e., for any
x ∈ E and 0 6 t1 6 t2,∥∥U(t2)x− U(t1)x

∥∥→ 0,
∥∥V (t2)x− V (t1)x

∥∥→ 0 as t2 − t1 → 0. (4)
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(ii) If T (t) (t > 0) is uniformly bounded , then U(t) and V (t) are linear bounded
operators for any fixed t ∈ R+, i.e.,∥∥U(t)x

∥∥ 6M‖x‖,
∥∥V (t)x

∥∥ 6
M

Γ(q)
‖x‖ ∀ x ∈ E. (5)

(iii) If T (t) (t > 0) is compact, then U(t) and V (t) are compact operators for every
t > 0.

(iv) If T (t) (t > 0) is equicontinuous, then U(t) and V (t) are uniformly continuous
for t > 0.

(v) If T (t) (t > 0) is positive, then U(t) and V (t) are positive operators.
(vi) If T (t) (t > 0) is exponentially stable with the growth exponent ν0 < 0, then∥∥U(t)

∥∥ 6MEq
(
ν0t

q
)
,

∥∥V (t)
∥∥ 6MEq,q

(
ν0t

q
)

(6)

for every t > 0, where Eq(·) and Eq,q(·) are the Mittag-Leffler functions.

Remark. The proof of statements (i)–(v) can be found in [6, 12, 37, 41], while the last
one was proved in [4].

Definition 2. A function u : [0,∞) → E is said to be a mild solution of problem (1) if
u ∈ C([0,∞), E) and satisfies

u(t) = U(t)u(0) +

t∫
0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds

for all t > 0. Moreover, if u(t) > θ for all t > 0, then it is said to be a positive mild
solution of problem (1).

In the proof, we also need the following lemma.

Lemma 3. (See [26].) Let D be a convex, bounded and closed subset of a Banach space
E. If Q : D → D is a condensing map, then Q has a fixed poind in D.

3 Main results

Theorem 1. Let E be an ordered Banach space, whose positive cone K is normal cone,
let A : D(A) ⊂ E → E be a closed linear operator and −A generate an exponentially
stable, positive, and compact semigroup T (t) (t > 0) in E, whose growth exponent
denotes ν0 < 0, u0 > θ. Assume that F : R+ × E → E is a continuous function and
the following conditions hold:

(H1) There exist nonnegative constants a ∈ (0, |ν0|/M) and b > 0 such that∥∥F (t, h(t)x
)∥∥ 6 a‖x‖+ b, t > 0, x ∈ E;
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(H2) F is nondecreasing with respect to the second variable, i.e., for x2 > x1 > θ,

F (t, x2) > F (t, x1) > θ, t > 0;

(H3) There exists ω > 0 such that

lim
t→∞

∥∥F (t+ ω, x)− F (t, x)
∥∥ = 0, t > 0, x ∈ E.

Then there exists a minimal positive S-asymptotically ω-periodic mild solution u∗ of
problem (1).

Proof. Define an operator Q on Ch(E) by

Qu(t) = U(t)u(0) +

t∫
0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds, t > 0. (7)

It is easy to find Q : Ch(E)→ Ch(E) is well defined. In fact, for every u ∈ Ch(E) and
t > 0, we have ‖u(t)‖ = h(t)‖u(t)‖/h(t) 6 h(t)‖u‖h. Hence, from (H1), (3), and (5) it
follows that for t > 0,

‖Qu(t)‖
h(t)

6
1

h(t)

(∥∥U(t)u(0)
∥∥+

∥∥∥∥∥
t∫

0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds

∥∥∥∥∥
)

6
1

h(t)

(
M‖u0‖+

t∫
0

(t− s)q−1
∥∥V (t− s)

∥∥∥∥F (s, u(s)
)∥∥ds

)

6
M

h(t)

(
‖u0‖+

t∫
0

∞∫
0

qσξq(σ)(t− s)q−1eν0(t−s)
qσ
(
a‖u‖h + b

)
dσ ds

)

6
M

h(t)

(
‖u0‖+

(
a‖u‖h + b

) ∞∫
0

ξq(σ) dσ

∞∫
0

eν0s ds

)

=
M

h(t)

(
‖u0‖+

b

|ν0|
+
a‖u‖h
|ν0|

)
, (8)

which implies that Q : Ch(E)→ Ch(E) is well defined.
It is easy to show that Q : Ch(E) → Ch(E) is continuous. Let {un} ⊂ Ch(E) and

un → u in Ch(E) as n→∞, that is, for arbitrary ε > 0, there exists sufficiently large n
such that ‖un − u‖h < ε for. For above ε, by the continuity of F it is easy to see

∥∥F (t, un(t)
)
− F

(
t, u(t)

)∥∥ 6
|ν0|ε
M

, t > 0, (9)
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and the dominated convergence theorem ensures

‖Qun(t)−Qu(t)‖
h(t)

6
1

h(t)

t∫
0

(t− s)q−1
∥∥V (t− s)

∥∥∥∥F (s, un(s)
)
− F

(
s, u(s)

)∥∥ds

6
|ν0|ε
Mh(t)

t∫
0

(t− s)q−1
∥∥V (t− s)

∥∥ds 6 ε.

Hence, we conclude that Q is continuous from Ch(E) to Ch(E). Specially, by (8) one
can find that for every u ∈ Ch(E),

‖Qu‖h 6M‖u0‖+
Mb

|ν0|
+
Ma

|ν0|
‖u‖h = γ + β‖u‖h, (10)

where γ = M‖u0‖ + Mb/|ν0| and β = Ma/|ν0| < 1. Therefore, from Definition 2 it
follows that the fixed points of Q are mild solutions to problem (1).

Next, we will prove that Q(SAPω(E)) ⊂ SAPω(E). Choose u ∈ SAPω(E), then
for any ε > 0, there exists a constant tε,1 > 0 such that ‖u(t + ω) − u(t)‖ 6 ε for all
t > tε,1. Thus, by continuity of F we have

∥∥F (t, u(t+ ω)
)
− F

(
t, u(t)

)∥∥ 6
|ν0|
M

ε ∀t > tε,1. (11)

On the other hand, by (H3) there is a sufficiently large constant tε,2 such that for t > tε,2,

∥∥F (t+ ω, u(t+ ω)
)
− F

(
t, u(t+ ω)

)∥∥ 6
|ν0|
M

ε. (12)

Hence, for t > tε := max{tε,1, tε,2}, from (7) it follows that

Qu(t+ ω)−Qu(t)

= U(t+ ω)u(0) +

t+ω∫
0

(t+ ω − s)q−1V (t+ ω − s)F
(
s, u(s)

)
ds

− U(t)u(0)−
t∫

0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds

= U(t+ ω)u(0)− U(t)u(0)

+

ω∫
0

(t+ ω − s)q−1V (t+ ω − s)F
(
s, u(s)

)
ds

https://www.journals.vu.lt/nonlinear-analysis
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+

t∫
0

(t− s)q−1V (t− s)
(
F (s, u(s+ ω)

)
− F

(
s, u(s)

))
ds

+

t∫
0

(t− s)q−1V (t− s)
(
F (s+ ω, u(s+ ω)

)
− F

(
s, u(s+ ω)

)
ds

:= I1(t) + I2(t) + I3(t) + I4(t).

According to (6), let

M0 = M max
{

sup
t>0

Eq
(
ν0t

q
)
(1 + t)q, sup

t>0
Eq,q

(
ν0t

q
)
(1 + t)2q

}
,

then ∥∥U(t)
∥∥ 6

M0

(1 + t)q
,
∥∥V (t)

∥∥ 6
M0

(1 + t)2q
, t ∈ R+. (13)

Thus, by (13) and (H1) one can find that∥∥I1(t)
∥∥ 6

∥∥U(t+ ω)u(0)
∥∥+

∥∥U(t)u(0)
∥∥ 6

(∥∥U(t+ ω)
∥∥+

∥∥U(t)
∥∥)‖u0‖

6
2M0‖u0‖
(1 + t)q

and ∥∥I2(t)
∥∥ 6

ω∫
0

(t+ ω − s)q−1
∥∥V (t+ ω − s)

∥∥∥∥F (s, u(s)
)∥∥ds

6

ω∫
0

(t+ ω − s)q−1M0(a‖u(s)‖+ b)

(1 + t+ ω − s)2q
ds

6M0

(
a‖u‖C + b

) ((t+ ω)q − tq)
q(1 + t)2q

6M0

(
a‖u‖C + b

) ωq

q(1 + t)2q
.

Hence, we deduce that ‖I1‖, ‖I2‖ tend to 0 as t → ∞. By (13), (11), and (H1) one can
obtain that

∥∥I3(t)
∥∥ 6

tε∫
0

(t− s)q−1
∥∥V (t− s)

∥∥∥∥F (s, u(s+ ω)
)
− F

(
s, u(s)

)∥∥ds

+

t∫
tε

(t− s)q−1
∥∥V (t− s)

∥∥∥∥F (s, u(s+ ω)
)
− F

(
s, u(s+ ω)

)∥∥ds

6 2M0

(
a‖u‖C + b

) tε∫
0

(t− s)q−1

(1 + t− s)2q
ds+

t∫
tε

(t− s)q−1
∥∥V (t− s)

∥∥ ds
|ν0|ε
M
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6 2M0(a‖u‖C + b)

tε∫
0

(t− s)−q−1 ds+

t∫
0

(t− s)q−1
∥∥V (t− s)

∥∥ds
|ν0|ε
M

6 2M0

(
a‖u‖C + b

) (t− tε)−q − t−q

q

+ q

t∫
0

∞∫
0

σξq(σ)(t− s)q−1e−|ν0|(t−s)
qσ dσ ds |ν0|ε

6 2M0

(
a‖u‖C + b

) (t− tε)−q − t−q

q
+

∞∫
0

ξq(σ) dσ

∞∫
0

e−|ν0|s ds |ν0|ε

6 2M0

(
a‖u‖C + b

) (t− tε)−1 − t−q

q
+ ε,

which implies that ‖I3(t)‖ tends to 0 as t → ∞. Similarly, by (13), (12), and (H1) we
can get that ‖I4(t)‖ tends to 0 as t→∞.

Thus, from the above results we can deduce that

lim
t→∞

∥∥Qu(t+ ω)−Qu(t)
∥∥ = 0,

namely, Qu ∈ SAPω(E), which implies that Q(SAPω(E)) ⊂ SAPω(E).
Now, we prove the existence of positive solutions by monotone iterative technique.

For any u, v ∈ Kh with u 6 v, by (H2), (7), the positivity of U(t), V (t), and u0 > θ,
one can find that for all t ∈ [0,∞),

θ 6 Qu(t) 6 Qv(t).

Thus Q is monotone increasing.
Let v0(t) ≡ θ. Clearly, v0 ∈ Kh ∩ SAPω(E). Now, define a sequence {vi} by

vi = Qvi−1, i = 1, 2, . . . . (14)

From the definition and properties of Q, (14), (10) one can find {vi} ⊂ Kh ∩ SAPω(E)
and

v0 6 v1 6 · · · 6 vi 6 · · · ,

‖vi‖h 6 γ + β‖vi−1‖h. (15)

Since ‖v0‖h ≡ 0, from (15) it follows that

‖vi‖h 6 γ + βγ + · · ·+ βi−1γ = γ
1− βi

1− β
6

γ

1− β
, (16)

thus, the sequence {vi} is uniformly bounded. Next, we prove that the sequence {vi} is
uniformly convergent.
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Firstly, {vi(t)} is relatively compact on E for t ∈ [0,∞). Let V = {vi} and V0 =
V ∪ {v0}. Obviously, V(t) = (QV0)(t) for t ∈ [0,∞). For arbitrary r0 ∈ [0,∞), one
can obtain that {vi(t)} is relatively compact on E for t ∈ [0, r0]. In fact, for all ε ∈ (0, t)
and for all δ > 0, we define a set Qε,δV0(t) by

Qε,δV0(t) :=
{
Qε,δvi(t): vi ∈ V0, t ∈ [0, r0]

}
,

where

Qε,δvi(t)

= U(t)vi−1(0) + q

t−ε∫
0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, vi−1(s)

)
dτ ds

= U(t)vi−1(0)

+ qT
(
εqδ
) t−ε∫

0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ − εqδ)F

(
s, vi−1(s)

)
dτ ds.

By the compactness of U(t) and T (εqδ) the set Qε,δV0(t) is relatively compact in E.
Moreover, for every vi ∈ V0 and t ∈ [0, r0], one has

‖Qvi(t)−Qε,δvi(t)‖

6

∥∥∥∥∥q
t∫

0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, vi−1(s)

)
dτ ds

∥∥∥∥∥
+

∥∥∥∥∥q
t∫

t−ε

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, vi−1(s)

)
dτ ds

∥∥∥∥∥
6 qM

(
aγ

1− β
+ b

) t∫
0

(t− s)q−1 ds

δ∫
0

τξq(τ) dτ

+ qM

(
aγ

1− β
+ b

) t∫
t−ε

(t− s)q−1 ds

∞∫
δ

τξq(τ) dτ

6M

(
aγ

1− β
+ b

)(
rq0

δ∫
0

τξq(τ) dτ +
εq

Γ(1 + q)

)
→ 0 as ε→ 0, δ → 0.

Hence, the set (QV0)(t) is relatively compact, which implies that {vi(t)} is relatively
compact on E for t ∈ [0, r0]. Therefore, by the definition ofQ and the arbitrariness of r0
we can obtain that {vi(t)} is relatively compact on E for t ∈ [0,∞).
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Secondly, {vi} ⊂ Kh ∩ SAPω(E) is equicontinuous in [0,∞). In general, let 0 6
t1 < t2. For any u ∈ {vi}, by the definition of Q one can see∥∥Qu(t2)−Qu(t1)

∥∥
=

∥∥∥∥∥U(t2)u(0) +

t2∫
0

(t2 − s)q−1V (t2 − s)F
(
s, u(s)

)
ds

− U(t1)u(0)−
t1∫
0

(t1 − s)q−1V (t1 − s)F
(
s, u(s)

)
ds

∥∥∥∥∥
6
∥∥U(t2)u(0)− U(t1)u(0)

∥∥
+

t1∫
0

(
(t2 − s)q−1 − (t1 − s)q−1

)∥∥V (t2 − s)
∥∥∥∥F (s, u(s)

)∥∥ds

+

t1∫
0

(t1 − s)q−1
∥∥V (t2 − s)− V (t1 − s)

∥∥∥∥F (s, u(s)
)∥∥ds

+

t2∫
t1

(t2 − s)q−1
∥∥V (t2 − s)

∥∥∥∥F (s, u(s)
)∥∥ ds

:= J1 + J2 + J3 + J4.

Next, we check if ‖Ji‖ (i = 1, 2, 3, 4) tend to 0 as t2−t1 → 0 independently of u ∈ {vi}.
From (4) it follows that J1 → 0 as t2 − t1 → 0. By (H1), (13), and (16) we can obtain

J2 =

t1∫
0

(
(t2 − s)q−1 − (t1 − s)q−1

)∥∥V (t2 − s)
∥∥∥∥F (s, u(s)

)∥∥ ds

6M0

t1∫
0

(t1 − s)q−1 − (t2 − s)q−1

(1 + t2 − s)2q
(
a‖u‖h + b

)
ds

6
M0

q

(
aγ

1− β
+ b

)
tq1 − t

q
2 + (t2 − t1)q

(1 + t2 − t1)2q

6
2M0

q

(
aγ

1− β
+ b

)
(t2 − t1)q → 0 as t2 − t1 → 0,

J4 6M0

(
aγ

1− β
+ b

) t2∫
t1

(t2 − s)q−1 ds

=
M0

q

(
aγ

1− β
+ b

)
(t2 − t1)q → 0 as t2 − t1 → 0.
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If t1 = 0 and t2 > 0, then it easy to see that J3 = 0. For t1 > 0 and ε > 0 small enough,
by (H1), (13), (16), and Lemma 2(iv) we get that

J3 =

t1∫
0

(t1 − s)q−1
∥∥V (t2 − s)− V (t1 − s)

∥∥∥∥F (s, u(s)
)∥∥ ds

6

(
aγ

1− β
+ b

) t1−ε∫
0

(t1 − s)q−1
∥∥V (t2 − s)− V (t1 − s)

∥∥ ds

+

(
aγ

1− β
+ b

) t1∫
t1−ε

(t1 − s)q−1
∥∥V (t2 − s)− V (t1 − s)

∥∥ds

6

(
aγ

1− β
+ b

)
sup

s∈[0,t1−ε]

∥∥V (t2 − s)− V (t1 − s)
∥∥ t1−ε∫

0

(t1 − s)q−1 ds

+ 2M0

(
aγ

1− β
+ b

) t1∫
t1−ε

(t1 − s)q−1 ds

6

(
aγ

1− β
+ b

)(
sup

s∈[0,t1−ε]

∥∥V (t2 − s)− V (t1 − s)
∥∥ tq1 − εq

q
+

2M0ε
q

q

)
→ 0 as ε→ 0, t2 − t1 → 0.

As a result, ‖Qu(t2) − Qu(t1)‖ tends to 0 as t2 − t1 → 0 independently of u ∈ {vi},
thus {vi} is equicontinuous.

Thirdly, for every u ∈ {vi}, by (8) and (16) one can find

‖Qu(t)‖
h(t)

6
M

h(t)

(
‖u0‖+

b

|ν0|
+

aγ

|ν0|(1− β)

)
, t > 0,

which implies that ‖Qu(t)‖/h(t) → 0 as t → ∞ uniformly for u ∈ {vi}. Therefore,
Lemma 1 allows us to deduce that {vi} is relatively compact in Kh ∩ SAPω(E), thus
there is convergent subsequence in {vi}. From the monotonicity of sequence and the
normality of cone we can obtain that {vi} itself is uniformly convergent, which means
that there is u∗ ∈ Kh ∩ SAPω(E) such that limi→∞ vi = u∗.

Taking the limit in (14), one can see u∗ = Qu∗. Thus u∗ ∈ Kh ∩ SAPω(E)
is fixed point of Q, which is a positive S-asymptotically ω-periodic mild solution of
problem (1). It is easy to prove that u∗ is the minimal positive mild solution. To this
end, let ũ ∈ Kh ∩ SAPω(E) be a positive S-asymptotically ω-periodic mild solution of
problem (1), namely, ũ(t) = Qũ(t) for every t ∈ [0,∞). Obviously, ũ(t) > v0, and from
the monotonicity of Q it follows that

ũ(t) = (Qũ)(t) > (Qv0)(t) = v1(t), (17)
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namely, ũ > v1. In general, ũ > vi, i = 1, 2, . . . . Taking the limit in (17) as i → ∞,
we have ũ > u∗, which means that u∗ is the minimal positive S-asymptotically ω-periodic
mild solution of problem (1).

Next, we always assume that the positive cone K is regeneration cone. By the char-
acteristic of positive semigroups (see [22]), for sufficiently large λ0 > − inf{Reλ:
λ ∈ σ(A)}, we have that λ0I + A has positive bounded inverse operator (λ0I + A)−1.
Since σ(A) 6= ∅, the spectral radius

r
(
(λ0I +A)−1

)
=

1

dist(−λ0, σ(A))
> 0.

By the famous Krein–Rutmann theorem A has the smallest eigenvalue λ1 > 0, which has
a positive eigenfunction e1, and

λ1 = inf
{

Reλ: λ ∈ σ(A)
}
,

which implies that ν0 = −λ1. Hence, by Theorem 1 we have the following results.

Corollary 1. LetE be an ordered Banach space, whose positive coneK is a regeneration
cone, let A : D(A) ⊂ E → E be a closed linear operator and −A generate an exponen-
tially stable, positive, and compact semigroup T (t) (t > 0) in E, u0 > θ. Assume that
F : R+ × E → E is a continuous function, and let conditions (H2), (H3), and

(H1′) there exist nonnegative constants a ∈ (0, λ1/M) and b > 0 such that∥∥F (t, h(t)x
)∥∥ 6 a‖x‖+ b, t > 0, x ∈ E.

hold. Then problem (1) has a minimal positive S-asymptotically ω-periodic mild solu-
tion u∗.

Theorem 2. Let E be an ordered Banach space, whose positive cone K is regeneration
cone, let A : D(A) ⊂ E → E be a closed linear operator and −A generate an ex-
ponentially stable, positive, and compact semigroup T (t) (t > 0) in E. Assume that
F : R+ × E → E is a continuous function, and let conditions (H1′), (H3),

(H4) for any u ∈ Ch(E) with u(t) > σe1, there is a constant σ > 0 such that

F
(
t, u(t)

)
> F (t, σe1) > λ1σe1, t > 0,

hold and u0 > σe1. Then problem (1) has at least one positive S-asymptotically
ω-periodic mild solution.

Proof. Let Q be defined by (7). From the proof of Theorem 1 it follows

Q
(
SAPω(E)

)
⊂ SAPω(E).

Since a ∈ (0, λ1/M), we can choose R0 >M(λ1‖u0‖+ b)/(λ1 − aM). Denote

ΩR0
:=
{
u ∈ Ch(E): ‖u‖h 6 R0, u(t) > σe1, t > 0

}
. (18)
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Then ΩR0
⊂ Ch(E) is a nonempty bounded convex closed set. Hence, for any u ∈ ΩR0

and t > 0, from (H1′), (3), and (5) the following holds:

‖Qu(t)‖
h(t)

6
∥∥U(t)u(0)

∥∥+

∥∥∥∥∥
t∫

0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds

∥∥∥∥∥
6M‖u0‖+

t∫
0

(t− s)q−1
∥∥V (t− s)

∥∥∥∥F (s, u(s)
)∥∥ ds

6M‖u0‖+M

t∫
0

∞∫
0

σξq(σ)(t− s)q−1eν0(t−s)
qσ
(
a‖u‖h + b

)
dσ ds

6M‖u0‖+M
(
a‖u‖h + b

) ∞∫
0

ξq(σ) dσ

∞∫
0

eν0s ds

= M

(
‖u0‖+

b

λ1
+
a‖u‖h
λ1

)
6 R0.

Let w0 ≡ σe1. Then w0(t) = σe1 for any t > 0, and

g(t) :=cDq
tw0(t) +Aw0(t) = λ1σe1 6 F (t, σe1), t > 0.

By the positivity of semigroup T (t) (t > 0), condition (H4), and (7), for any u ∈ ΩR0

and t > 0, one can obtain that

σe1 = w0(t) = U(t)w0(0) +

t∫
0

(t− s)q−1V (t− s)g(s) ds

6 U(t)σe1 +

t∫
0

(t− s)q−1V (t− s)F (s, σe1) ds

6 U(t)u0 +

t∫
0

(t− s)q−1V (t− s)F
(
s, u(s)

)
ds = (Qu)(t).

Thus, Q(ΩR0
) ⊂ ΩR0

and (Qu)(t) > σe1 for any u ∈ ΩR0
and t > 0.

Next, we show that Q is completely continuous. From assumptions (H1′) and (H3)
there is a constant M1 such that for all u ∈ ΩR0 ,

sup
t>0

∥∥F (t, u(t)
)∥∥ 6M1. (19)

Thus, it is easy to verify that the set

Q(ΩR0,r0)(t) :=
{

(Qu)(t): u ∈ ΩR0
, t ∈ [0, r0]

}
Nonlinear Anal. Model. Control, 26(5):928–946, 2021
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is relatively compact on E for any r0 ∈ (0,∞). In order to do this, we define a set

Qε,δ(ΩR0,r0)(t) :=
{

(Qε,δu)(t): u ∈ ΩR0 , t ∈ [0, r0]
}
,

where ε ∈ (0, t), δ > 0, and

(Qε,δu)(t)

= U(t)u(0) + q

t−ε∫
0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, u(s)

)
dτ ds

= U(t)u0 + qT (εqδ)

t−ε∫
0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ − εqδ

)
F
(
s, u(s)

)
dτ ds.

By the compactness of U(t) and T (εqδ) the set Qε,δ(ΩR0,r0)(t) is relatively compact
in E. Right now, for every u ∈ ΩR0

and t ∈ [0, r0], one has∥∥Qu(t)−Qε,δu(t)
∥∥

6

∥∥∥∥∥q
t∫

0

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, u(s)

)
dτ ds

∥∥∥∥∥
+

∥∥∥∥∥q
t∫

t−ε

∞∫
δ

τ(t− s)q−1ξq(τ)T
(
(t− s)qτ

)
F
(
s, u(s)

)
dτ ds

∥∥∥∥∥
6 qMM1

( t∫
0

(t− s)q−1 ds

δ∫
0

τξq(τ) dτ +

t∫
t−ε

(t− s)q−1 ds

∞∫
δ

τξq(τ) dτ

)

6MM1

(
rq0

δ∫
0

τξq(τ) dτ +
εq

Γ(1 + q)

)
→ 0 as ε→ 0, δ → 0.

Hence, the set Q(ΩR0,r0)(t) is relatively compact on E for t ∈ [0, r0]. Therefore,
by the definition of Q and the arbitrariness of r0 we can deduce that Q(ΩR0)(t) is
relatively compact on E for t ∈ [0,∞). Moreover, it is easy to prove that set Q(ΩR0)
is equicontinuous by using the method similar to Theorem 1. Also, for every u ∈ ΩR0

,
by (8) and (19) one can find

‖Qu(t)‖
h(t)

6
M

h(t)

(
‖u0‖+

b

λ1
+
aR0

λ1

)
, t > 0,

which implies that ‖Qu(t)‖/h(t) → 0 as t → ∞ uniformly for u ∈ ΩR0
. Now, we can

assert that Q(ΩR0) is relatively compact by Lemma 1 in Ch. Hence, Q is completely
continuous.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


S-asymptotically periodic solutions of the fractional evolution equations 943

From above proof

Q : SAPω(E) ∩ΩR0
→ SAPω(E) ∩ΩR0

is completely continuous, which implies that Q is a condensing mapping from
SAPω(E) ∩ΩR0

into SAPω(E) ∩ΩR0
. It follows from Lemma 3 that Q has a fixed

point u∗ ∈ SAPω(E) ∩ΩR0
.

Finally, we show that u∗ ∈ SAPω(E). Let {un} ⊂ SAPω ∩ ΩR0
converge to u∗.

Then, according to the continuity of Q and (18), we can find that {Qun} converges to
Qu∗ = u∗ uniformly in [0,∞) and u∗ > σe1, which implies that u∗ ∈ SAPω(E) is
a positive mild solution of problem (1). This completes the proof of Theorem 2.

4 Example

We consider the following semilinear fractional parabolic equation initial boundary value
problem:

∂q

∂tq
u(ξ, t) +

∂2

∂ξ2
u(ξ, t) =

a sin2 t

et
u(ξ, t) + b

√
2

π
sin ξ, ξ ∈ [0, π], t ∈ R+,

u(0, t) = u(π, t), t ∈ R+, u(ξ, 0) = u0(ξ), ξ ∈ [0, π],

(20)

where ∂q/∂tq is the Caputo fractional partial derivative of order q ∈ (0, 1) with the lower
limits zero, a ∈ (0, 1), b > 0 are constants, u0 : [0, π]→ R+ is a continuous function.

To treat this system in the abstract form (1), we choose the space E = L2[0, π]
equipped with the L2-norm ‖·‖. Let K = {u ∈ E: u(ξ) > 0 a.e. ξ ∈ [0, π]}, thus,
E is an ordered Banach space, and positive cone K is a normal regeneration cone.

Define operator A : D(A) ⊂ E → E by

D(A) :=
{
u ∈ E: u′′, u′ ∈ E, u(0) = u(π) = 0

}
, Au = −∂

2u

∂ξ2
.

From [2] we know that −A is a self-adjoint operator in E and generates an exponentially
stable analytic semigroup T (t) (t > 0), which is contractive inE. Hence, ‖T (t)‖ 6M :=
1 for every t > 0. Moveover, A has a discrete spectrum with eigenvalues of the form n2,
n ∈ N, and the associated normalized eigenfunctions are given by en(ξ) =

√
2/π sin(nξ)

for ξ ∈ [0, π]. On the other hand, by the maximum principle of the parabolic type it is
easy to find that T (t) (t > 0) is a positive semigroup. Since the operator A has compact
resolvent in L2[0, π], thus, T (t) (t > 0) is a compact semigroup (see [28]), which implies
that the growth exponent of the semigroup T (t) (t > 0) satisfies ν0 = −1.

For ξ ∈ [0, π], we set u(t)(ξ) = u(ξ, t) and

F
(
t, u(t)

)
(ξ) =

a sin2 t

et
u(ξ, t) + b

√
2

π
sin ξ. (21)

It is easy to verify that F : [0,∞) × E → E is a continuous function. From the
assumptions of problem (20) and (21) one can deduce that F satisfies the monotonicity
condition (H2) and the asymptotically periodic condition (H3).
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Let h(t) = et, then

∥∥F (t, etx)∥∥ 6
a sin2 t

et
∥∥etx

∥∥+ b‖e1‖ 6 a‖x‖+ b. (22)

Combining (22) and a ∈ (0, 1), one can find that condition (H1′) holds. Therefore, from
Corollary 1 it follows that problem (20) has a minimal positive time S-asymptotically
ω-periodic mild solution u∗ ∈ C([0,∞), L2[0, π])∩SAPω(L2[0, π]). On the other hand,
it is clear that for u(t, ξ) > be1(ξ),

a sin2 t

et
u(ξ, t) + be1(ξ) >

ab sin2 t

et
e1(ξ) + be1(ξ) > be1(ξ),

which implies that condition (H4) holds. Hence, if u0 > be1, from Theorem 2 one can
obtain that for problem (20), there exists at least one positive time S-asymptotically ω-
periodic mild solution u∗ ∈ C([0,∞), L2[0, π])∩SAPω(L2[0, π]) with u∗(ξ, t) > be1(ξ)
for every ξ ∈ [0, π] and t > 0.
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